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Introduction

Let M be the compact irreducible Hermitian symmetric space of type
EIII. Then M can be imbedded holomorphically and isometrically into the
26 dimensional complex projective space P,(C) (Nakagawa and Takagi [5]).
In this note we prove the following theorem.

Theorem. There exists a hyperplane W of Py(C) such that M N W is a hy-
persurface of M and a Kahler C-space. Further M N W =G|U, where G is the
simply connected complex simple Lie group of type F, and U is a parabolic Lie
subgroup of G. \‘

It has been proved that there is no non-zero holomorphic vector field on
the hypersurfaces of M with degree>1 (Kimura [3]). The theorem shows
that the above result does not hold for a hypersurface of M with degree 1.

The author would like to express his gratitude to Professor S. Murakami
and Doctor Y. Sakane for their useful suggestions and encouragements.

1. The exceptional Lie algebras of type F, and E;

First we shall recall Chevalley-Schafer’s models of the complex simple
Lie algebras of type F, and E;. Denote by O the quaternion algebra over C
with the usual base {1, 7, j, k} subject to the multiplication rules:

P=f=R=—1,i=Fk=—ji,jk=i= —kj, ki=j = —ik.

Then the Cayley algebra € over C can be defined as €= Q-+ Q-e (direct sum)
with the following multiplication rule:

(a-+be)(c-+de) = (ac—db)-+(da-+bT)e

for a,b,c,d=Q. Here a—a is the usual involution in Q.
We define a 27 dimensional Jordan algebra I by
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Eicd)
=4l té& a) ; £€C(i=1,2,3),a,b,cc€
bakg;
with the Jordan product x-. y=%(xy—l—yx) for x, yeJ. Here xy means the

usual matrix-product under the multication rule in €. Define elements e,
e, and e, of ¥ by

100 000 000
el=(000 , =010/}, =000
\0 00 000 001

For ac @, we define elements a,, a, and a; of ¥ by

000 00a 0a0
al=(00a), a=1000], aa=[{a0@0
0ado a00 000

Then we see the following identities.

e

1

=e, 1=1,2,3,
eire; =0, i*j, 4,7=123,
a;=0, ac€, i=1,2,3,
acC®, i*j, 4,j7=12,3,

(1) 1%
é;
a;+b; = (a,b)(e;+¢,), a, b€, {ij,k} apermutation of {1,2,3},
a;

b, = §(ba),, a,bsC{i,i,k} acyclic permutation of {1,2,3},

J

where (4, b) is the symmetric form on € defined by

ab-+-ba = 2(a, b)1 .

Put {,={a;; a=C}, i=1,2,3. Then
J = Cey+Cep+-Ces I+ I+ (direct sum) .
Hence every element x of ¥ can be written as
x = Ee+Eet+Eetatbtce, £EC, a,b ceC.

We define the trace T'(x) of this element x by

T(x) = &E+&+&s.

Also let R, be the right multiplication by x;
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R(y)=y-x.
We need in the later discussion the subalgebra J, of 26 dimensions:
o= {x€J; T(x) =0}.
A derivation of ¥ is a linear endomorphism D of ¥ satisfying
(2) D(x-y) = (Dx)-y+x-(Dy).
The condition (2) for a derivation D may be written as
(3) [D,R]=R,, forall x¥.

Denote by D(J) the Lie algebra of all derivations of J. Then the following
theorem is known.

Theorem (Chevalley and Schafer [1]). D(I) (resp. D(J)+R(I)) s
the complex simple Lie algebra of type F, (resp. Eg), where R(I)={R,; x=J}-

Let us denote D(I)+Ry(F) by & for simplicity. It is known that &; acts
irreducibly on ¥ and J is decomposed into two irreducible components as

D(I)-module:
(4) J=Cl1+3, (direct sum)
(Sechafter [6]).
Let
D, = {D(I); De, = De, = De, = 0} ,
and
D, = {[Ruy R, 4]; a3},
where {7, ], k} is a permutation of {1, 2, 3} .
Then |
D(F) = Dy+D, 49,4+ D, (direct sum)
(Schafer [6]).

It is known that ; is isomorphic to o(8, C), the Lie algebra of 8 dimensional
complex orthogonal group, as Lie algebra (Schafer [6]).

Proposition 1 (Jacobson [2]). DI, CI;, i=1, 2, 3, and the representations
D, on Iy, X and I, are respectively equivalent to the natural representation on C2,
the even half-spin representation and the odd half-spin representation of o(8,C).
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Proposition 2. For eachi=1, 2,3, D, and I, are isomorphic D-modules.
Proof. Let De®,. Since D satisfies the condition (3),
[D’ [‘Rﬂi’ Rej-ek]] = [[D) Ra,']’ Rej—ek]—i_‘[Ra," [D’ Rej—e,,]]
= [RDap Rej—ek]—i'[Ra;’ RDe,—Dek] = [RDan Re,-—ek] ’
where {7, k} is a permutation of {1, 2, 3}. q.e.d.
We take a Cartan subalgebra §’ of D, and a basis {H,, H,, H;, H;} of ¥’.
Define linear forms \;, i=1, 2, 3, 4, by
Al z‘:xjH,.—»x,- .
ji=1
We may assume that 4- A, 2\, £<j, are roots of ®,. By Propositions 1
and 2, b’ is a Cartan subalgebra of () and its roots are as follows:
:‘:)\‘i :I:Xj, l<]: i)j=1;2’3’4»
:I:)"i» 1= 17273)4’
+ AL, where Al = F(0+ NN+ N)—N;, 0= 1,2,3, 4,
:tA:k ’ where Aalk = %(7\'1',_7\'2_'—)\'3_,"7\'4) )
A;k == %(7\14‘7\2"‘7\'3—7\'4) ’ .Agk - %(7\1—7\2+7\'3_7\'4) ’
Af = %(7\1_7\2_7\3‘}‘7\'4) .

Put a;=N,— Ny, ay=N;— Ay, atz=A, a,=—A]. Then {a,, a,, as, a,} is a fun-
damental root system and its Dynkin diagram is:

o———szo——O

241 (07} s ay

Let {o,, w,, w3, 0.} be the fundamental weights with respect to {a, as, a3, at}-
Then Cl)4=),1. ’
Now we give a Cartan subalgebra and roots of €. Set H;=R,, H=R,,

H,=R,,. Then (3) and the following lemma imply that §= { iE MNH e,
As+As+A;=0} is a commutative subalgebra of &.
Lemmal. [R,, R, ]=0 for 1=<4,j<3.

Proof. Obviously we may assume that 7 is not j. We have the following
identities from (1).
[R. R Je. = (e-¢;)-e;—(er-e,)-¢; =0, k=*1,j.
[R.:, -Rej]ei = (ei'ej)'ei_(ei'ei)'ej =0.
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Rimilarly we get [R,, R,]e;=0. On the other hand
[R., Rgf]a,, = (a;-e;)-¢;—(a;-¢€;)-¢;
= la,-e,—%a,e; = ja,—%ta, =0, acC k+i,j.
[R., Rej]a,- = (a;-e;)-e;—(a;-¢;)-¢; = ta;.e;,=0, acC.
Similarly we get [R,,, R, ]a;=0. q.e.d.
We now claim that ad 9 acts diagonally on &;, which will prove that is a

Cartan subalgebra of &,. We shall also determine the root system of &; with
respect to ). We define linear forms X, 1<7¢<7, on § by

- 7
A 2INH =
i=1

The definition of § implies As+X-+X;,=0. Since A, i=1,2,3,4, are trivial
extensions on f) of A;, we denote X; by A;, 1<i{<7, for simplicity. And we
regard Af and A¥, 1<7=<4, as linear forms on §.

We first note that the root vectors of ®©, with respect to §)’ are root vectors
for G with respect to B, since such a root vector is a derivation D mapping e;
into 0, and so [R,, D]=0, i=1,2,3. In this way we obtained the roots
ENEN;, 1S1<j <4, for G Next let

rij = {Sij = Rak+2[Rak’ Rei]; aE(S} ’

where {7,j, k} is a permutation of {1,2,3}. Then we have
= {3V NH 5 At rethy = 034D 31y, (direct sum)
i=5 ifej
by the following lemma.

Lemma 2. [R,, R,]=0 and [R,, R,]=—[R,, R,) for acC and
{2, j, k} a permutation of {1, 2, 3}.

Proof. By (1) we have the following identities.

[R.» Re,—]ei = (e;7¢;)-a;—(e;°a;)-¢; = €;70; =0,

[Ra,') Re,’]ej = (ej'ei)'ai_(ej'ai)'ei = —%a;.¢,=0,

[R.» R)b; = (b;-e;)-a;—(b;+a;)-e; = —(b, a)(ej+ek)'ei =0, bel,

[R, R,]b; = (b;-€;)-a;—(b;-a;)-e; = }b;-a;—%b;+a; = 0, bet.
Therefore [R,, R,]=0. Since R,,+-R,,+R,,=1g, we have [R,, R, ]+[R,;, R,,]=0.

q.e.d.
Lemma 3. [H, S, ]=—}Niw—n;40)S,, for H= 3 NH,.
k=5

Proof. Since J is a Jordan algebra, we have
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[[R., R,), R] = Rig, z,). forx,y,2EJ
(Schafer [6]). By this fact and Lemma 2, we have
[Rey Sai;] = [Rep Ry +2[R,y, R ]] = —2Riro, Rejter = 0
[Reis So;;] = [Repy Ry A-2[Ro, R]1 = —[Ryy; R, —2Rirq, Redes 5
where k=7,j. On the other hand,
[R.,, R, Je; = (e;-e;)-a,—(e;+a;) -6; = €;-a,—}a,-e; = ja,—ja, = %a, .

Hence [R,;, S,;] = —%S,,,. Since R, +R,+R, =13
and [R,,, S,,;]=0, we get [R,+R,, S, ]=0.
Therefore [R,,, S, ]=%S,,; q.e.d.

Let HeYC®,. Then,
[H, S,,) = [H, R,J+2[H, [Ry, RJ) = Ryoyt-2[Ruap R], i j .

It follows that if a,S, is a weight vector for the representation of ; on ,,
then the corresponding S,,; will be a root vector for §. In this way we obtain
the following roots:

:txi:t%(kﬁ—)ﬂ)) :}:A{ :t%()ﬁ_)ﬂ)) j:Aik :‘:%()\'5'—7\‘6) ’

where i=1, 2, 3, 4. Thus we have shown that ad ) acts diagonally on @, and
obtained all roots of &; with respect to §). We may take a fundamental root
system {8, -+ ,Qs} as follows:

Br= —AH—%OW—)%) ) 182 = 7\'4+12_(7\‘6—7\'7) ’
B3 = A3— Ay, 184 = 7"4‘%(7\6"‘7\7) ’
,85 _A{—%O\v—)\'s) ) ﬁG = Ay—A;3-

Then the Dynkin diagram of {8, ---, B} is:

l

Bl BZ 63 ﬁ4 BS

Let {&,, --- , @;} be the fundamental weights with respect to {83, -, B¢}. Then
6’127\'1"_%()\6“}‘7\7)-
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2. Proof of the theorem

By (1) and Proposition 1, we have the following propositions.

Proposition 3. The weights of the irreducible representation of €; on J
are the followings:

sy Ay Apy XA E(N6t2N), AT EAs+Ng), EAFHEs+26)
where i=1, 2, 3, 4. Further the highest weight among these is & =\,~+(As+27).

Proposition 4. The weights of the irreducible representation of D) on
S, are the followings:

0) j:k'i) :JCA{, :I:A’zk’ i = 1) 21 3’4
Further the highest weight among these is w,=\,.

Let v, be an eigen vector belonging to the highest weight w, of the
representation of D(F) on J,. By Propositions 3 and 4, v is also a highest
weight vector of the representation of & on &. Therefore v is a common
highest weight vector of the above two representations.

Let E; be a simply connected complex Lie group with Lie algebra &; and
let F, be a connected Lie subgroup of E; with Lie algebra (). Then there
exists the irreducible representation (f,, J) of & in J which induces the
representation of & on . Denote by P(JI) the complex projective space
consisting of all 1-dimensional subspaces of . Then E; acts canonically on
P(J) via the representation (f,, ). The weight space Cv in ¥ for the highest
weight &, being of dimension 1, it is an element of P(J). It is known that
the isotropy subgroup U of Eg at Cv is a parabolic subgroup of Eg and the quo-
tient manifold E¢/U is fully imbedded in P(J) as the orbit of Cv (Nakagawa
and Takagi [5]). And Eg/U is compact irreducible Hermitian symmetric space
of type EIII.

The restriction to F, of f, leaves J, invariant. By Proposition 4, the
representation of F, on J, induced by f, is irreducible (with highest weight
w,). Let P(Q,) be the complex projective space consisting of all 1-dimensional
subspaces of ;. Then F, acts canonically on P(J,). Similarly as for the
above case, the isotropy subgroup U’ of F, at Cv € P(J,) is a parabolic subgroup
of F, and the quotient manifold F,/U’ is a Kahler C-space imbedded in P(J,)
as the orbit of Cv. Therefore F,/U’ is contained in E¢/U N P(JF,). It is known
that dim E;/U=16 and dim F,/U’'=15 (Nakagawa and Takagi [5]). Since
Eg/U is fully imbedded in P(J), E¢/U is not contained in P(3J,), namely,
Es/U N P(Jo)*E;/U. Since E/U is connected, it follows that dim E¢/U N P(J,)
=15=dim F,/U’. The fact that E;/U is connected implies easily that E/U N
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P(J,) is connected (Milnor [4]). Therefore F,/U'=E,/U NP(Q,). Thus we

have proved our theorem.
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