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1. Introduction

In [5], T. Oyama determined all 4-fold transitive permutation groups in
which the stabilizer of four points has an orbit of length two. On the other
hand, in Yoshizawa [8], 5-fold transitive permutation groups in which the
stabilizer of five points has a normal Sylow 2-subgroup have been determined.
In this note we give some analogous version of these results for any odd prime
p on 2p (or 2p+1)-fold transitive permutation groups.

Theorem 1. Let p be an odd prime>=5. Let G be a 2p-fold transitive per-
mutation group on Q={1,2, ---,n}. If G, . ,, has an orbit on Q—{1, 2, ---, 2p}
whose length is less than p, then G is one of S,(2p+1<n<3p—1) and
A, (2p+2<n<3p—1).

Corollary. Let p be an odd prime>=5. Let D be a 2p-(v, k, 1) design with
2p<k<3p. If an automarphism group G of D is 2p-fold transitive on the set of
points of D,then D is a 2p-(k, k, 1) design.

Theorem 2. Let p be an odd prime =5. Let G be a 2p-fold transitive per-
mutation group on Q={1,2, ---,n}. Let P be a Sylow p-subgroup of G, ,....5,. If
P is a normal subgroup of G, .., then G is one of S, (2p<n<3p—1) and
A,(2p+2<n<3p—1).

Theorem 3. Let G be a 7-fold transitive permutation group on Q={1,2,---,n}.
Let P be a Sylow 3-subgroup of G, ,...,. If Pisanormal subgroup of G, ..., then
G is Sy, Ss, S, Sioy Ag 0r Ay

We shall use the same notation as in [4].

2. Proof of Theorem 1

Let G be a group satisfying the assumption of Theorem 1. By [4] and
[5], if Gy 5...5, has an orbit on Q—{1, 2, ---, 2p} whose length is ore or two, then
G is Sspi1y Sopss 08 Ayyi,. Hence we may assume that G, , ., has an orbit A
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such that 3< |A| <p—1.

Let P be a Sylow p-subgroup of G2, .2 If P=1, then G is one of S,
(2p+3<n<3p—1) and 4,(2p+3<n<3p—1) by [1]. From now on we assume
that P41, and prove that this case does not occur. Since 3<|A|<p—1, we
have I(P)2 AU {1, 2, -+, 2p}and Ng(P) V=S5, +*, Sgp-1, Azpegy -+ 0F Agp_y by
[1]. Therefore Ny(P)[3)7%% =S8, =+, S,o1, 4, = or A,_,, and I(P)=
AU{1,2, -, 2p}. This shows that I(P) is independent of the choice of Sylow
p-subgroup P of G, , ... ,, and is uniquely determined by G, ; ...,

Let O be a subgroup of P such that the order of Q is maximal among all
subgroups of P fixing more than |I(P)| points. Set N=Ny(Q)"®, and r=|A].
N has an element a of order p fixing 2p+7 points. We may assume that

a = (1)) @p+7)2ptr+1, =, 2ptr=p)e

Set T'=Cy(a)s$%r41, -.2p4r+» and A=I(a). Then T satisfies the following two
properties.

(i) T is a permutation group on A. |A|=2p+r and 3<r<p—1.

(i) For any p points a;, @y, -+, &, in A, a Sylow p-subgroup S of T, . o,
is a cyclic group of order p generated by a p-cycle, and | I(S)| =p+r. Moreover
I(S) is independent of the choice of Sylow p-subgroup S of T, .., and is uni-
quely determined by T,,,1 e

Suppose that T is primitive. Since >3 and T has a p-cycle, T'>A4,,+, by
Theorem 13.9 in [7]. This contradicts (ii).

Suppose that T is imprimitive, and let the set {A,, -:-, A} be a nontrivial
complete block system. Assume |A,|<p. For each i€ {l, -, s}, let §; be a
point of A;. By considering Tgl".,_,sﬁ(s>p) or T .. 5, (s<p), we have a con-
tradiction by (ii). Assume |A,|>p. Then s=2 and A, UA,=A by (i). Let
T, be a subset of A; with |A,—T',| =p, and let § be a point of A,—T",. Since
[A,—(T, U {8})| =p—1, for every subset T, of A, with |A,—T,|=p, Tr usiur,
has a p-cycle on A,—T,, contrary to (ii).

Therefore T is intransitive on A. Moreover by (ii), 7' has an orbit whose
length is not less than p. If T has two orbits A, and A, such that |A;| >p and
|A,| >p, then we have a contradiction by the similar argument to the above.
Hence T has a unique orbit 3 with |Z|>p. By (ii), we have 2p<|Z[ < [A].
Let IT be a subset of £ with |[IT|+|A—=|=p. Since |[A—Z=]|<p, for every
subset T of £—1II with |T'|=p—|I1|, Tyyp has a p-cycle on (Z—II)—T, con-
trary to (ii).

Thus we complete the proof of Theorem 1.

3. Proof of Theorem 2

Let G be a group satisfying the assumption of Theorem 2. Let P be a
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Sylow p-subgroup of G, ,...,,. If P=1, then G is one of S, (2p<n<3p—1)
and A4,(2p+2<n<3p—1) by [1]. From now on we assume that P=1, and
prove that this case does not occur. By [1] and Theorem 1, we have Ny (P)!®
=.S,,. By [2], we may assume that P is not semiregular on Q—I(P).

Let O be a subgroup of P such that the order of Q is maximal among all
subgroups of P fixing more than 2p points. By [3, Lemma 6] and [2],
N(Q)Y@>A4"@=4,,. Since 4, is a simple group, we have a contradiction.

4. Proof of Theorem 3

Let G be a group satisfying the assumption of Theorem 3. Let P be a
Sylow 3-subgroup of G,,..;. If P=1, then G is S;, S, S, or A, by [1].
From now on we may assume that P#=1. Since P<|Gy, ... ;, we have Ny(P)'?
=S, by [1], [4] and [5]. If P is semiregular on Q—I(P), then G is S}, or Ay,
by [2]. Hereafter we assume that P is not semiregular, and prove that this case
does not occur.

Let O be a subgroup of P such that the order of Q is maximal among all
subgroups of P fixing more than ten points. Let N=N4(0)'® and I'=1(Q).
Then N is a permutation group on I', and [T'| >13 and 3|lP{—7. If N has
no element of order three fixing ten points, then N is S, or 4;, by [3, Lemma 6]
and [2], which is a contradiction. Hence from now on we may assume that N
has an element a of order three fixing exactly ten points. We may assume that

a = (H(2)E)H)E)O)7)E)O)10)(11 12 13)--- .

Set T=Cy(a)i{4s.13.

Suppose that T has an orbit of length one. Then we may assume that {1}
is a T-orbit. T, has an element «x; of order three, and we may assume that
2,=(1)(2)(3)(4)(5)(6)(7)(8 9 10). Ty has an element x, of order three. Since
a Sylow 3-subgroup of T, is normal in Ty, x,%, is a 3-element. Hence we
may assume that x,=(1)(2)(3)(4)(8)(9)(10)(5 6 7). Tyss has an element x; of
order three. Since a Sylow 3-suvbgroup of T, is normal in Ty, %, is a 3-
element. Hence we may assume that x;=(1)(2)(3)(5)(8)(9)(10)(4 6 7), and so
xy%3=(1)(2)(3)(8)(9)(10)(4 6)(5 7). On the other hand, since x, and x; are 3-
elements of T4, X,%; is a 3-element. So, we have a contradiction.

By the same argument as the above, we have that G has no orbit of length two
or three.

Suppose that T has an orbit of length four. Then we may assume that
{1,2, 3,4} is a T-orbit. Since T has an element of order three, we may
assume that 7" has an clement of order three of the form (1 2 3)(4)(5)(6)(7)(8)(9)
(10). Since T9®4 is transitive, we have T{%%{{>4,, which is a contradiction.

By the similar argument to the above, we have that T is neither an intransi-
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tive group with an orbit of length five nor an imprimitive group with two blocks
of length five.

Finally, it is easily seen that 7" is neither an imprimitive group with five

blocks of length two nor a primitive group (cf. [6]), and we complete the proof.
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