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1. Introduction

Consider the equation of Boltzmann type for a gas model with discrete

velocity states:

(I)

|-«(f, i, x) = 4 ~ f φ , i, x)+vi^-u(t> ί, x)
ot ox2 ox

+ Σ a/tku(t,j} x)u(t, k, x),

u(0,i,x) = u(i,x)y

ί'G<l,n>,

where <1, w> denotes the set {1,2, •••, n} ,

[VJ and dj\k are real numbers,

and {a/tk} satisfies:

if i equals neither j nor

This equation has been considered by Mimura [6], Yamaguchi [12], Con-

ner [1] and Kolodner [4].

In this paper, we shall first discuss the asymptotic behavior of the solution

u(ΐ, i, x) of equation (I) and, second, construct the temporally inhomogeneous

Markov process (Xt) associated with an appropriate solution u(t, z, x) of equation

(I) and, finally, investigate the limiting property of the process (Xt).

This work was supported by the Kuno scholarship.
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When we consider a Markov process associated with equation (I), the
second condition of (1.2) is strengthened as follows:

(1.3) a/tk^0 i f/Φ/.

The following typical example of equation (I) is taken from Conner [1].
Let the velocity space be <1, n)y and assume that molecules travel R1 with ve-
locity v{ if they are in the state i. Let u(t, i, x)dx be the density of molecules
at time t with state i whose positions belong to dx. Let vjtk=vktj^0 be the
collision rate between molecules of state / and k over the epoch dty and O^Γ/,*
^ 1 be the probability for a molecule of state / to have its velocity state scattered
from/ to i through collision with a molecule of state k. Then we have,

—u(t}iίx)+υi--u(t)iίx)
at ox

x)u(ty k, x)—Ti[ki>itku(t, i, x)u(t, k, x))

Conner defined

B/ (

and represented the above equation in the form

9 3 n

—u(t, ίy x) = —vi7-u{t} i, * ) + Σ B/thu(t,j, x)u(t, k, x).
Ot OX j,k = ι

This B/k is symmetric in/ and k for each i and satisfies condition (1.2) but
does not satisfy condition (1.3). However if one defines

then the equation also is of the form

Q Q n

—u(t, iy x) = —Vi—u(t, i, x)+ Σ aj\ku(t,j, x)u(t, k, x),
Ot OX i,* = i

with the a/)k satisfying condition (1.2) and (1.3).
Throughout the paper, we shall discuss the case when the initial condition

u(0,i,x) is periodic with respect to x. Tuetu(0,i,x) be a continuous, nonnegative
periodic function on R1 with period ω. It then follows that the solution
u{t,iyx) of equation (I) is nonnegative, continuous and periodic with period
ω on R1 as well as u(0yi,x), and the equation

(1.4) Σ [Uu(t, i, x)dx = Σ (^(0, f, x)dx t ^ 0 ,
ί=lJθ ; = l J θ
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is satisfied whenever the solution exists.
We shall also discuss separately the spatially homogeneous case, i.e.,

(Π)
4<t>ϊ) = ί±a

dt y.»-i

«(0,*) = «(*").

Jenks [3] has studied the asymptotic behavior of the equation (II). Hence in
this case, we confine ourselves to the problem on Markov processes.

The author wishes to express his sincere gratitude to Professor H. Tanaka
and Professor T. Watanabe who guided him to this problem and gave valuable
suggestions during his investigation.

2. Summary

We are concerned with spatially homogeneous cases in section 3 and section
4, and spatially inhomogeneous cases from section 5 to 9.

In section 3, we construct a Markov process corresponding to the equation
(II) when a nonnegative solution u(t,i) is given. McKean [5] introduced a class
of Markov processes associated with certain nonlinear parabolic equations, and
Tanaka [9] and Ueno [11] continued its investigation in somewhat special cases.
The process we consider here is the Markov process associated with (II) in the
sense of McKean [5]. In section 4, we investigate the asymptotic behavior of
the process.

In section 5, we study the equation (I) in a neighborhood of the fixed point

(uι, •••, tin), i.e., the solution of equation 2 afkUOjUk=Oy i ^ < l , n). We take

(u°i, •••, ul) to be a probability vector. Suppose that the initial data u(0yt,x) is
1 n (ω

continuous and periodic in x with period ω and — XJ I u(0> iy x)dx=l. Then
ω *=1 Jo

if max|w(0, i3x)—M?| is sufficiently small, equation (I) has a global solution

u(t, i, x) which converges to M? exponentially fast. In section 6, under certain
additional conditions, we shall show that the above result is valid for every
positive initial data u(0, ί, x). In section 7, we construct a Markov process
corresponding to the equation (I) with an appropriate solution u{t, i, x) being
fixed. This is also a Markov process of the type introduced by McKean [5].
Ogawa [7] [8] has proved a similar result. In section 8, we study the asymptotic
behavior of the Markov process. In section 9, we treat the case τz=2 in more
details.

3. Markov processes corresponding to the equation (II)

Let u(t,t) be a solution of equation (II):
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(Π) Σ3

where, {#/*} satisfies (1.2) and (1.3).

It is easy to see that if tι(0, 1)^0, •••, M(0,Λ)^0, then «(ί, 1)^0, —, w(f,n)

2̂ 0 for every ί^O. (see. Yamaguchi [12]). The equation (II) implies that

d n n

— Σ w ( ^ 0 = 0 , a n d Σ3 w ( ^ 0 = constant. Therefore the solution of (II) re-

dt » =i ί=i

mains nonnegative and bounded.

In this paper, Ω denotes the set of probability n-vectors, i.e.,

Lemma 3.1. Γfere exists (u°u •••_, w°) m Ω satisfying

(3.1) Σ β i W = 0 ί e < l , n > .

Proof. Choose L > 0 large enough to satisfy

for any (ul9 •••, «n) in ίl and / in

Then the mapping

- ( « + Σ a

is continuous, and the range is contained in Ω. Therefore, applying Brouwer's

fixed point theorem, there exists («?) in Ω such that

i.e.,
/,* = !

Fix a nonnegative solution «(£, ί) of the equation (II), and put

(3.2)

= Σ

Secondly, construct the fundamental solution (Ust(i,j))s^t of the differential

equation,



LIMIT THEOREMS FOR CERTAIN PARABOLIC EQUATION 295

(3.3)
φ(t) = (φ(t, 1), - , φ(t, n)).

That is {UsJί,j)) satisfies

(3.4)

Us,Ut,u = USi

Since u(t) is a solution of equation (II), and since A(t) is defined by (3.2), it
follows that Usj depends only on u(s) and t—s. Hence we may define

(3.5) PM{i,j)=U.χi,j)

Theorem 3.1. (Pu(ts)(hj)) has the following properties:

(3.6) ±

(3.7) P

(3.8) P

(3.9) Σ P?L >(», j") = 1 for any i e<l , n> ,

(3.10) // φ{t, i) is a solution of (3.3), then

especially, a( ί ,»=Σ«(*.

Proof. (3.6), (3.7) and (3.10) are properties of (UtJ). Because {A(t)}&0

are nonnegative offdiagonal matrices, (3.8) is obvious. (3.9) follows from

By this theorem, there exists a (in general) temporally inhomogeneous
Markov process (Xt)t^0, whose transition probability is USJ(iyj)=Pu

t!-l(i)j)y
and with state space <l,n>. Let PSti( ) denote the measure of the process
starting at / at time s.

4. Asymptotic behavior of the process (Xt) associated with equation

In this section, we consider the limit distribution of the process (Xt). We
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shall discuss the following three cases separately.
(A.I) There exists M?>0, •••, u°n>0 and m>0 such that

lim u(ty i) = mu\ i^ζ\, riy,

and Σ «? = 1 .
1 = 1

(A.2) There exists (u°ly •••, u°n) in Ω and m > 0 such that

\\u(t)—mu°\\dt<oo .

o

T**nt* v — ( v v ^ i n 7?M 11 YI I r n P i i n Q "N ̂  I v Ix Lii ιΛ< — v ^ i ) > n) > MM *i*c<ιiio ^ ĵ Λ:

(A.3) There exists Γ > 0 such that u(t, k)=u(t+T, k) for any k and t^
and there exists t0 in [0, T] such that w(ί0, Λ)>0 for any k.

4.1. Case(A.l)

(4-1) «, j = fflΣ«.->*

satisfies

(4 2) έ « ? ^ = o,
ι = l

α t > y^0 i f ί Φ ; .

Therefore the matrix A=(a{ ; ) is a generator of a continuous time Markov
chain having a positive invariant measure (w?, •••, ul). Therefore, if necessary,
changing the order of rows and columns, we may assume that A has the form

(4.3)

where A19 -*'yAι are irreducible, and Ap is a kpxkp square matrix (1 ̂ p^l) and

In general, for a nonnegative offdiagonal matrix A> there exists λ > 0
such that Aλ=A-\-Xl is a nonnegative matrix. A nonnegative offdiagonal
matrix A is said to be irreducible if for any ί and 7 in ζ\y n}y there exists
k(i,j)>0 such that the (^') component of Al(iJ) is positive. Obviously, if A
is irreducible, then ehΛ (h>0) is a positive matrix, and the converse is also true.

A(t) can be written in the form
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IA{t) o
(4.4) ^ W . .

I ° Ά
because a{,y=0 implies aitj(i)=0. Therefore, we may consider each block
separately. Hence we first assume that A is irreducible.

Put

(4.5) ΞF = {φ = (φ2, -., φ n ) : Σ φf. - 0} .
ι = l

Obviously, for φ in Rn, it holds that

(4.6) | | φ £ M | | ^ | | φ | | t^O.

For A>0, let ehA={aitj{h)\ c(h)= min α f f i(A)>0. If φ belongs to £F, then

(4.7)
y - i i - i

ΣΣ

ίl±
y - i i - i

These two results implies that there exists K>0 and p > 0 satisfying

(4.8) | | φ ^ | | ^ χ c-
M | |φ| | φe£F.

We can write equation (3.3) as

j-fφ(t) = φ(t)A+φ(t)(A(t)-A),

or equivalently

(4.9) φ(t)-φ(O)e*A = Γφ(ί) (^(ί)-i4)β<'- >̂ Λ .

Jo

Taking norms both sides of (4.9),

\\φ(t)-φ(0)etA\\^ Γ||φ(ί) ( ^ ( ί ) - i ί ) | | ^ - ^ - >Λ - 0 .
Jo

This implies

(4.10) lim φ{t) = lim φ(0)etA = φ(0)
(u\,

In the general case, put Ip be the set <AXH h ^ - i + 1 , îH h^>. Then
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lim etAP = -^—q-l

Therefore, for * in /^ and j in / ,̂ we get

0 p Φ ? ,

(4.11)

4,2. Case(A.2)

Let A=(aitj) be the matrix defined by (4.1). By the general theory of
Markov chain, there always exists

(4.12) Π

Rewrite (4.9),

(4.13) φ(t) = φ(0)etA+ \'φ(s) (A(s)-A)Uds
JO

+ \'φ(s) (A(s)-A) (e«-^_ U)ds .
Jo

Therefore, by the Assumption (A.2)

\\φ(t)-φ(O)e'A-\'φ(s)(A(s)-A)πds\\
Jo

φW(A(s)-A)\\.\\^-^-U\\ds - 0

n

where, for A=(aitj)> \\A\\ means max ( 2 \aitj|).
ie<i,»> j = i

ί oo J CXJ

\\u(ή—rnu°\\dt<oo, the integral 1 φ(s) (A(s)—A)J\ds converges.
o Jo

Therefore,
lim φ(t) = φ(0)Π+ ( φ W (A(s)-A)Uds .
/->°° Jo

Since we can write φ(t)—φ(O)Pu(t°\ this means that

lim P1 O ) = (c^°\ij))

exists. Hence, we obtain

(4.14) lim P0>i(Xt =j) = c«v\i,j) /,;€=<1, ^> .

4.3. Case (A.3)

UίQt0+2τ = Ut^+τUt6+Ttt0+zr = (UtOttQ+T)
2 implies that
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(4.15) E W . r = (£WΓ)«
Let

(4.16) UtoJo,τ = (c, y),

then

Σc, ,, = i .
n

Σ u(f i\r — u(t A(4.17)

are satisfied. Changing, if necessary, the order of rows and columns of A(t0),
we may write

(4.18) A(to)=

where ^4I; •••, A, are irreducible. By the continuity of A(t) it follows that there
exists p>0, μ > 0 and f > 0 such that

(pA(to)—μI

(4.19) 4(*):>Γ

This implies that C//e./o+r^efM<O)-'lT. Therefore, Uhtl0+τ=\ ^:Ό , where

Uly •••, f// are positive matrices. From this we shall show that UtQtto+τ must be
of the form

(4.20) C/f0,(0+T = ^ 0 - . ^ j .

We prove the case 1=2, since the general case follows by induction. We write

Utθιto+τ=(Ul>°\ If C/ΦO, the Perron-Frobenius root p2 of U2 is strictly
\ (J y (J 2

smaller than 1. This contradicts (4.17).
We first consider the case that UtQto+τ is a single positive matrix. (4.15)

and (4.17) implies

M*o)\ 1
(4.21) limZ7,β,/β+M.= i — .

\β(/b)/Σ«(0,A)-

Therefore, using p«('o+Λr)=p«(ίo) a n d u(to)PuW=u(to+t), we have

l i m PM(°> lim PU^TT pu(to+hT)
Λ-><" " Λ->°» " *
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In general, let Up be a kp X ̂  square matrix for each p G<1, /> and 2 ^ = Λ and

/, be the set < ^ 1 + - + ^ _ 1 + 1 , kx-\ \-kp>. Then

lim(C/,)* =

and therefore

(4.22) lim

for ί in Ip andy

= ; ) =

in

0

u(t,j)
p = ?

5. The basic theorem on the asymptotic behavior of the solution
u(i, ί, x) of equation (I)

Hereafter we shall be concerned with equation (I) under the condition

(1.1) and (1.2) and always assume that either of the following condition is satis-

fied.

(La) dx+-+dn>Q9

(I.b) d1=-"=dn=0 and there exists / andy such that v{ φ Vj.

If neither (La) nor (I.b) is satisfied, equation (I) is reduced to equation (II) by

a simple change of variables.

Let ω>0 be fixed, S1=Rι/ωZ, where Z denotes the set of all integers, and

E=(ly n^X jS .̂Let μ be the counting measure on <̂ 1, rι}:

where Sj(A) is the delta measure
We use the notation C(E) to denote the set of all bounded continuous

functions on E and the norm | |φ| |o o=max | φ(i, x) |, then C(E) becomes a Banach

space. As was pointed out in section 1, if the initial condition u(0, i,x) is a func-

tion of C(E), then the solution u(t,t,x) of equation (I) is in C(E) for every t^O.

Hence, we may consider equation (I) as an evolution equation in C(E).

For each i in <̂ 1, w)>, let {Tι

t(x, dy)) be the Markovian semigroup, whose
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62 d
generator is given b y the differential operator d{—-+v4— .

OX OX

Then we can transform equation (I) into the integral equation:

(I)' u(t, i, x) = T<tu(0, i, x)+ [TtLs( Σ a/,ku(s, j , )u(s, k, •)) (x)ds .
Jo j,k=i

If u(0,i,x) is twice continuously differentiable with respect to x, then the solution
u(t,t,x) of equation (I)' is also such a function (see Conner [1]), and therefore
satisfies equation (I). For this reason, we say that u(t,i,x) is the solution of
equation (I) whenever u(t,i,x) is the solution of the integral equation (I)'.

As we shall see below, we investigate a transformed function v(t,i,x) rather
than u(tyi3x). The same situation for u(t,i,x) is valid for the differential equation
and the corresponding integral equation satisfied by v(t,i,x).

If φ(x) is a periodic function on R1 with period ω, then
(5.1) T\φ(x )= Tiφψ+mω) tn<=Z

is satisfied. Therefore, we may consider that the semigroup acts on the function
defined on S1.

Assumption 5.1. There exists u°=(uι, •••, ul) in Ω such that w?>0, •••,

Un>0 and T] βΛw°w°=0 are satisfied for i in <1, n). Let b{ , be

^(a/k+akMl, and B be the matrix (4, .•), then B is a nonnegative offdia-
k = i

gonal irreducible matrix.

REMARK. Assumption 5.1 (except the part of the irreducibility of B) was
introduced by Jenks [3] to prove the asymptotic stability of the solution of
equation (II).

Let 1 = — I u(0yi,x)μ(dί)dx and u(tj,x)^=uθi+v(t}i,x)uo

iy then equation (I)
ω J E

is transformed into the following equation:

(5.2) ^v{t, i, x) = d^v{t, i, *)+»ί|^(ί, i, *)+ίl Wit,], x)

n

+llbftkv(t,j, x)v(t, k, x)

where c> >; =(Mf)"1Al tyW? and bj\k={υ!ϊ)~ιaj\ky!]ul.
We first consider the linearized equation for v(t,i,x),

r) Q2 3 i.

(5.3) -~v(ty i, x) = di—-v(t, i, xS+v—vti, i, # ) + Σ ̂  v(t>j> χ)

C=(Cij) is irreducible and satisfies
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Γίy ^ 0 if i

(5.4)

We choose ^ > 0 large enough to satisfy q-{-citi^0 for all i in <l,n>. For this qy

(5.3) is equivalent to

( 5 3 ) ' ^ f c *> *) = di-^v(t> l> x)+Vi-£-v(t> h x)—at ox2 ox

where pitj=ci>j+qSitj.
Let {Tt} be the semigroup generated by equation (5.3)' i.e., (Ttv) (i, x)=

\ Tt(i, x: dj, dy)v(j,y)y where Tt(t, x: dj, dy) is the solution of the equation
J E

(5.5) Tt{i, x: dj, dy) = e""T\{x, dy)Si(dj)

+ ί'&*-«<'-•> Σ p j T,L.{x, dz)Ts(k, z: dj, dy).
JO k — i J S

Then the solution v(t,i,x) of (5.3)' is given by

(5.6) »(i,i,*) = ( 7 X

Lemma 5.1. If Assumption 5.1 is satisfied, then there exists £0>0 and
c>0 such that

(5.7) Tt0(i,x:dj,dy)^cμ(dj)dy

holds for any (i, x) in E.

Proof, (i) Case (La).
Choose /0 satisfying rf/oΦθ, then for each t>0> there exists c(t)>0 such that

Tt(l0,x:l0,dy)^c(t)dy

holds. F o r any ί and j , we can choose kl9 •••, km_λ to satisfy

Then, if we choose t and u large enough,

(5.8) Tt+t+u(i,x:j,A)

J T s ( / 0 , ar: /0, ̂ )T M (/ 0 , W: , A)
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^T,(i, x: l0, S^sΛ dwTu(l0, w:j, A)
J s

^κ\ dy
J A

holds for some positive constant K.
(ii) Case (I.b).
Let d~Q for every i and let vio4

ivjo for some tQΦjΌ. Using (5.5), we shall
prove for any m^l,

(5.9) Tt(i,x:dj,dy)

S(x+vi(t-s1)+vki(s1-s2)-\ hϋ^fo-i—**)+ϋ*M*«, dy).

Here and after we denote, by δx(dy) or δ(^ dy)y the delta measure at x. At
first by (5.5), Tt(t,x:dj,dy)^e-qt8x+ΰ.t(dy)δi(dj). Substitute this into (5.5),

Tt(i,x:dj,dy)

±pΛ 8x+ViU_sidz)e-«%+VkS(dy)δk(dj)
k~l J S
±p

θ k~l J S

Σ

and the case m=ί is proved. We assume that (5.8) has been shown for 1,2, •• ,m
and prove the case m-\-\. By (5.5),

Tt(i,x: dj, <fy)>\'dse-«'->i:pUk\ f^^idz^k, z: dj, dy)
JO k — l J S

'V« Λ1 Λ . Σ PklM

+vkjm9 dy)

=the right hand side of (5.9) for m-\-l.

Therefore, for a nonnegative function φ on E,

(5.9)' \τt{i,x:dj,dy)φ{j,y)

kv... ,km = ι

is satisfied. By Assumption 5.1, for any i and j \ we can find m and kly •• ,^OT_1

such that
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Let ro=max{r: VjΦvk}. Such r0 exists since vioφvjo. We now calculate
the integral

(5.10) (
Jo Jo

Set θ=x+vit-\-(vki—vi)s1-] \-(vkrQ—vkr0-i)sr0 By a simple calculation, we
have

(5.10) =

Jo (m—i—ro)\

Jo (m-l-ro)!
Φα"+JV-^o)-»

If ί r n > , there exists ϋΓ>0 such that for every θ,

(5.10) }t

From this, we can easily show that Tt(i,x:j,dy)}^Ldy for sufficiently large t
and every /j' and x.

Next we set

6 = {φ(i, x): φ£ΞC(E)y [ φ(i, x)uϊμ(di)dx = 0} ,
JE

then <? is a Banach space under the norm || IU.

Lemma 5.2. Tf maps 6 into <S.

Proof. For any function φ on S1, it is satisfied that

(5.11) \ dx\ T}(x, dy)φ(y) = ί dxφ(x) ie<l, n> .
Js Js1 Js1

From (5.4), for any φ in <S, we obtain

(5.12) ι — l J S

= *"" Σ u^sdx\siTi(x, dy)φ{i,y)

uϊiCij+qS^^TUx, dz)\sTs(j,z:dk,dy)φ{k,y)

Therefore, ^ ( ί ) = I Ttφ(t, x)u\μ{dϊ)dx satisfies
JE
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ψ(t) = qi'e-w-'Wsϊds.
Jo

This means ψ(t)=0.

Lemma 5.3. There exist N>0 and p>0 such that for any φ in 6

(5.13) \\Ttφ\U<£Ne-»\\φ\\».

Proof. By Lemma 5.1, for any φ in <?,

\\i±(Tt0(iίx:jίdy)-cu°jdy)φ(jίy)\
J S j—i

That is | |Γ ( o φ|U^| |ψ|U(l-cω). Iteration implies \\Tmloφ\U^\\φ\U(ί — cω)m.
Combining this and ||7V/>IU^Hφll» for any φ in C(E), we obtain the result.

We now turn to the nonlinear equation (5.2). We define a mapping B:
C{E)-*C{E) by

(5.14) B[v] (i, x) = ±b/,kv(J, x)v{k, x),

then it is easy to see that B[v] belongs to 6 and there exists K>0 such that

(5.15) | | 5 [ β ] | L ^ : | M | L .

We can transform equation (5.2) into the following integral equation:

(5.16) v{t, i, x) = ϊ χ θ , i, x)+\'ds \ T£i, x: dj, dy)B[v(t-s, •)] <j,y).
JO JE

Taking norms both sides of (5.16), we get

(5.17)

If 11̂ (0)||oo < then (5.16) has a global solution and
N2K

(5.18) \\v(t)\\^

is satisfied. Summing up the above results, we obtain

Theorem 5.1. Under the Assumption 5.1, let N>0, p>0 and K>0 be
the constants defined in Lemma 5.3 and (5.15) respectively. Suppose that w(0, i, x) ^

u(0,i,x)μ(di)dx=:l and sup (\u(°>i>x)-uϊ\\<_P_t τ h m equation

«,*)6«\ u°i I N2K
(I) has a global solution u(tyi,x) in C(E) tending to u\ exponentially fast.
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1 f
REMARK. Let mbea positive constant. If m=—\ u(0, i, x)μ(di)dx, then

ω JE

we transform u(t}i}x)=mu{i-\-v(t}iix)uOiJ and we get similar results as in Lemma

5.1^Lemma 5.3. Therefore, if \\u(Qiίyx)—mu]\\o0 is sufficiently small, then

equation (I) has a global solution u{t,iyx) and u(tyi,x) converges to mu] exponen-

tially fast.

6. Further results on the asymptotic behavior of the solution

u(ty ί, JC) of equation (I)

In this section, we assume the following condition as well as Assumption 5.1.

Assumption 6.1. There exists c>0 such that for every (ηu •••,??„) in [0, l]w,

(6.1) 0 ^ Σ bjUvjVk+cy^c i e < l , rί> ,

is satisfied, where bj\k=(uT)~ιaj

i

tkv!)jul as before.

REMARK. BroadwelΓs model (see [6]) does not satisfy Assumption 5.1

and Assumption 6.1.

By the following remarks, it is seen that this condition assures the boun-

dedness of solutions of equation (I).

If Assumption 6.1 is satisfied, then for anyM>0 and (ηly ~'yvn)
 m [0> f̂Γ>

(6.iy 0 ^ Σ bjUvjVk+cMyacM2 ie<l, n>

is satisfied. Conversely, if (6.1/ is valid for some M > 0 and any (rjly "-,vn)
 m

[0,M]n, then Assumption 6.1 is satisfied.

Assumption 6.1 is not easy to be verified. However one can show that

Assumption 6.1 holds if

(6.2) Σ bjU+biij^O for every i

In fact let ait~^bj\k and c/>k=b/tk—ai}jSi)kJ then for (vi,—>Vn)
 m [°> !]*> w e

have

p = Σ (Σ c/^Vj+Έ (Έb

n

Since 2 c ; ^ = 0 and Cjik^0 if iΦj and ίΦA, the first term on the right is

majorized by c(\—ηt), where c^— Σ θ!ί =0 f°r ev^ry i. By virtue of (6.2), it

follows that second term on the right is also majorized by c{\—77^), where

< ^ - ( Σ biU+bi'j-a^O for every i.
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Lemma 6.1. Suppose that Assumption 6.1 is satisfied, then the equation

(6.3) J M M » = di^-v(t)i>x)+vi^-v(tj)x)+ Σ b/tkv(t,j,x)Ό(t,k,x)
Ot OX2 OX Λ* = i

is a confinement system for [0,M]w for every M > 0 . Conversely, if equation (6.3)
is a confinement system for [0,M]n for some M > 0 , then Assumption 6.1 is satisfied.

Equation (6.3) is said to be a confinement system for [0,M]M if for any initial
value 0^v(0fi,x)^M(l^i^n)y we have 0<iv(t,i,x)^M(l^i^n) for every

Proof. If Assumption 6.1 is satisfied, rewrite (6.3) as

9 92 . 9
dt % dx2 ' ' %dx

+ (Έb/,k<tJJx)v(tykix)+cMv(tίi>x))

and transform (6.3/ into the integral equation

(6.3)" ι>(/,f» = e-rMtT\v{O,i,x)

+ \'\ e-cM(t-s)TtLs(x,dy)(il b/,kv(s,j,y)v(s,k>y)+cMv(s,i,y))ds .
JoJs1 y,*=i

If we solve (6.3)" in the iteration scheme, it follows that equation (6.3) is a
confinement system for [0,M]n for every M > 0 .

Conversely, suppose that equation (6.3) is a confinement system for [0,M]n

for some M>0. Let

n

fi(φl> •"> Φn) ~ . Σ b/,kφjφk

for φ=(φi, * ,φw) in [0,M]n. It is obvious that /f (φi, • *,φM)^0 if φ t =0. On
the other hand, we have

(6.4) / t(φ!, -., φM)^0 when φ, = M ,

since equation (6.3) is a confinement system. Then expand /, at φ~M>

From (6.4), there exists K>0 such that

It then follows that there exists K>0 satisfying
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-Kφt£ Σ bjUφjφ^KiM-φi

which implies Assumption 6.1.

Theorem 6.1. Suppose that Assumption 5.1 andβ.l are satisfied. Ifu(0,i,x)

is in C(E) and

(6.5) ( 0 »

then the solution u(t,i,x) of equation (I) converges to mu\ exponentially fast, where

m=—I u(0,i,x)μ(di)dx
ω J E

Proof. L e t v(tyiyx) =U^ >t>x\ then equat ion (I) becomes

9 92 3 *
C6.6) —v(t}iy x) = df—Ό(t,iy x)+Vi—-v{ty i,x)+Σl bjUv(tj, x)v(t, k, x),

at ox1 ox j,k=i

and the assumption becomes min v(0>i,x)=8>0, and it suffices to show that

v(tyi)x) converges to m exponentially fast,

(i) m(t)— min v(t,i,x) converges to m.
C ί, * D G W

Let w(t,i,x)=v(t,i,x)—B, then (6.6) becomes

(6.7) ^-w(t,i,x) = Λ(ί ) i,*)+o i |«(i,i,*)+δΣ3 citjw(t,j,x)
at oxr ox y=i

+ ίlbi

iMt,j,x)w{t,k>x).
j,k = ι

Set M= max ?;(0,^Λ;). By the remark following Assumption 6.1, we have

-—w(t,i,x)^di—-w(t,i,x)+vi—w(t>i,x)+δ Σ cUjw(t,j,x)—cMw{t,i,x).
ot ox ox y=i

If -sr(̂  /, Λ:) is the solution of the euqation

then w(tyiyx)^e~cMtz(tyiyx)y especially v(tyi,x)^δ and we can see that m(t) is an

increasing function in t. By Lemma 5.1, there exists to>O and k>0 satisfying
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Therefore, there exists p > 0 such that

This implies

By the iteration for any k^l,

m-m(kto)^(l-p)k(m-m(O)).

This means that m(t) converges to m exponentially fast,
(ii) M(t)= max v(t3 i, x) converges to m.

By step (i), we may assume v(t, i, x)^8>0 for any t, i and x. By Lemma
6.1, M(t) is a decreasing function. By Lemma 5.1, there exists i x >0 and £>0
such that

Tt (i, x: j , dy)^icdy for all i, j and x.

We rewrite (6.7),

(6.7)' !«<*, ί, x) = d^wit, i9 x)+vi^w(tί i, x)

+ Σ ί u ^ λ x)-c(M(nt1)-S)w(ty f, Λ)

for f^n*!. For ί = ( « + l ) ί l J (6.7)' becomes

(6.7)" ^(n+lJίLί,*)
= c<< l'W- |"ιΓ( l«ι(ιιί1, ί, *)

+I)'1Λβ-w«'.)-«)(( +»Ί- )( Tf.+o^.Xί, *: dj, dy)

JE

j ιUsing Assumption 6.1 and w(s,jJy)=v(sJ,y)—S^M(nt1)—8 for nt^s, we have

Σ b/Ms,j,yMs, k>y)+c(M(nt1)-δ)^c(M(nt1)-8γ.

Therefore, there exists l > « > 0 , independent of w, such that

- α ) {M(ntx)-h),
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that is to say

M(oo)=rlim M(nt1) satisfies M(o°)<^am-}- (1—<z)M(°°), ί,e,y m=M(^).

(iii) Combining step (i) and step (ii) and the remark following to Theorem
5.1, we obtain the result.

We next show that condition (6.5) of Theorem 6.1 is weakened under some
additional assumption. Following Jenks [3], the system {a/k} is said to be
irreducible, if for any partition of <(1, n̂> into / and/, there always exists some /
in / and (j, k) in JxJ satisfying #/'*

Lemma 6.2. Suppose that either (a) or (b) is satisfied:
(a) Assumption 6.1 and the following condition are satisfied:
There exists c>0 and a nonnegative, irreducible matrix (et j) such that

(6.8) Σ bjUvjVt+cη^f* eijV

2j ί e < l , ny

is satisfied for all 0^ηly •••, vn^l-
(b) The system {a/tk\ is irreducible, andd^O, - ydn>0y and the Assumption

6.1 is satisfied.
n

Then for any nonnegative initial value u(0, i, x) in C(E) satisfying 2 u(0, ί, x)
t = l

^ 0 , there exists ̂ > 0 such that

(6.9) min u(tui,x)>0.

Proof. We first prove case (b). Fix ί 2 >0 and put / = { j e < l , w>:
min u(tlyj, x)>0}. If/ is a proper subset of <l,w>, then let / be the set <1, n>

—/. Define v(ty i, χ)=u{t>t>x> as before. Noting that the system {δ/*} is also

irreducible, choose i0 in / and (jo,ko) in / x / such that o/0?^>0. Since equa-
tion (6.6) is a confinement system, there exists M>0 such that

(6.10) Σ b)%v{t,j, x)v(t, k, x)+cMv(t, iQ, x)

One rewrite (6.6) in the form
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+ ( Σ bj'MtJ, x)v{t, K x)+cMv(t, iOί x)) .
Cj\*WJ0,fc0)

As before, this equation is transformed into the integral equation

Jo cy,*
bfav(s,j, -)υ(s,k3 .)+cMv(s,i0, .)) (x)ds .Σ

,*)=t:cyo,*o]

From (6.10), it follows that the right side is not less than

ti<Ls(v(s,jOy .)v{s, K •)) (x)ds>0

which is a contradiction. This means y = < l , n).

Next we proceed to case (a). For the moment we further assume that Org
v(0,i,x)f^l. Take a probability matrix (eitj) i.e.., Σ ^ , ; — 1 s u c n t n a t &i,j—0

iff β ί f J = 0 and a small β > 0 such that eitj^keitj for all (/, j) in <1, w>X<(l, //>.

Then by (6.6), we have

— v(t, i, x) = di—~v(t, ί, x)+Vi~v(t, iy x)—cv(t, iy x)
ot ox1 ox

+( Σ bj\kυ(t, j , x)v(t, k, x)+cv(t, i, x))

^ddi — v{t9 i,
ox2

32

i —

~v(t, i, x)-cv(t, iy x)
oxox

9
i~-v(t, i, x)—cυ{t, i, x)

+kΣiιeiιjV(t,j,xγ.

Let (Xt) be the branching process corresponding to the equation

9 92 9
—w[t9 i, x) = di——w(t, i, x)+Vi — w{t, ίy x)—cw(t, i, x)
ot ox2 ox

(6.11) •

>w(0, i, x) = v(0, i, x),
CO

with state space S= U En (where En is the symmetric direct product of E for
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n>0, and E° is a single point {3}), and we write Pu,x) ίor its measure starting

at (i, x) in E> and E(itX) for its expectation. Function φ on E with Of^φ(i, x)^l

can be extended on S by

Φ((h> ^i)> —, (iky
 xk)) = Φ(h> Xi)~ φ(h> Xk)

φ(d) = 1 .

It is known that

w(t, i, x) = EUtX)[ύ(0, Xt)] .

Since v(t, i, x)^w(t, i, x), it is sufficient to show w(tu i, x)>0 for some ^

Let {Tt(t, x: d(jlf yi) "d(jkJ yk))} be the branching semigroup of (Xt), then

(ό.liy Ttφ{ί, x) = e-ctTiφ(i, x)+kpi ei^
te-c^TtLs[Tsφ(.)f(j} x)ds .

We first consider the case (I.b) in the beginning of section 5. In general for
^l, we have

(6.12) Tt(i, x: d{j, yo)-d(j, Λ--0

Π Γ"

Π B(klt x+υi(t-s)+υkm(s-sh

nr_ι)+-+vk2(s^-sh

iη+vl!is^: d(j, yhm...hi)),

where each km is an arbitrary integer in <1, n) and yhm-h1 denotes yhy-i+...+hi.
In fact Tt(i, x: d(j, yo) ~d(j, y2

m-\)) equals the summation of the right side of
(6.12) over all kmi •••, kλ in <1, rι).
Therefore, there exists cm(t)>Q for each t>0 and m>ί such that

(6.12)' Ttύ(0, i, x^cjtfike^js Π
JO hm=

fl ΓV

Fix a^ such that v(0, j , x)^0 and suppose that viQ^FVJQ. For any /, we can

choose k2, k3, •••, ^m_! such that
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since (eitj) is irreducible. Similar consideration as in the proof of Lemma 5.1
implies that, when kx=j9 the right side of (6.12) is strictly positive for t large
enough. This proves that w(ΐlf i, x)>0 for some tx which does not depend on
i and x.

Next we consider the case (I.a) in the beginning of section 5. Suppose
that diQ>0. As before, fix a j such that ^(0,7, x ) ΐ θ . In general for m^tl,
it follows from the preceding property that

(6.13) W,x:dU,yo)-dU.yf-i))

VTtL.ix, dy)dsheiu

' t - i" >)&»-,T",z,"m- ,{y, dyhm)kekmk,m_ 1

Π [
hn — 0 J 0

Π Tί»2(yhm...h2, dyhm...hi),
hl~°

where yhm...hl denotes ykj^m-i+mm.+hi.
Therefore, there exists cm(t)>0 for each t>0 and m ^ l , such that

(6.14) Ttυ(09 i, x)^cjt) VτtL,{x, dy)dskei,km
Jo

nJdsl^Z^y, dyjkekm,km_r-

\Sfd^T^2(yhm...h3, dyhm...h2)kek2JTii2v(O, j, yhm...h2)Y

W e can choose k2i k3> •••, km_1 such that

We shall show that TtQv(0, i0> x)>0 for large enough t09 by the induction on m.
It is easy to see this in the case m = l . We assume that we have shown 1,2, •••,
m— 1 and prove the case zrc. If some dkj or ^ is positive, then this is reduced
to the case that we assumed to have shown. Therefore, we may assume dk2=
-.-=dkm=0. Inequality (6.14) becomes

Ttv(Oy i0, x)^cm(

π \ '
A2=0 Jo
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If vk=—=vkm, then vψ,j,y+vkm(s-s*Ίx)-\ Iv/^^v^^^+v^f, so that

T,v(0, i0, x)^cm(t)^Tts(x, dy)dsei0,ίlmv(0)j,y+vjsγ'n

Π (ώ-*=M,..*..1 Π

If (̂ ;., vkl, •••, ^ J contains at least two different numbers, then this is re-

duced to the case (I.b) which we have proved previously.

Set / = { / £ < 1, w>: inf v(2t0, j , x)>0}. If / is a proper subset of <1, τz>,

then let / be the set <1, w>—/. Since (^ y) is irreducible, there exists / in / and

J such that eij>0. Then by equation (6. II)7, we have

for each x in S1, which is a contradiction. Therefore / = < 1 , w> and we have

proved the lemma in case 05^(0, z, x ) ^ l .

We next delete the restriction 0^£>(0, z, x ) ^ l . If 05gτ;(0, z, x)5jM, set

£>(£, i, ac) = - ' j—^, then ί)(ί, /, x) satisfies the equation

— l̂ (ί, ί, x) = di-^Ό(t, i, *)+»,•—&(ί, ί, Λ)
σί σ^ dx

+MJ]b/>kΰ(t,j, x)ϋ(t, k, x).

It follows that bj\k=Mbj\k satisfies Assumption 6.2 with c and bit. replaced by
Me and Mbitj. By the preceding result, it follows that inf v(tly i, x ) > 0 for some

tv Hence we have inf v(tu i, x)>0. Thus we have shown Lemma 6.2.

Summing up Theorem 6.1 and Lemma 6.2, we obtain

Theorem 6.2. Suppose that either (a) or (b) in Lemma 6.2 is satisfied, then

for any nonnegatίve w(0, i, x) in C(E), the solution u(t, i, x) of equation (I) converges

to mu°i exponentially fast, where m=—\ u(0, i, x)μ(di)dx.
co JE

7. Markov processes corresponding to equation (I)

In section 7 and section 8, condition (1.3) is always assumed. In this

section, we also assume that equation (I) has a continuous nonnegative solution

u(t,i,x). Fix this u(t, i, x) and consider the following equation for s^t
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( 7 - 1 ) ' + Σ fiUφ(t, j , dx)u(t, k, x),

φ(s, di, dx) is a bounded (signed) measure on E.

Here the precise meaning of (7.1) shoud be understood as

(7-1)' | J / ( < . *<*»)/(>.*)

Φ(t, dj, dx)f<a/,ku{t, k, x)f(i, x),

forall/eΞC°°(£).

For each Γ < ° o , let qτ= max { Σ |tf, ;*tt(f, k, x)\}. We denote {T{"(a;, dy)}
C * 3 e B A = 1

to be the Markovian semigroup whose generator is the differential operator
Q2 g

di —v{—. Then we can transform equation (7.1) into the integral equation
dx2 dx

(7.2) φ(t, ί, dx) - j s iφ(ί, i,

^^-^rf φ(r, dj9 dy) ( Σ αyί^(r, k,
JE k=lE

Let φ(t)=φ(t, E). Then from (7.2),

i.e., φ(t)=φ(s), and therefore the solution preserves the total measure. If
φ(s, di, dx) is a nonnegative measure, then the solution φ(t3 di, dx) of (7.2) is also
a nonnegative measure. If we solve (7.2) in the iteration scheme, then we get
a minimal solution φ(t,di,dx). Because of the preservation of total measure,
(7.1) has a unique solution. Since (7.2) is a linear equation in φ, (7.2) {i.e.,
(7.1)) always has a unique solution. We denote {Psj(i, x: dj, dy)}s^t the solu-
tion of (7.1) when φ(s, dj, dy)=8(itX)(dj, dy).

Theorem 7.1. {Ps,t(h x : dj, dy)}sgt has the following properties:

(7.3) \ PSJ(i, x: dk, dz)PLu{k, * : dj, dy) = Ps>tι(i, x: dj, dy)
J E

S<t<U.
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(7.4) Ps,t{i> x : dj, dy) is a nonnegative measure,

(7.5) P,,t(i, x:E)=l.

Let φ{t, di, dx) be the solution of (7.1), then

(7.6) ( φ(s, di, dx)Ps,t(h x dj, dy) = φ(t, dj, dy).
JE

Let ψ(t, i, x) be the solution of equation

~Ψ(t, i, x) = di—-Λlr{ty i, x) + Vi-~Λlr(t} ί, x)
at ox2 ox

+Έa/,kψ(tJ,x)u(tfkJx),

ψ{s, i, x) = ψ(ί, x),

and let φ(t, di, dx) be the solution of (7.1) with φ(s, di, dx)=ΛJr(i, x)μ(dt)dx> then

it follows that

(7.8) φ(t, di, dx) = ψ(t, i, x)μ(di)dx ,

especially, from (7.6) and (7.7),

(7.9) \ u(s, i, x)μ(di)dxPst(i, x: dj, dy) = u(t, j , y)μ(dj)dy .
JE

Proof. It is sufficient to show our theorem for each T < o o and O^s^t

^u^T. (7.3) and (7.6) follow from the uniqueness of solution of equation (7.1).

If we solve (7.2) in the iteration scheme, then (7.4) is clear. (7.5) follows from

the preservation of total measure. Next we prove (7.8). Let φ(t, di, dx)=

λjr(t, i, x)μ(di)dxy then for any v(i, x) in C°°(E),

^βt, di, dx)v(i, x)

= \φ(t, di, dx) (d~-^£)<i *)

+ ( φ{t, dj, dx) Σ a/,ku(t, k, x)v(i, x)
JE i,k = l

and φ(s,di,dx)=yjr(i,x)μ(di)dx. By the uniqueness of solution of (7.1), φ(t,di,dx)

=ψ(t, i, x)μ{di)dx.

By Theorem 7.1, we can construct a temporally inhomogeneous Markov

process (Xt) with transition probability (PS)t) and the state space E. Let

Ps,(i,x)(') denote the measure of the process starting at (i, x) at time s.
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8. Asymptotic behavior of the process (Xt) associated with equa-
tion (I)

L e t u(t, x) be a twice continuously differentiable and strictly positive func-

tion, satisfying

3 2 3 n

di-—u(i, x)+vi7-u(i, x)+ Σ a/ιku(j, x)u(k, x) = 0 .
oxr ox j,k=i

Suppose that u(t, t, x) is a nonnegative solution of equation (I) such that

(8.1) lim | | t t ( * ) - κ | U = 0 .

Throughout in this section, we shall fix such u(i, x) and u(ty i, x) and assume
the following condition:

n

Assumption 8.1. Each nonnegative offdiagonalmatrix(Σ a/tku(k,x))y x^. S1,
k = l

is irreducible.
Under these hypothesis, we shall study the asymptotic behavior of the

process (Xt) defined in the preceding section.
Let {St\ be the semigroup generated by the following differential equation,

(8.2) ^ψ(t, i, x) = dt-^ψ(t, i, x)+vi^χψ(t, i, x)

n

Since each matrix (Σa/ίku(ky x)), x^S1, is nonnegative ofϊdiagonal, Stψ^
k = l

for

Put A(t)ψ(i, x) = Σ af.k ΦiJ* xMt> k>x)>
j,k = l

Aψ(i, x) = Σ *j\kMj> x)u(k> x) >

and consider the equation

(8.3) —Ψ(t, i, x) = di—+Vi—+A )yjr{t9 i, x)+(A(t)-A)Λlr(t, i, x),
dt \ ox ox '

or, equivalently

(8.3)7 ψ(t) = Stψ(0)+ [tSt.s(A(s)-A)ψ(s)ds .
Jo

Set

2= {φ A φ(i, χ)μ(dί)dx = 0} cD(E, μ(di)dx) = U ,
JE
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and Hφlli = \ | φ(i, x) \ μ(di)dx, then £F becomes a Banach space under the
JE

norm || |li We can easily show that

are satisfied.

Lemma 8.1. There exists K>0 and p > 0 satisfying

\\Stφ\\ι^Ke~"\\Φ\\i for any φ in ΞF.

Proof. At first, we remark that

] μ(di)dxSt(i, x: dj, dy) = μ(dj)dy

is satisfied. As in the same method as in the proof of Lemma 5.1, we can show
that there exists ^ > 0 and c>0 satisfying

StJi, x: dj, dy)^cμ(dj)dy for any (/, x) in E,

using Assumption 8.1.
By (8.2), we can write

(Sflφ(0)) (i, x) = \{Sh{i, x: dj, dy)-cμ(dj)dy)φ(O,j, y),

and therefore,

±\sl\Shφ(0)){i,x)\dx

^ Σ \sdx\ε(Sh(i, x: dj, dy)-cμ(dj)dy)\φ(O,j,y)\

= (l-cnω)±\i\φ(O,j,y)\dy,
;=i Js1

i.e., WS^φW^ζl—cnoήWφWi. Combining this and ||jSr

/φ||1^llφlli» we get the
result.

Theorem 7.1 implies the ZΛboundedness of the solution ψ{t,i,x) of equa-
tion (8.3). Therefore

0, as

since ||(^(ί)-^)Ψ(ί)lli^ max(Σ |αΛ
l ^ j ^ i , k - l
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I Λ/Γ(0, i} x)μ(di)dx
Let m=j^ , then η(0)=ψ(0)—mu belongs to SF, therefore,

\ u(i, x)μ(di)dx
JE

lim ψ(t) = lim Stψ(0) = lim (Stv(0)+mStu) = mu,
/->«> /-*°° /->oo

in the L1 sense. This means that

(8.4) lim \ ψ(t, iy x)f(i, x)μ{dί)dx = m\ u(i, x)f(i, x)μ(di)dx
t->°° JE JE

holds for any bounded Borel measurable function/(^ x).

Theorem 8.1. Under the Assumption 8.1, it holds that for any Borel set

A in S\ and (i, x) in E}

\ u(j,y)dy
(8.5) lim PoMιX)(Xt^(j, A)) = j* .

\u{j,y)μ{dj)dy

By (7.8) in Theorem 7.1, (8.5) is nothing but (8.4) when the initial measure

has a density with respect to the Lebesgue measure. In the general case, we

fix i0 and x0 arbitrarily and divide

(8.6) POJ(iOy xo:j9 dy) = pOJ(io, xo:j,y)dy+P^](i0} xo:j, dy)

where PO

(.51( :•) is a singular part for the Lebesgue measure.

Let φ(t)=\ po,t(h>Xo -j,y)μ(dj)dy.
J E

Lemma 8.2. φ(t) increases to 1.

Proof. Since \ p0 t(i0, x0: k, z)μ(dk)dzPt>ί+s(k, z: j, dy) is absolutely conti-
JE ' Λ

nuous for the Lebesgue measure it follows that p0tt+s(i0, xo'j,y)μ(dj)dy^\ pOtt
J E

(to, x0: k, z)μ{dk)dzPtJ+s{k> z: dj, dy) and φ(t+s)^φ(t). This means that φ(t)

is an increasing function. We show that there exists so>O, i x > 0 and £>0 such

that

(8.7) Put^{iyx\i3dy)^cdy for any i,j, x and t^sλ.

Since u(i, x) is strictly positive, and by (8.1), there exists $i>0, m > 0 and M<C

such that

M^ sup u(t, ί, x)^ inf u(t, i,x)^m .

ti.xϊGB U.xϊtΞW

Let aji = 1ba/,kni
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<*i,i = Σ <*i\kM,

then for

I t is easy to see that the matrix (ajti) is irreducible. L e t q= max \aiti\, and

j.i> t h e n f o r * ^

-')dr[ Ps,r(i> *: dl, dz) ( Σ aίkυ(r, ky z)+qSltj)TtLr(z, dy)

,Ai,x'. dl, dz)pι,jTtLr{z, dy).

This means that for all i, x,j and ί^r^ί,, it holds that

Pr,,(ί, Λ:J, dy)^Qt.χi, x:j, dy),

where Q,-r{' :•) is the solution of

'e-w-vdr \ Q,-S(i,x: dl, dz)pltjTti,{z, dy).
s J E

The above equation is analogous to (5.5), as that the proof of Lemma 5.1 is
applicable, therefore we can see that there exists c>0 and so>O such that

for all (i, x) in E and j in <1, w>. This proves (8.7).
For t^su we have

Φ(t+s0) = \ Pott+so(h,χo j ,
J E

^ J Po,t(h>, Xo' k> z)μ(dk)dzpu+so(k, z: E)

t ( h o ) \ μ(dj)dy
E JE

= φ(t)+cnω(l-φ(t)).

Let φ(oo)=lim φ(t), then it follows that

— φ(oo)) .
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This means φ(oo)=l) and we have proved Lemma 8.2.
We now turn to the proof of Theorem 8.1. Let / be a measurable function

such that 0^/(f,ff)^l.

$ Po,s(h> χo: k, z)μ(dk)dzPStS+t(k, z: di, dx)=Φ(t, di, dx) is a solution of the equa-
E

tion (7.1) with the initial value pOtS(io, x0: i, x)μ(di)dx. Let Ψ(t, i, x) be the
solution of the equation (7.7) with the initial value PotS(io, x0: i, x). From (7.8)

Φ(t, di, dx)=Ψ(t, i, x)μ(dί)dx. Since I pOfS(io,xo:i,x)μ(dϊ)dx=φ(s)> (8.4) implies
JE

lim ( /(», x)Ψ(t, i, x)μ(di)dx = έίί) f f(iβ X)u{i> X)μ{dί)dx, i.e.,
'*~}E \u{i,x)μ{dΐ)dχiE

J E

(8.8) lim \ pOtS(io, x0: ί, x)PttS+tf(i, x)μ(di)dx
/>°° J E

i, XW, X)μ{di)dx .= ? (
u{i,X)μ{di)dχi

J E

From (8.6), it holds that

Po,t+sf(h, *o) = Po,s(h> Mo'- i, x)Ps,s+tf(h x)μ(d£)dx
J E

+ \ Pfflh, xo di, dx)Ps,s+tf{i, x).
JE

Therefore, combining (8.8) with

J A,,fc xo' i, x)Ps.s+tf(h x)μ(di)dx

^ l Po.t+tf(io, xo)
JE

^ \ Po.s(h> xo' h x)P8lt+tf(i, x)μ(di)dx+ \ P^l(i0> x0: di, dx)
JE JE

= \ Po.,(h> xo' h x)Ps,s+if(h χ)μ(di)dx+1 — φ(s) ,
JEJE

we obtain

Jl

^ lim

ε

P.,

I
) E

i, x)f(i, x)μ(di)dx

i, x)μ(di)dx

s+tJVΌ> xo)= h m *nts+tj{h> xo)

u(i, x)f(i, x)μ(di)dx

u(i, x)μ(di)dx
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From Lemma 8.2,

\ u(iyx)f(iyx)μ(di)dx
lim POltf(io, Xo) = p — ^

u(t, x)μ(di)dx
E

Therefore we have proved Theorem 8.1.

9. The case n=2. Examples and some degenerate cases

In this section, we always assume that d1=d2=0 and vιA
zv2. We do not

assume (1.3) unless otherwise stated.

9.1. Classification of equation (I)

Noting that aj2

k=—a/tk by (1.2), equation (I) becomes

^fc h * ) ^ « ( ^ 1 x ) + a \ u ( t 1 x)2

Jc{aι\2+a2\ι)u(ty 1, x)u(ty2y x)+a2]2u(t, 2y x)2,

^u(t, 2y x) — v2—u(t, 2y x)—aιΛu(ty 1, x)2

at dx

—(ai]2-\-^2]i)u(t, 1, x)u(t, 2y x)—a2t2u(t, 2, x)2.

(E)

We first classify equation (E) into three cases.

Case 1. tfiίiΦO.

Let a=—tfi)i>0, and we define a and /5 as the solution of equation

a+β =-2&±!&9

Baecause «i!iα2!2^0, we may assume that a^Otίβ.

Case 2. α1ί1==β2 |2=0.

Let i = — ( Λ ^ 2 + Λ 2 J ) . If b=0, then equation (£*) becomes a linear difFer-

ential equation, and therefore we omit this case. We may assume έ>0, for the

case when b<0 is reduced to this case by interchanging uλ and u2.

Case 3. a,ιΛ=Q, a2]2Φ0.

This is reduced to case 1 again by interchanging uλ and u2. Therefore

we may only consider equation (E) in two cases.
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(E.I)

~u(t, 1, x) = »,—u(t, I, x)-a(u(t, \, x)-au(t, 2, *)) (u(t, 1, x)
at ox

-βu{t,2,x)),

|-«(ί, 2, x) = o,f-«(ί, 2, x)+a(u(t, 1, x)-au(t, 2, x)) (u(t, 1, *)
σί ox

α ^ 0 ^ / 3 , α > 0 .

(£.2)

-βu(t,2,x)),

|-«(ί, 1, *) = v1£-u(t, 1, *)-*«(<, 1, Λ;)M(ί, 2, x),
ot ox

—u(t, 2, x) = v°u{t, 2, x)+bu{ί, I, x)u(t, 2, x),
ot ox

b>0.

We discuss (EΛ) in four cases separately:

(EΛ. a) a<0<βy

(EΛ.b) a = 0<β,

(EΛ.c) a<0=β,

(EΛ.d) a = 0 = β.

9.2. Behaviors of solutions of equation (E)

Hereafter, we shall assume that the initial values are non trivial, i.e., u(0, i, x)

ΞJΞO, and we denote tn=—1 (w(0, l,x)+u(0,2yx))dx. In cases (£.l.a) and (E.l.b),
ω Js1

let u\=—@— and u°2=-^—. Then it follows that
β+1 β+l

Let bjik=(uθi)~1a/tku
o

ju°k and bijj=^(aj

i

ik+ak

i

>j)ul as in the Assumption 5.1. Then

(h λ__a(β-a){-l,

is a nonnegative ofϊdiagonal irreducible matrix. Therefore Assumption 5.1 is
satisfied.

Έ
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J *" 1 1-b p

__aβ_
7i—Vz) (βVi—aη2) .

T h i s m e a n s f o r c = m a x ( a ^ a \ " ^ α Λ , a n d
V 1+/3 l+β r

0^ Ίlb/.kv;

Therefore Assumption 6.1 is also satisfied. By Lemma 6.1, equation (EΛ) always

has a bounded global solution.

9.2.1. Case (EΛ.B)

We verify condition (a) in Lemma 6.2. Let c^max

then for

Hence the irreducible matrix

— a a
l+β ί+βy l+β

aβ2 l a a β a β 2

l + β ' 1+ S 1+yS J

satisfies condition (6.8). Therefore by Theorem 6.2, the solution (u(t, 1, x),

u(t., 2, x)) converges to ml———, j exponentially fast.

9.2.2. Case (EΛ.b)

In this case, it is not difficult to see that condition (a) of Lemma 6.2 is not

satisfied. However, condition (6.5) of Theorem 6.1 is replaced by
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(9.1)

by the following proposition.

Proposition 9.1. If (9Λ) is satisfied, then there exists ^ and c>0 such

that

inf u(tl3 i, x)^c .

Proof. Let u(t, x)=—u(t, 1, x) and v{t} x)=u(t, 2, x)y then equation (EΛ)
β

becomes

(9.2)

£-u(t, x) = υΛu(t, x)-βa{u(t, x)-v(t} x))u(t, x),
όt ox

| -ϋ(ί , x) = vΛv(t, x)+β2a(u(t, x)-υ(t, x))u(t, x).
όt ox

We may assume that there exists M>0 such that

0^u(t, x), v(t, x)S

Transform equation (9.2) as

(9.2)'

~u(t,x) = v1—u(t)x)—2βaMu(t)x)+βa(v(t)x)—u(t}x)+2M)u(t>x)y
Oΐ OX

£-Ό(t, x) = v°v(tyx)-2β2aMv{t,x)+β2a{u(t,x)-v(t,x)+2M)u(t,x),
ot ox

or equivalently,

u(t, x) = e'2βaMtu(0y x+vj)

[
Jo

ί, X) =

u(sy^

K̂ ^ .

Therefore, u(t, x)^e~2βaMtu(0y x+vj^e-^'δ, and therefore,

v(t, x)^[e~2β2aMv-s)β2au(s, x+v2(t—s))2ds
Jo

Jo

By this proposition, if u(0, 1, #)2^δ>0, then (w(ί, 1, #), w(ί, 2, x)) converges
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to ml——-, ) exponentially fast.
• +β

In the following three paragraphs, general theory in the preceding sections
is not applicable, but we can show directly the asymptotic behavior of solutions.

9.2.3. Case (EΛ.c)

Let u(t,x)= u(t,\,x) and v(t,x)=u(ty2,x), then equation (EΛ) becomes

£-u(t,x) = vΛu(t,x)+aau(t,x) (u(t,x)+υ(t,x)),
(9.3) \ 0 t OX

~v(t,x) = v^v(t,x)+aa2u(t,x) (u(t,x)+v(t,x)),
at ox

or equivalently,

(9.3)'

u{t,x) = ^ ( O ^ + ^ e x p ^ α l {w(i^+^(i—s))+v(s,x+v1(t—s))}ds] ,
Joo

v{t,x) = v(0,x+v2t)+ [laa2u{sJx+v2(t-s)) {u(s,x+v2(i-s))
JO

+v(sJx+v2(t—s))}ds .

Therefore, there exists M> 0 such that

u{ty x)^M for any ί^O,

and equation (9.3) has a global solution.

If «(0, *)ΞΞO, then u(t, x) = 0, v{t, x)=v(0, x+vxt).

Proposition 9.2. Ifu(0, x)^βθ> then there exists N>0 and c>0 such that

(9.4) u(ty x)SNe~ct t^O, XΪΞS1 ,

and therefore, v(t, x) is bounded in t and x.

Proof. By (9.3)r, for any T<oo, there exists c(T)>0 such that

Therefore, for any t ̂  Γ,

v(t, x)^ I aa2u{s} x+v2(t—s))2ds
Jo

^aa2c(T)2 Γι*(0, Λ : + ^ + ( ? ; 1

Jo

and there exists Tλ>0 and rf>0 such that
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Consider (9.3), (u(Tl9 x)> v(Tnx)) as the initial value, we get

327

By (9.3)', for t^T19

u(t, x)^u(0, x+v2t)exp [aa\ v(s, x-\-v2(t—s))ds\
Jo

, x+v2t) exp [aa(t— TJd] .

By (9.3) and (9.4), v(t, x) remains bounded in t and x.
If v2=0, then

lim v(t, x) = v(0, x)+ \ aa2u(s, x) {u(s, X)JΪ-V(S, x)}ds .
/->°° Jo

If*λ>Φ0, then

lim ,x) = v(0yx+v2t)

S oσ

aa2u(s, x+v2(t—s)){u(s, x+v2(t—s))+v(s, x+v2(t—s))}ds .
o

(9.5)

9.2.4. Case (E.l.ά)

Equation (EΛ) becomes

— u(t, 1, x) = vλ~-u(t, 1, x)—au(t, 1, x)2,
uT OX

—u(t, 2, x) = v2-~u{ty 2, x)+au(t, 1, x)2,

or, equivalently,

U , 2, x) = u(0f 2,
1 V ; V

(
o\l+jαfi(O, l

By (9.5)', u(t, 1, x) converges to 0 as ί->°o.
If ?;2φ0, then

lim t, 2, x) = «(0, 2,

If v2=0, then

lim « ( ί, 2, x) = «(0, 2, X)+
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9.2.5. Equation (E.2)

Equation (E.2) is equivalent to

u(t, 1, *) = M(0, 1, x+vrfexp {-b['u{s, 2, *+»,(*-*))&} ,

u(t, 2, x) = «(0, 2, x+v2t)exp{b\ u(s, 1,
Jo

By this expression,

j
( " ) (iί(ί, 2,*)^11(0,2,

It then follows that

«(/, 1, x)^u(0, 1, x+^)exp {-ό('M(0, 2, a+tV+^-ί) ,

(9-7) f<

 J°
u(t, 2, Λ;)^W(0, 2, x+v2t)exρ{b\ u(0y 1, Λ + ^ + ^ i —

Jo

If w(0, 2, x) = 0, then (JE .2)' implies that u{t, 2,x) = 0 and therefore w(^ 1, x)=
u(0, 1, ̂ c+i;^). Similarly if u(0, 1, x) = 0, then u(t, ίyx) = 0f u(ty 2, Λ?)=Z/(0, 2, #

In other case, since «(0, 2, #)$0 and vx^v2y we have

— ί «(0t 2> *+(Pi-P2)*>fr=
ί Jo

->M\(0,2yy)dy>0
(ό Jo

for any x in ίS1. Therefore by (9.7),

u(ty \yx)^

for some c>0 and M > 0 . By the second part of {E.2)'y u(ty 2, x) remains
bounded.
If 02=O, then by (£.2)'

ί oo

w(ί, 1, x)ds} .
o

If ϋ2Φ0, then

lim u(-^-+ty 2yx) = u(0, 2, #+^2£)exp {a\ u(s, 1, Λ;+z;2(ί—s))ds} .

Yoshikawa [13] has obtained more detailed results in this case.

9.3. Limit distributions of the associated Markov processes

We now assume (1.3). For a solution (u(ty 1, x)y u(ΐy 2, x)) of (E)y let (Xt)
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be its associated Markov process defined in section 7.

9.3.1. Cases (E.l.a) and (.EM.b)

In case (Z?.l.a), (u(t, \, x)y u(t> 2, x)) converges to mi ^ , V By

Theorem 8.1,

l+β ω
limPoΛi>x)(XίϊΞ(j>dy)) =
/->oo

dy j=2yi= I ^
l+β ω

In case (Z?.l.b), we assume that the additional hypothesis (9.1) on w(0, l,x)
is satisfied, then the same conclusion is valid.

9.3.2. Cases (.EU.c), (EΛ.d) and equation {E.I)

We have seen in 9.2, that in general

lim u{ty l,x) = 0,

and there exists a bounded nonnegative function v(x) on S1 such that if ^ 2

= 0 ,
then lim u(t, 2, x)—v(x)> and if v2Φθ, then

lim u(-^—\-t, 2,x) = v(xJ

rv2t).
«->- VI v21 /

Therefore we can not apply Theorem 8.1 in these cases. However we can dis-
cuss on the limit distribution of (Xt) under the following additional assumption:

Assumption. There exists a bounded nonnegative function v(x) which
is not identically 0, such that if ^2=0> then

\u(t, 2, x) = v(x),

is a solution of equation (I), and if v2^ΰ, then

\u(t, 2, x) = v(x+v2t),

is a solution of equation (E).
In the present cases, since a2\2=a2

2

ι2=09 a1]2= — aχ%<0, we may only con-
sider the following equation:

(9-8)

Aφ(f, 1, dx) = φ(t, 1, dx) (-v^+a^uit, 2, x)) ,
at \ ox I

^φ(ί, 2, ώ) = φ(t, 2, dx) (-v2±)+φ(t, 1, dx) (a?.2u(t, 2, *)),
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or equivalently,

lφ(t, 1, dx)

φ(t, 2, dx)

= js iφ(O, 2,

sa^jtfO, 1, ^)^:4o" ( > + ( 1 ' 1 -" 2 > r > d r

Since we have assumed that v2

z£vι and ?;(Λ?)ί 0,

lim I v(y-\-(v2—vλs)ds = oo for any y in
/-*°° Jo

and therefore,

lim φ(t, 1, 51) = 0 .

If φ(0, di, dy) = δ^rfOδ^rfy), then by (9.8)'

If φ(0, Jί, <fy) =

φ(t, 2, dy) = j ^

Therefore if v2=0, then

(9.10) lim φ(t, 2, dy) =

and if ^2Φθ> then

(9.11) ]im

, then by (9.8)'

v^S,., .(dy) ,

Summing up (9.9), (9.10) and (9.11), we obtain:

lim PQM,x){Xt^(\, S1)) = 0 i = 1, 2,

If ^ 2 =0, then
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lim P0, ( l > ί)(X (e(2, dy)) = K{x, dy) ,

where K(x, dy) is the kernel defined by the right side of (9.10).
If ?λ>Φθ, then

lim PoΛ2tx)(Xnω/lv2l+ttΞ(2, dy)) = Sx.V2t(dy) O^t^ ω

lim PoΛhx)(Xnω/lV2l+te:(2, dy)) = Kt(x, dy)
1 * 2 I

where Kt(x,dy) is the kernel defined by the right side of (9.11).
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