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1. Introduction

Consider the equation of Boltzmann type for a gas model with discrete
velocity states:

2
%u(t, i, %) = d,-aaTczu(t, i, x)—l—v,-%u(t, i, %)

(I —}—2 aiwu(t,j, x)u(t, k, x),

u(0,1,x) = u(i, x),
iell,n, t=0, xR,

where <1, n> denotes the set {1, 2, ---, n} ,

dlgoy Tt dngo )
(1.1) {

v; and a/'; are real numbers,

and {a;;} satisfies:

(1.2) {2 ap=0  j, kel n,

4320 if 7 equals neither j nor k.

This equation has been considered by Mimura [6], Yamaguchi [12], Con-
ner [1] and Kolodner [4].

In this paper, we shall first discuss the asymptotic behavior of the solution
u(t,1,x) of equation (I) and, second, construct the temporally inhomogeneous
Markov process (X,) associated with an appropriate solution u(t,z,x) of equation
(I) and, finally, investigate the limiting property of the process (X,).

* This work was supported by the Kuno scholarship.
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When we consider a Markov process associated with equation (I), the
second condition of (1.2) is strengthened as follows:
(13)  af=0  ifi%j.

The following typical example of equation (I) is taken from Conner [1].
Let the velocity space be <1, n), and assume that molecules travel R' with ve-
locity v; if they are in the state ¢. Let u(t, 7, x)dx be the density of molecules
at time ¢ with state ¢ whose positions belong to dx. Let v;,=v, ;=0 be the
collision rate between molecules of state j and % over the epoch d¢, and 0T i
=1 be the probability for a molecule of state j to have its velocity state scattered
from j to 7 through collision with a molecule of state k. Then we have,

%u(t, i, %)+ v,.%u(t, i, %)

= SV(T/w, w(t, j, $)u(t, b, §)—T7w, u(t, i, ©)u(t, k, %)) .
j k=1
Conner defined

Bifk = %Vj,k(rifk+kaj_(gi,k+8i,j) gl" ifk) = —;‘”j,k(rjfk‘*’rkfj‘—si,j'8:‘,1:)

and represented the above equation in the form
O (i, %) = —0.2u(t, i, %)+ B wu(t, j, x)u(t, k, x) .
ot ox jk=1

This B/, is symmetric in j and & for each 7 and satisfies condition (1.2) but
does not satisfy condition (1.3). However if one defines

ajn=Tiw;, i¥7,

= I‘ifk”i,k—z"} r i{kvi,k i=j,
=1

then the equation also is of the form

O uttyi, ) = —0,0u(t, i, )+ 3 ajwut, j, ¥)ut, b, ),

ot Ox k=1

with the a satisfying condition (1.2) and (1.3).

Throughout the paper, we shall discuss the case when the initial condition
u(0,2,x) is periodic with respect to x. Let u(0,7,x) be a continuous, nonnegative
periodic function on R' with period . It then follows that the solution
u(t,i,x) of equation (I) is nonnegative, continuous and periodic with period
o on R! as well as #(0,7,x), and the equation

(1.4) Enlru(t,i,x)dxz E"]Swu(O, ix)dx 120,
=1do =)o
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is satisfied whenever the solution exists.
We shall also discuss separately the spatially homogeneous case, i.e.,

iu(t’ Z) = En aifku(txj)u(t: k) ’
dt k=1

u(0,7) = u(i).

Jenks [3] has studied the asymptotic behavior of the equation (II). Hence in
this case, we confine ourselves to the problem on Markov processes.

The author wishes to express his sincere gratitude to Professor H. Tanaka
and Professor T. Watanabe who guided him to this problem and gave valuable
suggestions during his investigation.

(1)

2. Summary

We are concerned with spatially homogeneous cases in section 3 and section
4, and spatially inhomogeneous cases from section 5 to 9.

In section 3, we construct a Markov process corresponding to the equation
(IT) when a nonnegative solution u(t,7) is given. McKean [5] introduced a class
of Markov processes associated with certain nonlinear parabolic equations, and
Tanaka [9] and Ueno [11] continued its investigation in somewhat special cases.
The process we consider here is the Markov process associated with (II) in the
sense of McKean [5]. In section 4, we investigate the asymptotic behavior of
the process.

In section 5, we study the equation (I) in a neighborhood of the fixed point
(43, +++, uy), i.e., the solution of equation D) a; ulul=0, ic{1l,n>. We take

Jk=1
(ui, +++, uy) to be a probability vector. Suppose that the initial data #(0,7,x) is
continuous and periodic in x with period » and 1 M S u(0, 7, x)dx=1. 'Then
w i=1Jo

if max|u(0, 7, x)—u?| is sufficiently small, equation (I) has a global solution

i%
u(t, i, x) which converges to u} exponentially fast. In section 6, under certain
additional conditions, we shall show that the above result is valid for every
positive initial data #(0,7, x). In section 7, we construct a Markov process
corresponding to the equation (I) with an appropriate solution u(%, 7, x) being
fixed. This is also a Markov process of the type introduced by McKean [5].
Ogawa [7] [8] has proved a similar result. In section 8, we study the asymptotic

behavior of the Markov process. In section 9, we treat the case #=2 in more
details.

3. Markov processes corresponding to the equation (II)

Let u(t, 7) be a solution of equation (II):



294 S. SucITANI

%u(t, i) = ”E: ajfku(t’j)u(t) k) ’

u(0,7) = u(7),

where, {a;';} satisfies (1.2) and (1.3).
It is easy to see that if u(0,1)=0, .-+, u(0,7) =0, then u(z, 1)=0, ---, u(t,n)
>0 for every #=0. (see. Yamaguchi [12]). The equation (II) implies that

%2 u(t, 7)=0, and iu(t, 7)= constant. 'Therefore the solution of (II) re-

(IT)

mains nonnegative and bounded.
In this paper, Q denotes the set of probability n-vectors, i.e.,

Q= {(ul) oty un): ulgoy R ungor z"} U, = 1} .
i=1
Lemma 3.1. There exists (u}, -+, uy) tn Q satisfying
B1) DNaiaul=0 iedl, nd>.

i k=1

Proof. Choose L>0 large enough to satisfy
1 &
ui—{—zj,kzzlaj.kujukgo

for any (u,, -+, u,) in © and 7 in {1, n).
Then the mapping

Qs(u) — (u,.+-é— .gajfkujuk)eRn

is continuous, and the range is contained in . Therefore, applying Brouwer’s
fixed point theorem, there exists (x?) in Q such that

1 & .
u?+f§k]lajfku‘}u2 =u} ied,n),
P

ie., Dajfudul=0 iedd,n>.
i k=1
Fix a nonnegative solution u(t,7) of the equation (II), and put
a; (t) = kzglag{'ku(t, k),

A(t) = (a;,5(2)) -

Secondly, construct the fundamental solution (U, (%, J)),s, of the differential
equation,

(3.2)
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25— p4(t)

@) = ($(2, 1), -, $(t, m)) .
That is (U, (i, )) satisfies

(3.3)

Us,s = I = (Bi,j) y

G4 {Lv,=v.40,
Us.tUt,u = Us,,, sStZu.

Since u(t) is a solution of equation (II), and since A(t) is defined by (3.2), it
follows that U,, depends only on #(s) and t—s. Hence we may define

(3.5) PG5 = U, (G, j).

Theorem 3.1. (P“{(i, 7)) has the following properties:
(3.6) ;2 Py i, YPLO(k, j) = PL9(i,j)  s=t<u,
(3.7) PG5 =8,

(3.8)  PyG,j)=0  s<t,
(3.9) z: Pri,j) =1  for anyic{l,n>,

(3.10)  If ¢(t,2) is a solution of (3.3), then
8(t,4) = 21 9(s, HPIUR, j)
especially, u(t, j)=3 u(s, )Pk, j) .

Proof. (3.6), (3.7) and (3.10) are properties of (U,,). Because {A(f)}
are nonnegative offdiagonal matrices, (3.8) is obvious. (3.9) follows from

%g (2, ))=0.

By this theorem, there exists a (in general) temporally inhomogeneous
Markov process (X,);z, whose transition probability is U, (7, j)=Pt ), 7),
and with state space <{1,n>. Let P, -) denote the measure of the process
starting at 7 at time s.

4. Asymptotic behavior of the process (X,) associated with equation
10

In this section, we consider the limit distribution of the process (X,). We
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shall discuss the following three cases separately.
(A.1) There exists 4 >0, -+, u3>0 and m>0 such that

lim u(¢, 7) = mu! e, n>,
ty

and i}u? = 1.
(A.2) There exists (u}, -*+, uy) in Q and m>0 such that

lim u(t, 7) = mu? for any i€{1,n)> and Smllu(t)—mu°|1dt<00 .
)

tpoo
n
For x=(x,, ---, x,) in R", ||x|| means >} |x;]|.
=1

(A.3) There exists T>0 such that w(t, k)=u(t+ T, k) for any k and t=0
and there exists ¢, in [0, 7] such that u(#,, k)>0 for any k.

4.1. Case (A.1)
(4.1) a;;=m 2: ai yug

satisfies
_” a; i= 0 ’
i=1
4.2) > wa, ; =0,
i=1 ’
a; ;=0 ifij.

Therefore the matrix A=(a; ;) is a generator of a continuous time Markov
chain having a positive invariant measure (uf, ---, u3). Therefore, if necessary,
changing the order of rows and columns, we may assume that 4 has the form

A4
1/12 0

.AI

(4.3)

where A,, +++, A, are irreducible, and 4, is a k, X k, square matrix (1= p=/) and

2, k,=n.
p=1
In general, for a nonnegative offdiagonal matrix A4, there exists A>0
such that A,=A+XI is a nonnegative matrix. A nonnegative offdiagonal
matrix A is said to be drreducible if for any i and j in {1, %), there exists
k(3,7)>0 such that the (i,) component of A}¢*)) is positive. Obviously, if 4
is irreducible, then e*4 (£>>0) is a positive matrix, and the converse is also true.
A(t) can be written in the form
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4,
(t)Az(t). 0

Alt)

(4.4)

because a; ;=0 implies q; ;(t)=0. Therefore, we may consider each block
separately. Hence we first assume that A4 is irreducible.
Put

(45)  F={p=(du- ) N =0},
Obviously, for ¢ in R”, it holds that
*6)  leligl  120.
For £>0, let e"=(a; ;(h)), c(h):--1 Srnusl a; (k) >0. If ¢ belongs to &F, then
(A7) llgeHil = 33137 ducts i (B)|
= 312 dilets () —c(h)|
=D MENCHORED)
= (1—nah)lIg]
These two results implies that there exists K >0 and p>0 satisfying
(4.8) lipel| =Ke™™[|pl]  pET .
We can write equation (3.3) as
240 = 904+ 9(0) (40— 4)
or equivalently
49)  #(0—9(0)e = [ 9(5) (A()—A)et-1ds
Taking norms both sides of (4.9),
1)~ 9(0)e411 = § 116(5) (A(s)— )| Ke==04ds 0.

This implies

(4.10)  lim $(2) = lim $(0)e" = $(0) (i.‘f.’..' o .’.‘.”.) ,
tyoo oo ug .

1, 'y Un

In the general case, put I, be the set <k,+---+k,_,+1, ky+---+k,>. Then
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0 0
1 Uk bty +10 "5 Wb orpp
lim et4y — et eirieteeirereaaeeeaas

lim ST PP

0 0 )
e, Ui ety 41 " Ykytitpp

Therefore, for Z in I, and j in I, we get

0 p+q,
(4.11) lm P (X, =j)=1 u) =
tyo 2 ug '_'
kEIp

4.2. Case (A.2)
Let A=(a;,;) be the matrix defined by (4.1). By the general theory of
Markov chain, there always exists

(4.12)  TI = lim ¢,
Rewrite (4.9), ”
(+13)  8() = p(0)e*+ | 4(s) (A()— ) TTds
+{ 605) (AG)—4) (e¢-21— Thyds
Therefore, by the Assumption (A.2)
I(8)— $(0)e— | 4(5) (A(s)— A)TLas

=[[166) (A6 — A1 le¢-»4~T]1ds 0

where, for A=(a;,), ||A|| means Iél(ﬂX)(E la; ;).

Since Swllu(t)—mu°l|dt< co, the integral chp(s) (A(s)—A)TIds converges.

Thereforz, » '

lim (t) = $O)IT+ 9(5) () —4)11ds .

Since we can write ¢(t)=¢(0)P*(”, this means that
lim P19 = (¢, )

exists. Hence, we obtain

(4.14) }1»11.1 Py (X, =j) = ¢, ) L, jell,n>.

4.3. Case (A.3)

_ o . .
Uitgrer = Uspto42Usgsr,1912r = (Uyg147)?  implies that
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(4-15) Uto,to+m7‘ = (Uto,to+T)m m=1.

Let

(4.16) U, 110 = (€i) »

then
Z ¢;i=1,

(4.17) z‘, uty, ic;; = ultyj)  jE<1, 1D,
c;;=0, '

are satisfied. Changing, if necessary, the order of rows and columns of A(%),
we may write

4,
(4.18) A(to)—_—( L )
4,

where 4, -+, 4, are irreducible. By the continuity of A(t) it follows that there
exists p>0, x>0 and £>0 such that

(4.19) A = {PA(to)—,UfI Lh=t<t,+¢&
’ = —pl ty+eZ<t<t,+T.
Ul' 0

This implies that U, ;. =€*4¢~*T Therefore, U,o,m”:( >, where
I

* U
U, -++, U, are positive matrices. From this we shall show that U, , ., must be
of the form

(4200 Uiz =|{ o |-
U,

We prove the case /=2, since the general case follows by induction. We write

Ut +T=<g”8 ) If U=0, the Perron-Frobenius root p, of U, is strictly

y Y2

smaller than 1. This contradicts (4.17).
We first consider the case that U, , ., is a single positive matrix. (4.15)
and (4.17) implies

. (”(.tﬂ)> 1
(421) lmU, ur=| : |J——.
b u(t,) kz (0, k)

Therefore, using P*¢¢**—=P*Co) and u(t,)P*‘0=u(t,+1t), we have

. 0 : 0 to+hT
lim P':‘UOMT = 11:2 P‘t‘f, )Uto,tn+hTPu( ?+ )

h>oe
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= P1O lim U,y iz P
u(ty+-1) 1
a (u(to:‘}‘t))kz’;]l (0, k)

In general, let U, be a k,X k, square matrix for each p=<1, > and 2 k,=n and
=1
I, be the set <k,++--+k,_,+1, ki+--+k,>. Then

lim (U,)* =

h>o

......................................................

<u(t0, kit -k, 1), ooy u(ty, k1+"'+k,,)) )
Wty Riteo k1), o, uty, Byt +k,)) 2240 8)
4

and therefore for in I, and j in I,

0 P*4q,
(4.22) }im Py (Xyyr =J) =1 ut,j) p=yq
> L E u(t: h) ‘
hEIp

5. The basic theorem on the asymptotic behavior of the solution
u(i, i, x) of equation (I)

Hereafter we shall be concerned with equation (I) under the condition
(1.1) and (1.2) and always assume that either of the following condition is satis-
fied.

(I.a) d+-+d,>0,

(I.b) d,=---=d,=0 and there exists 7 and j such that v; % o, .

If neither (I.a) nor (I.b) is satisfied, equation (I) is reduced to equation (II) by
a simple change of variables.

Let ©>0 be fixed, S'=R'/wZ, where Z denotes the set of all integers, and
E=<1,n>x S".Let u be the counting measure on {1, n>:

w(di) = 2 8,(di),

where §;(4) is the delta measure at j.
We use the notation C(E) to denote the set of all bounded continuous
functions on E and the norm ||¢||.=max | $(z, x) |, then C(E) becomes a Banach
G, % en

space. As was pointed out in section 1, if the initial condition %(0, 7, x) is a func-
tion of C(E), then the solution u(t,7,x) of equation (I) is in C(E) for every ¢=0.
Hence, we may consider equation (I) as an evolution equation in C(E).

For each 7 in <{1,n), let {Ti(x, dy)} be the Markovian semigroup, whose



Limit THEOREMS FOR CERTAIN ParaBoLiCc EQuUATION 301
8

0x

Then we can transform equation (I) into the integral equation:

2
generator is given by the differential operator d,-ga—g—f— v;
x

Ay  ut,i,x) = Tiu(0,i, x)+S;T,is(j§fjf (s, j, (s, &, +)) (x)ds .

If u(0,7,x) is twice continuously differentiable with respect to x, then the solution
u(t,i,x) of equation (I) is also such a function (see Conner [1]), and therefore
satisfies equation (I). For this reason, we say that u(Z,7,x) is the solution of
equation (I) whenever u(¢,7,x) is the solution of the integral equation (I).

As we shall see below, we investigate a transformed function o(¢,7,x) rather
than u(¢,7,x). The same situation for u(z,7,x) is valid for the differential equation
and the corresponding integral equation satisfied by o(z,7,x).

If ¢(x) is a periodic function on R' with period w, then

(5.1)  Tig(x)= Tip(x+me) meZ

is satisfied. 'Therefore, we may consider that the semigroup acts on the function
defined on S*.

Assumption 5.1.  There exists u’=(u}, ---,u)) in Q such that u{>0, ---,
>0 and >3 ajwju=0 are satisfied for 7 in <1,n>. Let b;,; be
n Jrk=1
SV(ajs+ai;)ul, and B be the matrix (b;;), then B is a nonnegative offdia-
k=1
gonal irreducible matrix.

REMARK. Assumption 5.1 (except the part of the irreducibility of B) was
introduced by Jenks [3] to prove the asymptotic stability of the solution of
equation (II).

Let lzlg u(0,7,x)u(di)dx and u(t,i,x)=ul-+o(t,7,x)ul, then equation (I)
wJE
is transformed into the following equation:

(5.2) %v(t, i, %) = di%v(t, i x)—{—v,.;—xv(t, i x)—}—iE:l ;. 0(t, j, %)

‘*‘}::} lbffk’v(t, 7, x)o(t, k, x)
~

where ¢; ;=(u?)7'b; ;u} and b} ,=(u?)'a; udu}.
We first consider the linearized equation for v(t,7,x),

(5.3) a%v(t, i, x) = diéa;:;v(t, i, x)—l—v,-%'v(t, i, )+ 3 60l ], %)

C=(c;,;) is irreducible and satisfies
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i}u?c, ;i=0,
(5‘4) 3 ci’j - 0,
=1
6, =0 if Q%]

We choose ¢>0 large enough to satisfy g+4-c; ;=0 for all 7 in {1,#). For this ¢,
(5.3) is equivalent to

2
(5.3Y a%fv(t, i, x) = d,.b%v(t, ; x)+v,.%u(t, i, %)—qo(t, i, )

+§pi,jv(t:j: x) )

where p; ;=c; ;+¢d;,;.
Let {T,} be the semigroup generated by equation (5.3) i.e., (Ty0) (i, x)=

SET,(i, x: dj, dy)v(j, y), where T(z, x: dj, dy) is the solution of the equation
(55)  Ti,x: dj, dy) = e Ti(x, dy)3(d)j)

+{ e 31 p,,[ T, d) TR, 5 dj, ).
Then the solution o(¢,,x) of (5.3)" is given by
(5.6) o(t, 7, x) = (T (0)) (2, x) .

Lemma 5.1. If Assumption 5.1 is satisfied, then there exists t,>0 and
¢>0 such that

6.7y Ty x: dj, dy)Zeu(d))dy
holds for any (i, x) in E.

Proof. (i) Case (1.a).
Choose [, satisfying d, =0, then for each #>0, there exists ¢(¢)>0 such that

Tyl x: L, dy)=c(t)dy
holds. For any 7 and j, we can choose &y, -+, k,,_, to satisfy
Dik Py PayioDiosysn Pay i >0 -
Then, if we choose ¢ and u large enough,
(5:8)  Tyoruslis 31, )
2| 106, %: b d9)| T, 5 b, d) T (h w3, 4)
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=Ty, x: I, Sl)c(s)s AT, (I, w: j, A)
S
gKS dy
A

holds for some positive constant K.

(i1) Case (I.b).

Let d;=0 for every 7 and let v; F=v;, for some 7, j,. Using (5.5), we shall
prove for any m=1,

. tesy Sm -1 ” .
(5.9) Ty, x: dj, dy) ggogo "'L e‘“dsl---dsmk Zk =lpi,klpk1,k2'"th_l,kmakm(d])
8(5-+ 0t —5)F 04 (51— )b -+ 0 (Swr— ) Dppms ) -

Here and after we denote, by 8,(dy) or 8(x, dy), the delta measure at x. At
first by (5.5), T\(i,x:dj,dy)=e™$,,,,(dy)d,(dj). Substitute this into (5.5),

T, x: dj, dy)
t n
= Sodse“’('_‘) ?_.‘:1P,-,;,Ssﬁﬁ,,i(,_s)(a'z)e‘“SH,,,,S(dy)Bk(dj)

tn
R P T T NI (2t X)) TR

and the case m=1 is proved. We assume that (5.8) has been shown for 1,2, :++,m
and prove the case m+1. By (5.5), ‘

t ”
TG, x: a0z | dse I3 pu| 8o d) T, 3 ), dy)

t n s. Sm— ”
g Sdse—q”_s)zpi,kg 18x+v;(t—s)(dz)s S l"'S 1e—qsdsl"'dsm 2 Pkl,kg
0 k=1 N 0 0

0 Aot
"'Pk,,,_1,kmskm(dj)s(z—i_vk(s—sl)+vk1(s1——s2)+"'+vkm_1(sm—l—sm)
+vk,,,sm7 dy)
=the right hand side of (5.9) for m+-1.

Therefore, for a nonnegative function ¢ on E,
9 | T x: i )l )
t Sm -1 ”
= S S e~ds,:--ds,, Piky " Pl 1, kP (B %+0i(2—51)
0o Jo byyerrkm=1
+7’k1(51—s2)+‘"+7’km,1(sm—1'5m)‘|“7)km5m)

is satisfied. By Assumption 5.1, for any ¢ and j, we can find m and &, -+, %,,_,
such that

Diky Prnioiosknsr* Prpioliokyer” Php-1.i >0 -
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Let r,=max{r:v;%9,}. Such 7, exists since v;;+v,,. We now calculate
the integral

(5.10) g:"---S:m_lds,oﬂmdsmd)(j, x—f-'v,-(t-——sl)—l—v,,l(sl——sz)---—i—fujs,,,)

Set 0=x+v,t-+ (v, — ;)81 4-(Vs,,—Vss,-1)S,,» By 2 simple calculation, we
have

(5.100 = S:m"'S:m_lds,o+1"'ds'"¢(j’ 0+ (0;— V4, )5r001)

Ssro S;’L:-ll_’o X
0 (m—1—r)!

V.- S,
S( %,

¢1(].: €+(vj—vkro) Sro+1)d5ro+1

m=1-r, .
V" (,04y) — D

0 (m—l—ro)! ('z)j—v )"‘"o

I

kro

If s,o>|—w——, there exists K >0 such that for every 6,
V;—0y,,

(5.10) =K | 90, )y -

From this, we can easily show that T,(i,x:j,dy)=Ldy for sufficiently large ¢
and every 7,f and x.
Next we set

€= {(i,): p=C(B), | ¢(i, xpuip(diydx = 0} ,
E
then & is a Banach space under the norm |[|.||...
Lemma 5.2. T, maps & into E.

Proof. For any function ¢ on S, it is satisfied that

(5.11) SsxdxgslT;'(x, B)b(y) = Ssldxcﬁ(x) i, n>.

From (5.4), for any ¢ in &, we obtain

(5.12)  3yus] @xTg0,%)
=3 u?gsldeSITf(x, )
- s dsemee=n 3wt 4 08,) T, 9] TGz db,dy) k)
= S:dse"q(“” ;5;1 qu$ssldes¢(j, x) .

Therefore, \p(t)ss T,¢(7, x)ulp(di)dx satisfies
E
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(1) = gf 7 y(s)ds
This means r(£)=0.
Lemma 5.3. There exist N>0 and p>0 such that for any ¢ in £
(5.13) T .¢ll-=Ne™||¢pll. .
Proof. By Lemma 5.1, for any ¢ in &,
| T, 3)] Sel 330t 60, 9)dsl 41 { 33 (TG, 0, dy)—culdy)i)|
=llgpll=(1—ca).

That is ||T,¢lle=I|¢ll-(1—cw). Iteration implies [|T,,;dllo=|/¢pll-(1—cw)".
Combining this and [|T,¢||.=<[|$||~ for any ¢ in C(E), we obtain the result.

We now turn to the nonlinear equation (5.2). We define a mapping B:
C(E)—C(E) by

(5.14) B[] (s, x) :,-élb"fkv(j’ x)v(k, x),
then it is easy to see that B[v] belongs to £ and there exists K >0 such that

(5.15)  [IB[e]ll.<K]loll%.

We can transform equation (5.2) into the following integral equation:
(5.16) oz, i, %) = T(0, 4, x)—f—S:ds gETS(i, x: dj, dy)B[o(t—s, )] (j,y) -
Taking norms both sides of (5.16), we get
(5:17)  Ilo(e)]lo S Ne*lo(0)ll+ | dsNe K loe—9)l12 .

If H'v(())]lw<]—vf—K then (5.16) has a global solution and

5.18)  flo()ll.< p
P NE(0)ll-
N+ Ny ¢

is satisfied. Summing up the above results, we obtain
Theorem 5.1. Under the Assumption 5.1, let N>0, p>0 and K>0 be
the constants defined in Lemma 5.3 and (5.15) respectively. Suppose that u(0,7,x)E
; 0
C(E), LS 4(0,7,x)u(di)dx=1 and sup <|u(0,z,oi)—u,-|>< P Then equation
wJE G, 5)ER p N2K
(1) has a global solution u(t,i,x) in C(E) tending to u} exponentially fast.
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REMARK. Let m be a positive constant. If mzlg u(0, 7, x)u(di)dx, then
W VE

we transform u(¢,7,x)=mul+v(t,i,x)u?, and we get similar results as in Lemma-
5.1~Lemma 5.3. Therefore, if ||u(0,7,x)—mu}||. is sufficiently small, then

equation (I) has a global solution (2,7, x) and u(#,7, x) converges to mu? exponen-

tially fast.

6. Further results on the asymptotic behavior of the solution
u(t, i, x) of equation (I)

In this section, we assume the following condition as well as Assumption 5.1.
Assumption 6.1. There exists ¢>0 such that for every (7,,++,7,) in [0,1]",

61) 0= Mbjmmtensc e,

is satisfied, where b,/ ,=(u?)"'a; yuuj as before.

ReEMARK. Broadwell’s model (see [6]) does not satisfy Assumption 5.1
and Assumption 6.1.

By the following remarks, it is seen that this condition assures the boun-
dedness of solutions of equation (I).

If Assumption 6.1 is satisfied, then for any M >0 and (»,, -+, 7,) in [0, M]",

6.1y 0= DbimmetcMn<cM? e, n>
k=1

is satisfied. Conversely, if (6.1) is valid for some M >0 and any (7,,-*,7,) in
[0, M]", then Assumption 6.1 is satisfied.

Assumption 6.1 is not easy to be verified. However one can show that
Assumption 6.1 holds if

(62) é blfk—*—b,f]ZO for every l=’=] .
k=1
In fact let a,-,j=i] bi's and ¢j4=b;'1—a; ;5;,, then for (n,--,n,) in [0,1]", we
k=1
have

j%lbjfk’?j’)k = E (g cifk’?k)’?j‘*‘g (g bifk+biij—ai,i8i,j)77j’7i .

Since i}c,—fk=0 and ¢;/,=0 if 7%; and 7=k, the first term on the right is
k=1
majorized by ¢(1—=;), where ¢=—>1¢;/; =0 for every 7. By virtue of (6.2), it
i

follows that second term on the right is also majorized by ¢(1—%»;), where
cg—(é bie+bit;—a; ;) =0 for every i.
k=1
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Lemma 6.1. Suppose that Assumption 6.1 is satisfied, then the equation
] . 0? . 0 . S .
(6.3) ~o(t,i,x) = d;——v(t,i,x)+v,—v(t,2,x)+ D b wo(t,f, x)o(t, k, x)
ot 0x? Ox jE=t

is a confinement system for [0, M]" for every M >0. Conversely, if equation (6.3)
is a confinement system for [0, M]" for some M >0, then Assumption 6.1 is satisfied.

Equation (6.3) is said to be a confinement system for [0, M]" if for any initial
value 0=9(0,7,x)SM(1=i=<n), we have 0=o(t,7,x) <M(1=<i<n) for every
t=0.

Proof. If Assumption 6.1 is satisfied, rewrite (6.3) as
637 Lo(tix) = d-Loot,i,x)-Fo, 0ot i, x)—cMo(t, i, x)
ot 0x? Ox

+( 310 0t 2)o(t, b, x)-HeMo(t, i, )
and transform (6.3)" into the integral equation
(6.3  o(t,i,x) = e"MTiv(0,7,x)
+ S;SSle“M"‘” T:ly(x,dy) (i;‘f;l by wo(s,7,y)0(s, k. y)+cMu(s,i,y))ds .

If we solve (6.3)” in the iteration scheme, it follows that equation (6.3) is a
confinement system for [0, M]" for every M >0.

Conversely, suppose that equation (6.3) is a confinement system for [0, M]"
for some M >0. Let

fi((;blv ) ¢n) :i,glbifkd)id’k

for ¢p=(¢y, ", d,) in [0,M]". It is obvious that fi(¢y,***,p,)=0 if ¢;=0. On
the other hand, we have

(64) fi(d’l’ Tt ¢n)§0 when b = M,

since equation (6.3) is a confinement system. Then expand f; at ¢;=M,

fi(¢1s *tty ¢n) = bifi(M—-q‘ri)2+g.-(¢1, B ¢i—n ¢i+1: ) ¢n) (M_¢i)
+fi(¢l’ MR (i)i—l) M7 ¢i+1) Tty ¢n) .

From (6.4), there exists K>0 such that
fi(¢1) °%y ¢’n)§K(M*¢z) Ogd)l’ R ngM

It then follows that there exists K >0 satisfying
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—K¢:= 31bisyn<K(M—)
ZE<1’ ”>’ Oéd)l; "ty (l)"éM,

which implies Assumption 6.1.

Theorem 6.1. Suppose that Assumption 5.1 and 6.1 are satisfied. If u(0,1,x)
is in C(E) and

65)  min “0L0 550

(i, ¥x)en i
then the solution u(t,i,x) of equation (I) converges to mu} exponentially fast, where
m=1{ u(0,i, 9)u(di)d

wVE

Proof. Let o(t,7,x) :u(t,_z(;,x)’ then equation (I) becomes
u.

6.6)  Doft,ix) = d-0 o(t,i,x) -+ 20t i,x)+ 316, so(t,j, x)o(t, b, %) ,
ot 0x? 0x k=1

and the assumption becomes min 9(0,7,x)=8>0, and it suffices to show that
Gi,*)En

v(t,7,x) converges to m exponentially fast.
(i) m(t)= min v(¢,7,x) converges to m.
G,%)en

Let @(t,7,x)=2(t,1,x)—8&, then (6.6) becomes
67 Latix) = 4L w(t,i,x)+o, 2wt i, x)+53 ¢ jwlt,j, x)
o1 B T i =0

- .glb (2, g, x)w(t, k,x) .

Set M= max v(0,7,x). By the remark following Assumption 6.1, we have
G,x)er

%w(t, 7,X) gd,.:—;zw(t, 1, %)+ 'v,-%w(t, 7,x)+96 ,:i; c;, w(t,j,x)—cMuw(t,i,x) .
If 2(t,7,%) is the solution of the eugation
0 a(t,i0) = 4= a(t, i, 2) L0, 0 2(2,5,0) -8 3 ¢; ,5(8,5,%) ,
ot "0 "0x =

2(0,7,x) = w(0,7,x) ,

then w(t,7,x) =e “M'2(t,1,x), especially o(¢,7,x) =8 and we can see that m(t) is an
increasing function in . By Lemma 5.1, there exists #,>>0 and £>0 satisfying

2(ty, 1, ) = k(m—3) .
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Therefore, there exists p>0 such that
w(ty, 1, x) = p(m—23) .

This implies
m(to)—m(0) = p(m—m(0)) ,

1,.e., m—m(t)) < (1— p) (m—m(0)).
By the iteration for any k=1,

m—m(kto) < (1—p)(m—m(0)).

This means that m(¢) converges to m exponentially fast.
(i1) M(#)= max 9(t, 7, x) converges to m.
(i,*)ER

By step (i), we may assume o(Z, 7, x) >85>0 for any ¢, 7 and x. By Lemma
6.1, M(t) is a decreasing function. By Lemma 5.1, there exists £,>0 and ¢>0
such that

T, (i, x: j, dy)=cdy for all Z, j and «.
We rewrite (6.7),

6.7y %w(t, i, x) = d,.a—i:; w(t, i, x)+v,.a@x w(t, i, x)

+ 33 6wt , %) —o(M(nty)— Syt i, x)
+S,Z:§lbjfkw(t, 7, ®)w(t, k, x)+c(M(nt,)— S)w(t, 7, x))

for t=nt,. For t=(n-+1)¢, (6.7) becomes

6.7)"  w((n+1)t, i, %)

= e“f(M(”’l)_s)'thlw(ntb i) x)

(nt+1)t; . .
+S dse—c(M(ntl)—8)((n+1)11‘8)SET(”_H)II_S(Z, x: dj, dy)

nty
( 33,b/ue(s, . y)ua(s, ko 3)+-e(M(nts) = 8)ees, i, ) -
Using Assumption 6.1 and w(s, j, y)=2(s, j, y)— 8 < M(nt,)— & for nt,<s, we have
31 bitewls,  y)ae(s, By y)+-(M(nt)—8) Sc(M(nt) —5)
Therefore, there exists 1>>a>0, independent of #, such that

M((n+1)t))—8=a(m—238)+(1—a) (M(nt))—3),
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that is to say
M((n+1)t)<am-+(1—a)M(nt,) . ‘
M(oo)=lim M(nt,) satisfies M(co)<am+(1—a)M(0), i.e., m=M(°).

(iii) Combining step (i) and step (ii) and the remark following to Theorem
5.1, we obtain the result. ,

We next show that condition (6.5) of Theorem 6.1 is weakened under some
additional assumption. Following Jenks [3], the system {a/;} is said to be
irreducible, if for any partition of <1, n)> into I and J, there always exists some ¢
in I and (j, k) in J X J satisfying a,’,>0.

Lemma 6.2. Suppose that either (a) or (b) is satisfied:
(a) Assumption 6.1 and the following condition are satisfied:
There exists ¢>0 and a nonnegative, irreducible matrix (e; ;) such that

(6.8) jglbjfknjnk—f—cni gi}lei’jnﬁ e, n>

is satisfied for all 0<%, -+, n,<1.
(b) The system {aj,} is irreducible, and d,>0, ---,d,>0, and the Assumption
6.1 is satisfied.

Then for any nonnegative initial value u(0,1, x) in C(E) satisfying ﬁ_,‘ (0,1, x)
%0, there exists t,>0 such that

(6.9) min u(t,, 7, x)>0.
(i, 5)en
Proof. We first prove case (b). Fix #>0 and put J={jEl,n):
min u(t,, j, x)>0}. If J is a proper subset of {1,n), then let I be the set {1, 7>
res!

—J. Define o(t, 1, x)ztﬂ%x) as before. Noting that the system {b,’;} is also

irreducible, choose 7, in I and (jo,k,) in JxJ such that b;'0, >0. Since equa-
tion (6.6) is a confinement system, there exists M >0 such that

(6.10) Z] b}:‘,’k’(/(t, 7, x)o(t, k, 2)+cMo(t, iy, x)

Gy )T Chgs koD

= bioo(t, §, x)o(t, k, x
(JkJ:‘FV‘—'UokJ k( ]: )( )
Jig, kg

+ (2, iy, %) [cM+kz::1 (biioet-bio o(t, k, x)—biis; o2, iy, x)] =0 .
One rewrite (6.6) in the form

v(t 1y, X) = d; (2, 1o, x) +v;, 9 v(t 1o, X)—cMuo(t, 1y, x)

106
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+bj;?k0‘v(t)j0) x)v(tJ ko: x)
+( 23 byt j, x)o(t, k, x)+cMo(t, 1, X)) -
Gy BIF Cigr ko)
As before, this equation is transformed into the integral equation
o(t,, %, x) = €M T o(0, 7, x)

t
+Sole“M(‘l‘S)T,fgs(bj(‘;pkov(s, Jos *)U(s, Ry, +)) (x)ds

+y}ﬂmwagh( SV bina(s, j, - )ols, ky <) cMa(s, i, +)) (x)ds .

0 Gk Cigs ko)

From (6.10), it follows that the right side is not less than
A : )
bt €M TIT (05, oy +)ols, By <)) (3)d5>0
0

which is a contradiction. This means J=<1, n).
Next we proceed to case (). For the moment we further assume that 0=

v(0,7,x)=<1. Take a probability matrix (¢; ) ‘..., géwzl such that &; =0

iff ¢; =0 and a small k>0 such that ¢; ;=k¢; ; for all (¢, j) in <1, n)x<1, n>.
Then by (6.6), we have

2
a—i;v(t, 1, x)-}-'z;,-éa;v(t, i, x)—co(t, i, x)

0 .
Al t) » X) = di
5 2B 5 %)
+( 33 bilan(t, J, wolt, b, 3)+-eolt, i, %)
0 . G} . .
=d,—o(t, 1, x)+v;,—o(t, 1, x)—co(t, i, x)
0x? ox
+3 e ol )
0* . d . .
=d;—(t, i, x)+v;,—v(t, 7, x)—co(t, i, x)
0x? ox
+k 2 éi,j'v(t: 7> %)
Let (X,) be the branching process corresponding to the equation
@w(t, i, x) = d,-ﬁw(t, 1, x)+vi2w(t, 1, x)—cw(t, i, x)
ot 0x? ox

(6.11) +k2@ﬂ@L@%

(mugﬂzqagm,

with state space S= UE" (where E” is the symmetric direct product of E for
n=0
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n>0, and E° is a single point {0}), and we write P ,) for its measure starting
at (¢, x) in E, and E; , for its expectation. Function ¢ on E with 0=¢(z, x)=1
can be extended on S by

‘f’((ilx %)y +*y (25 %)) = (i1, #1)+ (i, ) k=1,
q3(6) =1.

It is known that
w(t: i} x) == E(i,x)[ﬁ(oi Xt)] N

Since o(¢, i, x)=w(¢, i, x), it is sufficient to show w(%,, 7, x)>0 for some #,>0.
Let {T(Z, x: d(j,, y1):*d(ji» ¥:))} be the branching semigroup of (X,), then

(611 Tyd(i, x) = e Tid(i, x)+k 2 éi.js‘t,e-f«—nT,gs[Ts(ﬁ( G, %)ds .

We first consider the case (I.b) in the beginning of section 5. In general for
m=1, we have

(6.12) Tz, x: d(j, yo)-+-d(j, y2m-1))

t 1 (s A
—c(t— ~ - - m’g h ~
gsoe ( s)dskei.kmhgosoe e(s—s, l)dsm"-lkekm,k,,,_l

"m
1 Sm—1 By By 11~
H S e~ C(sm=1=sm'-3 )ds'ﬁ,:,_2 lkekm—pkm—z
hm-1=0J0

h
1 s"3 h h h
- 352 - 27 ~
[1 .‘ 2o ) st kg, ,
£ =0J0 !

I 8(k, a-0i(t =)+, (s— sk )+ O (P —s)+ 0,582 A, Paion,)

where each &, is an arbitrary integer in {1, n)> and y, ., denotes y, -1, . ..
In fact T'(i, x: d(j, ¥o):--d(j, ¥."-,)) equals the summation of the right side of
(6.12) over all &,,, -+-, k, in {1, n)>.

Therefore, there exists ¢,(¢)>0 for each >0 and m>1 such that

612y TH0,, x)gcm(t)g'ké,.,kmds 1 S‘ké,,m,,,m_ldsfp_l-.-
0 hm=0J0

Sh3 .
11 S S dsloke, , 0(0, by, 30, (t—s)+ v, 51
hy=04J0

Fix a j such that (0, j, x)==0 and suppose that v, v, . For any 7, we can
choose k,, k,, -+, k,,_, such that
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ei.km_l.“ekh-k 1,i0eio,kh-.'ekl+1,joej0,kl.'-ek2,j> 0

since (¢;, )} is irreducible. Similar consideration as in the proof of Lemma 5.1
implies that, when k,=j, the right side of (6.12) is strictly positive for ¢ large

enough. This proves that w(t,, 7, x)>0 for some #, which does not depend on
7 and x.

Next we consider the case (I.a) in the beginning of section 5. Suppose
that d;>0. As before, fix a j such that ¢(0, j, x)==0. In general for m=1,
it follows from the preceding property that

(6.13)  T(5, x: d(j, yo)-++d(J, ¥2"-1))
2 (eI T L (x, dy)dske s,

“Jo

1 s hm
—c(s— h k 3
hHOgoe « Sm_x)dsmm_‘TsZXfln”: l(y’ dyhm)kekmk’m—l
"=

h
1 5,3 hy h h
2 —c(sy3-5,2) iS‘h k2 -2c,2b5
hzl;lo go e 2 1 lszga_s'l'z(yhm-»-hgl AY )€ kekz,j

hI:IO T3 Yoy D hpety) 5

where y,,,...,, denotes y, om-1,... .
Therefore, there exists ¢,(#)>0 for each #>0 and m=1, such that

t .
(6.14)  T#(0, i, x)gc,,,(t)f T,! (x, dy)dské, ,,
0

t
1| dsee T2 e (3 @9 Mo,

hm=0
e . .
[0 a5, D @i, AT05000, )T
We can choose &, &, :-+, k,,_, such that

Biobnrt Chy; >0

i00km—1

We shall show that T, 9(0, 7,, x) >0 for large enough ¢#,, by the induction on m.
It is easy to see this in the case m=1. We assume that we have shown 1,2, ---,
m—1 and prove the case m. If some d,, or d, is positive, then this is reduced
to the case that we assumed to have shown. Therefore, we may assume d,,—=
--=d, =0. Inequality (6.14) becomes

t . 1 s
T30, i, %) 2u(0) | Tin.(x, dy)dskes, s, 11 | dsimts o,

1 shs
I S: dstekey, (0, j, y+-v; (s—sum) 4o she)? .

hy=0
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If v, =+-=9,, then (0, j, y+v, (s—smm)+ - +vsiz)=2(0, j, y+v;5), so that
¢ ; . m
T (0, 4y, %) gcm(t)SOT;;s(x, dy)dse,, 00, j, y+o,5)

11 [\dsim i p 11 S dstzkey,, ;>0 .
hm=0 hy=0
If (v;, v, *+, v;,) contains at least two different numbers, then this is re-
duced to the case (I.b) which we have proved previously.

Set J={je<1, n): inf v(2t,,j, x)>0}. If J is a proper subset of <1, n),

ze 8!

then let I be the set {1,7n>—]. Since (¢; ;) is irreducible, there exists 7 in I and
J such that ¢; .>0. Then by equation (6.11)’, we have

T 0,1, %) 22, | e @0 Ty, [T.6(0, )P, ¥)ds>0
for each x in S', which is a contradiction. Therefore /=<1, ) and we have

proved the lemma in case 0=9(0, 7, x)=1.
We next delete the restriction 0=9(0, 7, x)<1. If 0=<9(0, 7, x) <M, set

a(t, i, x):y(—t’]‘%x), then #(t, i, x) satisfies the equation
;’ (tzx)—d 00t i, 9)+0; v(tzx)

+Mz”} b, j, x)o(t, k, x).
i k=1
It follows that &;,=Mb/; satisfies Assumption 6.2 with ¢ and 4, ; replaced by
Mc and Mb, ;. By the preceding result, it follows that inf (¢, 7, x)>0 for some
(i,k)EH
t,. Hence we have inf o(2,, 7, x)>0. Thus we have shown Lemma 6.2.

G, R)ER
Summing up Theorem 6.1 and Lemma 6.2, we obtain

Theorem 6.2. Suppose that either (a) or (b) in Lemma 6.2 is satisfied, then
for any nonnegative u(0, 1, x) in C(E), the solution u(t, 1, x) of equation (I) converges

to mu} exponentially fast, where m— "S u(0, 7, x)u(dr)dx.
w

7. Markov processes corresponding to equation (I)

In section 7 and section 8, condition (1.3) is always assumed. In this
section, we also assume that equation (I) has a continuous nonnegative solution
u(t,i,x). Fix this u(t, 7, x) and consider the following equation for s<¢
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0 & _a
2 9(t, 1, dn) = g(t, i, d) (d,.W ”"ax)

7.1 s )
(7.1) +23 aiud(t, J, dwdult, k, x),
(s, di, dx) is a bounded (signed) measure on E.

Here the precise meaning of (7.1) shoud be understood as

(7.1y a% SE¢(t, di, dx)f(, %)
. 0 AV
= SEqb(t, di, dx) (d,.g;;—‘vié;)f(z, x)
+ SE¢(t, dj, dx) 31 atut, b, )/, %),

for all feC~(E).
For each T < oo, let gr= max {}j} lai'su(t, k,x)|}. We denote {Ti(x, dy)}
i, ¥)JER k=1

0<t<T

to be the Markovian semigroup whose generator is the differential operator
2
d,-a%——v,-ég. Then we can transform equation (7.1) into the integral equation
x

(72) d)(t’ i’ dx) = Ssl¢(sr ir dy) Ttis(y: dx)e_qT(t_S)

t ” . ~ .
+S e—w—ndrSE(p(r, &, dy) (R ajulr, b, 3)+4:8,,) Tet g, do),

08s=t<T.
Let ¢p(2)=¢(¢, E). Then from (7.2),
9(t) = g(s)e 10+ [ emsrt=ng,(r)ar

i.e., ¢(t)=¢(s), and therefore the solution preserves the total measure. If
¢(s, di, dx) is a nonnegative measure, then the solution ¢(t, dz, dx) of (7.2) is also
a nonnegative measure. If we solve (7.2) in the iteration scheme, then we get
a minimal solution ¢(¢,dz,dx). Because of the preservation of total measure,
(7.1) has a unique solution. Since (7.2) is a linear equation in ¢, (7.2) (.e.,
(7.1)) always has a unique solution. We denote {P, (7, x: dj, dy)},<, the solu-
tion of (7.1) when ¢(s, dj, dy)=05¢ .,(dj, dy).

Theorem 7.1. {P, (i, x: dj, dy)} <, has the following properties:
(7.3) S P, (i, x: dk, dz)P, (k, 2: dj, dy) = P, (i, x: dj, dy)
E

sSEi<u.
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(74) P, (i, x: dj, dy) is a nonnegative measure.
(7.5) P (i,x:E)y=1.

Let ¢(t, di, dx) be the solution of (7.1), then

(76) | 6, di, d)P.G, 2 dj, dy) = 90, &, ).

Let (2, 1, x) be the solution of equation

W(t, i, x) = d,.%w, i, 0)Fo, 2wt 4, %)
x ox

Qo

+ D@ty Wult, b, %),
\II‘(S, i’ x) = \l”(zﬁ x) )

and let ¢(t, di, dx) be the solution of (7.1) with ¢(s, di, dx)=-(i, x)u(di)dx, then
it follows that

o |
|

(7.8) (¢, di, dx) = (t, i, x)p(di)dx ,

especially, from (7.6) and (7.7),
(7.9) Lu(f, i, X)u(di)dxP, (i, 22 dj, dy) = u(t, j, y)r(dj)dy -

Proof. It is sufficient to show our theorem for each 7'<oo and 0Zs<¢
=u<T. (7.3) and (7.6) follow from the uniqueness of solution of equation (7.1).
If we solve (7.2) in the iteration scheme, then (7.4) is clear. (7.5) follows from
the preservation of total measure. Next we prove (7.8). Let ¢(t, di, dx)=
r(t, 2, x)u(di)dx, then for any o(z, x) in C=(E),

0

5ES (¢, di, dxyo(i, x)

3 : & 0\,
— SE¢>(t, di, dx) (tzia_x5 viax}v(z, %)
+ | ot dj, ) 33 ajutt, b, 96, )

and ¢(s, di, dx)=nr(i, x)u(di)dx. By the uniqueness of solution of (7.1), ¢(¢,dz,dx)
= (2, 7, x) pu(di)dx.

By Theorem 7.1, we can construct a temporally inhomogeneous Markov
process (X,) with transition probability (P,,) and the state space E. Let
P, ; »(+) denote the measure of the process starting at (z, x) at time s.
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8. Asymptotic behavior of the process (X,) associated with equa-
tion (I)

Let u(i, x) be a twice continuously differentiable and strictly positive func-
tion, satisfying

u(t x)—f—v u(z x)+ 2 4. fau(g, x)yu(k, x) =0.
Suppose that u(z, 7, x) is a nonnegative solution of equation (I) such that
8.1) lim ||u(?)—u|l. =0.
= aad

Throughout in this section, we shall fix such u(7,x) and u(¢,7,x) and assume
the following condition:

Assumption 8.1.  Each nonnegative offdiagonal matrix (2”] aj w(kx)), xS,
k=1

is irreducible.

Under these hypothesis, we shall study the asymptotic behavior of the
process (X,) defined in the preceding section.

Let {S;} be the semigroup generated by the following differential equation,

G . 0 . ) .
(8.2) 671]»(t, 7, x) = d,-aTczx]r(t, Z x)—l—v,-acxjf(t, 7, X)
+ 3 ajop(t, j, Dulk, 2).
Since each matrix (2} aj w(k, x)), xS, is nonnegative offdiagonal, Sqr=0
for 4r=0.
Put  A(tW(, x) = zk: ainb (G Hult, b, %),
A\b‘(l, x) :iglajfk\lr(j’ x)u(k, .’X!) }
and consider the equation
63 2wt i n) = (440 Lt A i, 940 Art, b %)
ot "ox 'ox
or, equivalently

(B3 () = SO+ Si-A)— Apw()ds.
Set
F = {¢: SE¢(1’, x)u(di)dx = 0} CLXE, p(di)dx) = L}
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and ||¢]|, = SE|¢(i, x)| p(di)dx, then F becomes a Banach space under the

norm [|-+||;, We can easily show that

S(&cT,
A@)—ApeTF for any +r in L},

are satisfied.
Lemma 8.1. There exists K>0 and p>0 satisfying
[1Siplli=Ke™™||¢pll,  for any ¢ in F.

Proof. At first, we remark that
| wanxS i, x: i, dy) = uday

is satisfied. As in the same method as in the proof of Lemma 5.1, we can show
that there exists #,>0 and ¢>0 satisfying

S, (4, x: dj, dy)=cu(dj)dy for any (7, x) in E,

using Assumption 8.1.
By (8.2), we can write

(SO G 9 = | (5,6, % dj, dy)—culd)d)(0, . 5)

and therefore,

2 [, 15.6(0) G, )1 d

i=1

=3[ ax] (5.0, %: dj, dy)—en(@)ay) (0, . )]

= (l—cnw)?:_,: Ssll¢(0: 5 y)ldy,

ie., IS, pli=(1—cno)lpll;. Combining this and [|S,pll,=<|¢ll;, we get the
result.

Theorem 7.1 implies the L'-boundedness of the solution (2,7,x) of equa-
tion (8.3). Therefore

IO =Sl = 1] Si-LA6) — Ay s)asl

< StKe“’““)II(A(s)—A)x}r(s)Hlds 0, as t—>c0
0

since [|(A(s)— A ()l = fg?;‘n(,«,z:lll a;’ k] )lu(s) —ullal (sl
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ey

O, i, Wu(did
S (i, x)(di)d

lim () = lim S)(0) = lim (S(0)+mSu) = mu ,

Let m= , then 7(0)=+(0)—mu belongs to <, therefore,

in the L! sense. This means that

(8.4) limS (2, 7, x)f (i, x)u(di)dx = mS u(t, x) f (2, x)p(di)dx
t>>2 JFE E
holds for any bounded Borel measurable function f{z, x).

Theorem 8.1. Under the Assumption 8.1, it holds that for any Borel set
Ain S, and (1, x) in E,
[ i)y
[, G, v)utdi)ay

By (7.8) in Theorem 7.1, (8.5) is nothing but (8.4) when the initial measure
has a density with respect to the Lebesgue measure. In the general case, we
fix 4, and «, arbitrarily and divide

(8-6) Po,t(iO: xo:j: dy) = Po,t(im xo:j, y)dy+Péf3(io, xo:j; dy)
where P§%)(-:+) is a singular part for the Lebesgue measure.

Let ()= pu.dios 017, 9)uld)dy.

(8.5) I‘LIB Py i, (X E(], 4)) =

Lemma 8.2. () increases to 1.

Proof. Since S Do.to, %o k, 2)u(dR)dzP, ;. (k, z: j, dy) is absolutely conti-
E
nuous for the Lebesgue measure it follows that p ,. (%, %ot J, y),u,(dj)dyzg Do.:
E

(%0, %o R, 2)u(dR)d2P, ;1 (k, 2: dj, dy) and ¢(t+s)=¢(t). This means that ¢(f)
is an increasing function. We show that there exists §,>>0, s;,>0 and ¢>0 such
that

(8.7) P, 1ot x: 7, dy)=cdy for any 7,7, x and t=s, .

Since u(z, x) is strictly positive, and by (8.1), there exists s,>0, m>0 and M < e
such that

M = sup u(t,i, x)= inf u(t, i, x)=m .
=58, 28,
Gi,z)ER (i, x)ER

L ;s . .
Let a;;= kz,‘ldj’,km j=*i,
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a;i = ;:"1 ai M,
then for t=s,,

(B afau(t, b, ) =(ay.)) .
It is easy to see that the matrix (a;;) is irreducible. Let g= max la;,:|, and
pj.i=a;+qd,, then for t=s=s,

Ps,t(i: x:j: dy)
= Bi,jT,is(x, dy)e 1¢=9

+S'e-q<f—'>drg P, (G, x: dl, dz) (S aiu(r, b, 2)+95,,) T (=, dy)
s E 1

é=
> 5., T, dy)e—a<f-s>+$'e-q<f—'> drS P, (G, x: dl, d2)p, , T (=, dy) .
s E
This means that for all 7, x, j and ¢=r=s,, it holds that
Pr,t(i: x:j) dy)th—r(i: x:jy dy) ’
where Q,_,(+:+) is the solution of

<!QO(Z.) x:j’ dy) = Bi,jsx(dy) ’
Qt—s(i) x:j) dy) = Bi,jTtis(x’ dy)e_q(t—S)

+$'e—q<f-f>dr S O, i, x: dl, d2)p,, Tt (=, dy) .
s E

The above equation is analogous to (5.5), as that the proof of Lemma 5.1 is
applicable, therefore we can see that there exists ¢>0 and s,>0 such that

.2, x: J, dy)=cdy

for all (7, x) in E and j in {1, #>. 'This proves (8.7).
For t=s,, we have

B(t5) = | Dorsalios 037, y)ld)dy
> Lpo,,(io, %o: b, 2)u(dR)dzpy p1sy(k, 2 E)
+g P, %: dk, dz)cS w(di)dy
E E

= ¢(t)+cna(l—¢(1)) -
Let ¢(co)=lim ¢(2), then it follows that

B(°) = p(°)+enw(1— ().
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This means ¢(oo)=1, and we have proved Lemma 8.2.
We now turn to the proof of Theorem 8.1. Let f be a measurable function

such that 0= f(7, ) <1.
S Do, (0, %o R, 2)u(dR)d2P; . (k, 2: di, dx)=®(t, di, dx) is a solution of the equa-
E

tion (7.1) with the initial value p, (%, %,: 7, ®)u(di)dx. Let W(¢,1i,x) be the
solution of the equation (7.7) with the initial value p, (%, %,: 7, ). From (7.8)

O(t, di, dx)="(t, i, x)u(di)dx. Since S Do, (%o, %o 2, x)p(d)dx= p(s), (8.4) implies
E

1im§ 16, X)W, i, %)p(di)dx — _@_—S 16, %)uli, ©)u(di)dx, i.e. ,
tr= ) SEu(i, x)u(di)dx” E

(88)  lim SEpo,s(io, %o 4, X)P,, 1, f(i, %) u(di)dx

- _J(_‘)__SE 1, x)u(G, x)u(di)dz .
SEu(z, x)u(di)dx

From (8.6), it holds that
Py yos [, %) = SE Po.slios %o 7, X)P,, o e f(0, %) p(di)dx
+SEngg(z;,, %o: i, dX)P, ., f(i, %) .
Therefore, combining (8.8) with
L Do, 2ot 5, X)Py 12 (G, ) u(di)dx
={ Poiiflio 30)

[, Botio 5026, 9P, s G, W)+ | Py 32 i, )

IA

SE Po.s(ins %o 1, )P, ser f(G, %) p(di)dx-+1—(s) ,

l

we obtain

+1—¢(s)

$(5)

SEu(i, )i, %)u(di)dx
SEu(i, x)u(di)dx

= 1'1?3 P0,5+tf(i0: xo)g 171_)1010 PO,s-Hf(iO: xo)

SEu(i, %) (i, %)(di)dx

= 4(5) 17—
Lu(z, ) u(di)dx
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From Lemma 8.2,

g (i, %)f (G, x)u(di)d
lim Py, f(z, %) = <£ .
e SEu(i, ) (di) dx

Therefore we have proved Theorem 8.1.

9. The case n=2. Examples and some degenerate cases

In this section, we always assume that d,—=d,=0 and v,#v,. We do not

assume (1.3) unless otherwise stated.

9.1. Classification of equation (I)
Noting that a?,=—a;'; by (1.2), equation (I) becomes

90t 1, %) = 0,2 u(z, 1, %) Fa(t, 1, 2y
ot 0x

+(artetat)u(t, 1, x)u(z, 2, x)+aztu(t, 2, x),

(B

Dut,2,5) =0, %u(t, 2, ¥)—aiu(t, 1, )2

—(artatatult, 1, x)u(t, 2, x)—as'u(t, 2, x) .

We first classify equation (E) into three cases.

Case 1. a,!,=0.
Let a=—a,';>0, and we define o and B as the solution of equation
61112"‘ ‘1231

atf = -Gt

a,

Baecause a,},a,';<0, we may assume that ¢ <0=2.

Case 2. a,!;=a,',=0.

Let b=—(a,';4a;'1). If b=0, then equation (E) becomes a linear differ-
ential equation, and therefore we omit this case. We may assume 4>0, for the
case when 4 <0 is reduced to this case by interchanging «, and w,.

Case 3. a,);,=0, a,},=+0.
This is reduced to case 1 again by interchanging u, and u,. Therefore
we may only consider equation (E) in two cases.
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%u(t, 1,x) = fv,aﬁu(t, 1, x)—a(u(t, 1, x)—au(t, 2, x)) (u(t, 1, x)
x

*ﬁu(t 2 x)))
u(t 2,x) = Vog u(t 2, x)+a(u(t, 1, x)—au(t, 2, x)) (u(t, 1, x)

(E.1)

—Bu(t, 2, x)),
as0<£pB,a>0.

Sult,1,9) = o, 2 u(t, 1, %)—bu(t, 1, u(t, 2, %),

(E.2)

B, 2, %) = 0,0 u(t, 2, x)+-bu(t, 1, £)u(t, 2, %) ,
ot 0x

b>0.
We discuss (E.1) in four cases separately:
(Bla) a<0<gB,
(Elb) a=0<g,
(Elc) a<0=g,
(Eld) a=0=274.

9.2. Behaviors of solutions of equation (E)

Hereafter, we shall assume that the initial values are non trivial, .e., #(0, z, x)

=£0, and we denote m:»l—s (@(0,1,%)+(0,2, x))dx. In cases (E.1.a)and (E.1.b),
[O XA
B o 1

let u?:BT and u2=—+’1. Then it follows that

2 . .
Sajfwiul =0 i=1,2.
P

k=1

. ; 2 N 3 . .
Let b;v=(u?)""ajsujus and b; ;=3 (a; x+as ;)ui as in the Assumption 5.1. Then
k=1

b= =D (70 2)

is a nonnegative offdiagonal irreducible matrix. Therefore Assumption 5.1 is
satisfied.
By (E.1),

aj iy = —a(m—an,) (m—FBn,),

1

: M~ %M~

ai’im e = a(n,—omy) (m—6n,) .

1

<.
-
il
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Therefore,
iglbfl.m,m 1+ 6(771 772) (/8711——0072) ,
Dbimm, = —(m ;) (Bm—an,) .

fe=r 1+8

a(lg_a), aB(B—Ol)) and 0<771) 772<1
8 7 148

This means for ¢=max

0= 33 b} mm+en=c,

jok=1

2
0= >3 bfmmten=c.
2
Therefore Assumption 6.1 is also satisfied. By Lemma 6.1, equation (£.1) always
has a bounded global solution.

9.2.1. Case (E.l.a)

We verify condition (a) in Lemma 6.2. Let ¢ =max (

aB*—2aaf a(,@—a))
+8 ’ 14+p 7

then for 079, »,<1,

ébj}k'ﬂ N,y = *aa’ﬁ ( B aﬁ 7+ '*;é N-+¢ )771

A R T\ g™ 148" 1+
~—aa_, __af 2
Y L G
: b2m. _ acB af# aaS aB? 2
,»;q SR, (1+Bm 1—|—Bm+1+,8772+ ) +1+Bn
-~ af 2aaB af3
=1+Bn+(&+1+6 1+B)
Hence the irreducible matrix
__aB aa —aa
1+8 148’ 148
af3? c+2aa,8_ af?
1+ U148 148

satisfies condition (6.8). Therefore by Theorem 6.2, the solution (u(z, 1, ),

u(t., 2, x)) converges to m( ) exponentially fast.

B 1
1+8°1+8
9.2.2. Case (E.1.b)
In this case, it is not difficult to see that condition (@) of Lemma 6.2 is not
satisfied. However, condition (6.5) of Theorem 6.1 is replaced by



Limitr THEOREMS FOR CERTAIN PArRABOLIC EQUATION 325
(9.1)  infu(0, 1,x)=8>0,
s
by the following proposition.

Proposition 9.1. If (9.1) is satisfied, then there exists t,>0 and ¢>0 such

that
inf u(t, 1, x)=c .
=8
i=12
Proof. Let u(t, ac)———lE u(t, 1, x) and o(¢, x)=u(t, 2, x), then equation (E.1)
becomes
) 0
—u(t, x) = v, —u(t, x)— Ba(u(t, x)—v(t, x))u(t, x) ,
92) ot ox

9 (2, %) = 0,0 0(t, %)+ Bea(u(t, x)—o(t, X))u(t, %) .
ot 0x

We may assume that there exists M >0 such that
0=u(t, x), v(t, x) =M  t=0, x&S!.

Transform equation (9.2) as

%u(t, x) — vl%u(t, x)—2B8aMu(t, x)+- Ba(o(t, x)—u(t, x)-+ 2M)u(t, )
9.2y

gv(t, X) = 7)22

ot 3 o(t,x)—2B%aMuo(t,x)+ BPa(u(t,x)—o(t,x)+2M)u(t,x)
X ‘

or equivalently,
u(t, x) = e~ #Mty(0, x+v,t)
+S;e“z""M(“‘)Ba(v(s,x—}—vl(t——s))—u(s,x—i—'vl(t—s))—l-ZM)u(s, xt-vy(t—s))ds,
o(t, x) = e 2" Mig(0, x+v,¢)
4 S:e‘z"z"M"“),Bza(u(s,x—l—'vz(t—s))—v(s,x—l—vz(t—s))+2M)u(s,x—{—vz(t—s))ds .
Therefore, u(z, x) =e M0, x-+v,t) = e '3, and therefore,

o(t, X) = Ste’z’ﬂ”” =9 B2au(s, x—+v,(t—s))*ds
0

%

t
S e_zﬁz”M(t_s)"4’3"M‘52,82ads
0

> te—ZﬁzaMt—llﬂaMtSZBZa

By this proposition, if #(0,1,x)=8>0, then (u(t, 1, x), u(z, 2, x)) converges
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B 1 .
=, tially fast.
m(l T8 1+ﬁ) exponentially fas

In the following three paragraphs, general theory in the preceding sections
is not applicable, but we can show directly the asymptotic behavior of solutions.

9.2.3. Case (E.l.c)
Let u(t, x)=—iu(t, 1,x) and o(¢,x)=u(t, 2, x), then equation (E.1) becomes
a

8

2 utx) = vI%u(t,x)+aau(t, %) (u(t, %)+ (8, %)),

9.3) 5 5
—o(t,x) = v, —v(t,x)+ac’u(t, x) (u(t,x)+o(t,x)),
ot ox

or equivalently,

u(t,x) = u(0,x+v,t) exp [aaS;{u(s,x—l—'zzl(t——s))—f—'v(s,x—}—'vl(t—s))} ds],

(9-3y o(t,x) = v(0,x+v,t)+ S;aazu(s,x—i—fvz(t~s)) {u(s, x+v,(t—s))

+o(s, 6+ v,(t—s))} ds .

Therefore, there exists M > 0 such that

u(t, x) =M for any =0, xS,

and equation (9.3) has a global solution.
If %(0, x)=0, then u(t, x)=0, v(¢, x)=v(0, x+v,t).

Proposition 9.2. If u(0, x)=£0, then there exists N >0 and c¢>0 such that
(9.4) u(t, x)<Ne =0, xS,
and therefore, v(t, x) is bounded in t and x.
Proof. By (9.3), for any T < oo, there exists ¢(7")>0 such that
o(T)u(0, x+vt) S u(t, x) 0<t<T, xS*.
Therefore, for any ¢t< 7T,
o(t, x)= S:aazu(s, x-+v,(t—s))ds
> aa?o(T)? S:u(O, K+ vgt- (0, — vy)sYeds ,
and there exists 7,>0 and d>0 such that
(T, x)=d x&8'.
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Consider (9.3), (u(T, x), v(T), x)) as the initial value, we get
o(t, x)=d t=T, xS".
By (9.3), for t=T,,
u(t, x)<u(0, 2+ vyt) exp [aas;'v(s, x-Loy(t—s))ds]
<u(0, x4vyt)exp [ac(t—T,)d] .

By (9.3) and (9.4), (¢, x) remains bounded in ¢ and x.
If 9,=0, then

llirg o(¢, x) = v(0, x)—{—g:aazu(s, x) {u(s, x)+o(s, x)}ds .

If ©,540, then
lim v( ne -+, x) = 0(0, x+v,t)
e |2, |

+ S:aazu(s, x-+v,(t—5)) {u(s, x+v,(t—s)) (s, x+v,(t—s))}ds .

9.2.4. Case (E.1.d)
Equation (E.1) becomes

Ot 1, %) = 0,2 u(t, 1, x)—au(t, 1, %),
t ox

(9.5) 3 5
—u(t, 2, x) = v,—u(t, 2, x)+au(t, 1, x)?,
ot ox

or, equivalently,

u(0, 1, x+v,t)
1+4-tau(0, 1, x+v,z)’

u(t, 2, %) = u(0, 2, x+v2t)+5'(
0

u(t, 1, x) =

u(0, 1, x+v,54v,(t—s)) )2 s
14sau(0, 1, x4v,s+v,(t—5))

By (9.5), u(t, 1, x) converges to 0 as ¢—>oo.
If ©,%+0, then

. nw _ 2 u(0, 1, x+vt4(v,—v,)8) |
lim u(l | 4+t 2, x) u(0, 2, x+v,t)+ So 1+sau(0,l,x—l—vzt—i—(vl—vz)s)) ds .

n.500 Uy

If ©,=0, then

. - 0,1 ’
lim u(¢, 2, x) = u(0, 2, x)+S (1—*1(“;(0’ "i‘*';’i)v s)> ds

tyoo 0
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9.2.5. Equation (E.2)
Equation (E.2) is equivalent to

u(t, 1, ) = (0, 1, x-+-v,1) exp {—bg'u(s, 2, xto,(t—s))ds} ,
(E.2Y { Y
u(t, 2, x) = u(0, 2, x+v,t) exp {bg u(s, 1, x+v,(t—s))ds} .

By this expression,

9 u(t, 1, x)<u(0, 1, x+v,2),
(0-6) {u(t, 2, x)=u(0, 2, x+v,t) .

It then follows that

u(t, 1, x)=u(0, 1, x+o,t)exp {—bstu(O, 2, x+v,t+(v,—v,)s)ds}
(9.7) ’

u(t, 2, x)<u(0, 2, x4v,t)exp {bstu(O, 1, x+v,t+(v,—v,)s)ds} .

0

If (0, 2, x)=0, then (E.2) implies that u(z, 2, x)=0 and therefore u(¢, 1, x)=
u(0, 1, x4v,t). Similarly if %(0, 1, x)=0, then u(¢, 1, x)=0, u(¢, 2, x)=u(0, 2, x
+0,1).
In other case, since %(0, 2, x)%=0 and v,%v,, we have
1 St(ul—uz)

u(0, 2, x+s)ds
t(v,— 1) ( )

lg’u(o, 2, x4 (01— y)s)ds =
tJo

0
N lg”u(o, 2, y)dy>0
 Jo

for any x in S*. Therefore by (9.7),
u(t, 1, x)<Me™

for some ¢>0 and M>0. By the second part of (E.2), u(t, 2, x) remains
bounded.
If ©,=0, then by (E.2)’

lim u(t, 2, x) = u(0, 2, x)exp {aru(s, 1, x)ds} .
t> 0
If 2,%+0, then

lim u(ﬁ“’—+t, 2, x) — (0, 2, x-+v,t) exp {aru(s, 1, x-Lo(t—s))ds} .
|22 0

Yoshikawa [13] has obtained more detailed results in this case.

9.3. Limit distributions of the associated Markov processes
We now assume (1.3). For a solution (u(t, 1, x), u(t, 2, x)) of (E), let (X))
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be its associated Markov process defined in section 7.
9.3.1. Cases (E.l.a) and (E.l1.b)
In case (E.l.a), (u(t, 1, x), u(t, 2, x)) converges to m(—B—, -1—> By
Theorem 8.1,
Bl i qi=1,2 e85,

‘ _ 148 »

}—I,IB PO,(i.x)(XIE(]’ dy)) it 1 d
=Y j=2i=1,2xE8".
148

In case (E.1.b), we assume that the additional hypothesis (9.1) on %(0, 1, x)
is satisfied, then the same conclusion is valid.

9.3.2. Cases (E.l.c), (E.1.d) and equation (E.2)

We have seen in 9.2, that in general
lim u(¢,1,x) =0,
tyoo
and there exists a bounded nonnegative function ¢(x) on S* such that if 2,=0,
then lim %(t, 2, x)=v(x), and if v,%0, then
tyoo

lim u( ”“’I 11,2, x) — o(xtogt).

nre \| 0,
Therefore we can not apply Theorem 8.1 in these cases. However we can dis-
cuss on the limit distribution of (X,) under the following additional assumption:

Assumption. There exists a bounded nonnegative function w(x) which
is not identically 0, such that if v,=0, then

{u(t, 1,x)=0,

u(t, 2, x) = v(x),
is a solution of equation (I), and if ©,5=0, then

{u(t, 1,x)=0,
u(t, 2, x) = v(x+v,t) ,

is a solution of equation (E).
In the present cases, since a,';=a,%,=0, a,';,=—2,’°,<0, we may only con-
sider the following equation:

9 B 8,
3 (0, 1,d5) = (1, 1, ) ( o0 +atu(t,2, x)) ,

(9.8) ] 5
S b(t,2,dx) = (2, 2, d) (—%5;)+¢(t, 1, dx) (a2, 2, %)) ,
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or equivalently,
(2, 1, dx) = § B0, 1, dy)esita) ozr-sniss | (dx)
S
(98)’ _ Ssld)(o’ 1, dy)eulfzgév(ﬁ(uz—vl)s)ds aygﬂl'(dx) ,
o(2, 2, dx)
t
_ ssl¢(o, 2, dy)8y_,,2,(dx)+Sodasfzssp(s, 1, dy)u(s, 2, 9)8, -o-o(dx)
= Ssld)(o’ 2, d.y)ay—Vzt(dx)
t 1 $
+ Sodsal?zgslgb(O, 1, dy)essle) 2 0 oyt (0, 0,)5)8, -yt g oo ) -
Since we have assumed that v,4=v, and v(x)=£0,
]imst‘v(y—i—('vz—vl)s)ds = o0 for any y in S?,
t> JO
and therefore,
lim ¢(¢,1,S) = 0.
If (0, di, dy) = 8,(di)3,(dy), then by (9.8

(;b(t) 21 dy) = Sx—ﬂzf(dy) ’
©9 lenar—o.

If $(0, i, dy) = 8,(di)3,(dy), then by (9.8)

8(t, 2, dy) = [ dsartsenlsl et (0098 sy -ap D)
Therefore if v,=0, then
(9.10)  lim (2, 2, dy) = | dsatsentsleroro(e—o)8, ., (),

and if v,+0, then

(9.11)  lim ¢<l”‘° 11,2, dy)

21
= S:dsaﬁze“lfzs:""‘*‘”2"’1)’)"’7;(x+(7)2—v,)s)B,_,,Z,+<,,2_,l)s(dy) .
Summing up (9.9), (9.10) and (9.11), we obtain:
213 P, »(X,e(1,SY) =0 i=1,2,x8".
If 2,=0, then
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lim Py o(X, (2 dy) = 8.dy),
lim Py, ,o(X,E(2, &) = K(, dy)

where K(x, dy) is the kernel defined by the right side of (9.10).
If v,%+0, then

Hm Py g, (Xoring +1 € (2, &) = 8:-p(dy)  0=2= |;‘" )
> 2

},im PO,(l.x)(Xnm/lvzl+tE(2’ dy)) = Kt(x! dy) Oété |:)DI )
> 2

where K(x, dy) is the kernel defined by the right side of (9.11).
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