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TIGHT 4-DESIGNS

Hixoe ENOMOTO, Nosoru ITO*, AND Ryuzasuro NODA
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The purpose of this paper is to fill a gap in [1]. The result is as follows:
Theorem. 1. There exist only finitely many tight 4-designs.

Actually our result is considerably more explicit. Furthermore we do
not think that there exist tight 4-designs other than Witt designs.

[1] and [2] will be quoted as (T) and (C). We use the same notation as
in (T).

1. d;=e—1

Lemma 1. Put w=v—2k. Then we have that
(1) w* = v*—2(2ae+a—+1)v+2(6ae-+3a—1)

= (v—2)*—2(2ae+a—1)(v—3).

Proof. By (C), (5) we have that

(2) (@®—1)k*— {4a’¢*+4a(a—2)e+(3a—1)(a—1)}k
+2a%¢(e+1)(2ae+a—3) = 0.

Since k and v—k are solutions of (2), we have that

(3) (a®*—1)k(v—Fk) = 2ad%(e+-1)(2ae+a—3)
and
(4) (@*—1)v = 4a’¢*+4a(a—2)e+(3a—1)(a—1) .

Since w*—v*=—4k(v—k), (1) follows from (3) and (4).

The next lemma is crucial.
Lemma 2. There exists a positive integer N such that

(5) (2ae+a—1)N = (a*—1)? .
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Proof. By (30) and (47) of (T) we have that
(6) 2(0—2)y = 2kx = (v—w)(v—w—2ae—a—1).
By Lemma 1 the right-hand side of (6) equals
(7) (0—w)—(v—w)(2ae+a+1)
= o't w'—2wv—(2ae+a-+ 1o+ (2ae+a+1)w

= 20*—(2w+6ae+3a+3)v+2(6ae+3a—1)+ (2ae+a-+1)w
= (v—2){2(v—w)—6ae—3a-+1} +(2ae+a—3)w .

Now by (C), (3) we have that
(8) (@*—1)(v—2) = (2ae+a—1)(2ae+a—3).
Hence from (8) we have that

1) (v—2)w
(9) (2ae+a—3)w — %)_ _

Furthermore, if a is odd, then the second factor of the first term of the
right-hand side of (7) is even. Thus by (8), (9) and Lemma 1 we see that
2ae+a—1is a divisor of (a>—1)%

From (5) we have that N=—1 (mod 4). Hence we may put

(10) N = Ma—1,
where M is a positive integer. Then from (5) and (10) we have that
(11) 2e(Ma—1) = (a—1)(a®+a—1—M).
Lemma 3. Assume that d,<e—1. Then we have that
(12) M<ja.
Proof. Assume that M =%a. Then from (112) of ('T) and (11) we have that
(4a-+2)(1— 1)< (a—1)(@*+a—1—4a),
which implies that a<4.
Lemma 4. a+=M*}M-—1.

Proof. Assume that a= M?4+M—1. Then from (11) we have that 2e=
M3+2M*—M—2. By (C), (3) a*—1 is a divisor of 4(e—a)(e—a+1). Now we
4(e—a)(e—a+1 4
(e—")z(jl—“ﬁ:Mz—ZM+1+mi. Thus M=1 or M=4. If

M=1, then a=1. If M=3,thena=11and e=20. Then from (C), (5) we have

have that
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that
k*—1682k--379456 = 0,

which has no rational integral solution.

From now on we assume that d; <e—1, though some of the assertions may
be independent from this assumption.

By Lemma 3 we may put

(13) a=zM+L,

where z is a positive integer and 0=L<M. Now from (11) we have that
—2e=M+1 (mod a). So we may put

(14) 2e = Ka—M—1,
where K is a positive integer.
Lemma 5. 2e = zat+a—M-—1.

Proof. By (11) and (14) we have that K(Ma—1)=a*—2+M?. By (13) this
implies that
La—2+M*+=

Ma—1

(15) K=z+
By Lemma 3 the last term of (15) must be equal to 1. So Lemma 5 follows
from (11) and (14). Moreover, from (15) we have that
(16) Ma-+1 = La+M?*+}-=.
Lemma 6. We have that
(17) 2e<La¥?-a .

Proof. If =M, then by (13) M?<a. So from (16) we have that L=
M—1. Then from (13) and (16) we have that a=M?*+z—1=zM+M—1.
Thus M=z and a=M?+M—1 contradicting Lemma 4. Thus M >z and so by
(13) we have that a<M? Then by (13) we have that

2e = za+a—M—1=(a*—La)/M+a—M—1<a"*+a.
Lemma 7. 2ae+a—1 divides (J+1)(2e—a--1). (See p. 519 of [1].)

Proof. Since a(2e—a+1)=(2ae+a—1)—(a’—1), the greatest common
divisor of 2ae+-a—1 and a?*—1 equals that of 2e—a+41 and 4*—1. Thus by
Lemma 2 we see that 2ae+a—1 divides (2e—a+1)%. Since (2e—a+1)*+
2(2ae+a—1)=(a*—1)+(v—2)—(J+1), by (8) and Lemma 2 we see that 2ae-
a—1 divides (a*—1)(J+1) and hence (2e—a+1)(J+1).
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Lemma 8. We have that
(18) 2e>a¥+a .

Proof. By Lemma 7 and (C), (2) we have that /4+1>a. So by (C), (1) we
have that

4(e—a)(e—a+1)>(a+3)(@*—1),
which implies that
2e>a¥*-2a—2>a¥*+-a .

(17) and (18) are obviously in contradiction. Thus we obtain that d,—e—1.

2. Diophantine equation
Two cases are remaining, namely Cases 2 and 3 of (C), § 1.
Lemma 9. Case 2 cannot occur.

Proof. By (iii) of (C), §1, Case 2 and (C), (1) we have that J/=—2. Since
Lemma 7 holds without the assumption that d;<e—1, we see that 2ae4+a—1
divides 2e—a-+1. This implies that a=1.

Thus by (C), § 1 we finally have that

(19) v = 4e’+4e4-2

and

(20) a*—8ae+4e*—4a+4e+3 = 0.

By (19) and (20) we have that

(21) 2(v—2) = (2e—a+1)(6e—a-+3)
and

(22) 2(2ea+a—1) = (2e—a+1)*.
Then by (1), (21) and (22) we obtain that

(23) 4f? = (be—a-+3y—4(46*+-4e—1),

where f is apositive integer.
Since (4e+2—a)*=3(2e+1)*—2 by (20), from (23) we have that (2f?*—3)*=
(2¢+1)?{3(2e+1)>—2}. Thus 2e+1 and f are integral rational solutions of

(24) 3X*—4Y*—2X? 4 12V?—9 =0,

Since (24) has only finitely many integral rational solutions ([3], p. 276), it
follows that there exist only finitely many possibilities for « and e being pa-
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rameters of tight 4-designs.
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