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TIGHT 4-DESIGNS

HIKOE ENOMOTO, NOBORU ITO*, AND RYUZABURO NODA

(Received January 18, 1978)

The purpose of this paper is to fill a gap in [1]. The result is as follows:

Theorem. 1. There exist only finitely many tight 4-designs.

Actually our result is considerably more explicit. Furthermore we do

not think that there exist tight 4-designs other than Witt designs.

[1] and [2] will be quoted as (T) and (C). We use the same notation as

in(T).

1. d^e-l

L e m m a 1. Put w—v—2k. Then we have that

( 1 ) w2 = v2-2(2ae+a+ί)v+2(6ae+3a-l)

= (v-2)2-2(2ae+a-l)(v-3).

Proof. By (C), (5) we have that

( 2 ) (a2-l)k2- {4a2e2+4a(a-2)e+(3a~l)(a-l)}k

+2a2e(e+l)(2ae+a-3) = 0 .

Since k and v—k are solutions of (2), we have that

( 3 ) (a2-l)k(υ-k) = 2a2e(e+l)(2ae+a-3)

and
(4) (a2~\)v = 4a2e2+4a(a-2)e+{3a-l)(a-l).

Since w2-v2=-4k(v-k), (1) follows from (3) and (4).

The next lemma is crucial.

L e m m a 2. There exists a positive integer N such that

( 5 ) (2ae+a-l)N = (a2-!)2.
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Proof. By (30) and (47) of (T) we have that

( 6 ) 2(υ—2)y = 2kx = (v—w)(v—w—2ae—a— 1).

By Lemma 1 the right-hand side of (6) equals

(7) (v-w)2~{v-w){2oe+a+l)

— v2jrw2—2wv~ (2ae-\-a-\-l)v-\-(2ae+a-\-l)zc

= 2υ2—(2w+6ae+3a+3)v+2(6ae+3a— ί)+(2ae+a+ί)w

= (v—2){2(v—w)—6ae—3a+l}+(2ae+a—3)w.

Now by (C), (3) we have that

( 8 ) (a2-l)(v-2) =

Hence from (8) we have that

(9) (2ae+a-3)W = ^ W

Furthermore, if α is odd, then the second factor of the first term of the
right-hand side of (7) is even. Thus by (8), (9) and Lemma 1 we see that
2ae-\-a— 1 is a divisor of (a2— I)2.

From (5) we have that N= — ί (mod a). Hence we may put

(10) N=Ma-ly

where M is a positive integer. Then from (5) and (10) we have that

(11) 2e(Ma-\) - (a-l)(a2+a~l-M) .

Lemma 3. Assume that d1<,e—1. Then we have that

(12) M<\a.

Proof. Assume that M^\a. Then from (112) of (T) and (11) we have that

which implies that a^A.

Lemma 4. aή=M2+M—\.

Proof. Assume that a=M2+M— 1. Then from (11) we have that 2e=^
M3+2M2—M—2. By (C), (3) a2— 1 is a divisor of 4(e—a)(e—a+1). Now we

have that ^ _ 7 * + =M2~2M+ί+j^ί . Thus M = l or M = 4 . If

M = l , then 0 = 1 . If M = 3 , then a=lί and ^=20. Then from (C), (5) we have
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that

A2-1682&+379456 = 0,

which has no rational integral solution.
From now on we assume that d1<e—l, though some of the assertions may

be independent from this assumption.
By Lemma 3 we may put

(13) a = zM+L ,

where z is a positive integer and 0:£L<M. Now from (11) we have that
(mod a). So we may put

(14) 2e = Ka-M-ly

where K is a positive integer.

Lemma 5. 2e = za+a—M— 1 .

Proof. By (11) and (14) we have that K(Ma-l)=a2-2+M2. By (13) this
implies that

La-2+M2+z

By Lemma 3 the last term of (15) must be equal to 1. So Lemma 5 follows
from (11) and (14). Moreover, from (15) we have that

(16) Ma+ί = La+M2+z.

Lemma 6. We have that

(17) 2e<a*2+a.

Proof. If z^M, then by (13) M2^a. So from (16) we have that L =
M— 1. Then from (13) and (16) we have that a=M2+z—l=zM+M—l.
Thus M=z and a=M2-\-M—1 contradicting Lemma 4. Thus M>z and so by
(13) we have that a<M2. Then by (13) we have that

2e = za+a-M-l^(a2-La)jM+a-M-l <a3/2+a .

Lemma 7. 2ae+a-l divides (J+ί)(2e-a+l). (See p. 519 of [1].)

Proof. Since a(2e—a+l) = (2ae+a—l)—(a2—l), the greatest common
divisor of 2ae+a—l and a2— 1 equals that of 2e—a+l and a2— 1. Thus by
Lemma 2 we see that 2 ^ + ^ — 1 divides (2e—a+l)2. Since (2e—a+l)2+
2(2ae+a-\)=(a2-l)+(v-2)-(J+l), by (8) and Lemma 2 we see that 2ae+
a-\ divides {a2-l)(J+l) and hence (2*-<H-l)(/+l).
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Lemma 8. We have that

(18) 2e>a*'2+a.

Proof. By Lemma 7 and (C), (2) we have that / + 1 >α. So by (C), (1) we

have that

which implies that

2e>az'2+2a

(17) and (18) are obviously in contradiction. Thus we obtain that dι=e—\.

2. Diophantine equation

Two cases are remaining, namely Cases 2 and 3 of (C), § 1.

Lemma 9. Case 2 cannot occur.

Proof. By (iii) of (C), § 1, Case 2 and (C), (1) we have that / = - 2 . Since

Lemma 7 holds without the assumption that dι<Ce—1, we see that 2ae-\-a—1

divides 2e—α+l This implies that a=l.

Thus by (C), § 1 we finally have that

(19) v = 4e2+4e+2

and

(20) a2-8ae+4e2-4a+4e+3 = 0 .

By (19) and (20) we have that

(21) 2(v-2) = (2*-α+l)(6e-α+3)

and

(22) 2(2ea+a-l) = {2e~a+ί)2.

Then by (1), (21) and (22) we obtain that

(23) 4/2 = (6*-tf-f-3)2-4(4e2+4*-l),

where/is apositive integer.

Since (4e+2-a) 2 -:3(2*+l) 2 -2 by (20), from (23) we have that (2/ 2 -3) 2 =

(2έ?+l)2{3(2*?+l)2—2}. Thus 2^+1 and/are integral rational solutions of

(24) 3X 4 -4Y 4 -2X 2 +12 Y 2-9 = 0 .

Since (24) has only finitely many integral rational solutions ([3], p. 276), it

follows that there exist only finitely many possibilities for a and e being pa-
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rameters of tight 4-designs.
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