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1. Introduction

In 1966, Kesten and Stigum [10] obtained necessary and sufficient con-
ditions for the supercritical />-type Galton-Watson process (appropriately
normalized) to converge to a nontrivial limit distribution. These results have
been extended to other models by various authors. The age-dependent Bell-
man-Harris model was considered by Athreya [1] in 1969 for^>=l; more re-
cently, N. Kaplan [8] traeted the general ^>-tyρe version in 1975. The single-
type ( p = l ) Crump and Mode model was considered by R. Doney [5] in 1972.
In this paper, we consider the multi-type version of the Crump and Mode
model. As in all of the above, the results depend upon the finiteness of
E[Y|logY|] for suitably defined random variables Y. Our proof relies heavily
on the p=l results and has the same flavor as a paper of Athreya's [2].

We shall first describe the model on an intuitive basis. Let i ζ (*)=( K*iW>
•••, Kip(t)), 1 <t<p, be arbitrary vector-valued counting processes. Kij(t)
counts the potential number of offspring of the jth type born to an individual of
the ith type during the time interval [0, t]. We arbitrarily stop the counting
process K{ at a random time Liy the lifetime of an individual of the ith type.
Set

j
Λ } U(L) if t>U

and Gi(t)=Pr{Li<t}. Thus iVf counts the actual number of offspring born
to an individual of type i during its lifetime and Gt is its lifetime distribution.
Each newborn object behaves similarly and all particles behave independently
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of all other particles. Using these ingredients, one can construct a stochastic

population process (Ω, P, X(t)) having the above characteristics (cf. Mode [12]).

The process X(t)=(X1(t), - >,Xp(ή) not only keeps track of the number and

type, but also age. Thus for each t and ω, either X{{ty ω)=0 (no particles of

type i at time t), +°o (an infinite number of particles of type i at time t)y or for

some n>ίy Xi(t, ω)e[0, oo)*. In the latter case, if Xi(t, ω)=(xiy •••, xn)y then

there are n objects of the ίth type alive at time t and of ages x19 ,xn respectively.

If / and g are real-valued functions (defined on [0, <χ>)) satisfying | f\ < 1

and g nonnegative or bounded, we extend them to {0} \j U«=i[0, oo)n\j {+00}

by

1 if x = 0

/(*) = UUf(χi) if x = (*„ - , «»)e[0, 00)-

,0 ifx=+oo

and

(x) =
if x = 0 or + oo

If /=(/ i , •",//,) and g=(giy "Ίgp) are vectors of such functions, then we set

and

Also let e{ be the /)-vector (δ t l, •••, Sip) where δt y is the Kronecker delta.

Furthermore, we denote the conditional expectations E[ \X(0)=ei] by £",[•]•

It is intuitively clear and can be rigorously shown that the following re-

presentations are valid. Let iX(t) denote the process X(t) given that we start

with an object of type /. Then if/ and g are vector valued functions we have

and

where 0 < ίJx < ίf2 < are the successive times at which the process Nik(t)

increases by one, S(t)=O or 1 accordingly as t>0 or <0, and all the processes

{kX{t—tti), t>tkii}ktι are conditionally independent given the process

ί>0} . Consequently, if «,(*)=£,[/(*,)] and vi(t)=Ei[g(Xt)]y then

(1.1)

and
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(1.2) v((t) = gi{t)[l-

1 <i<py where H\ is the conditional probability generating functional given by

H\{φ) = H%(φl>.... φp)) = ^[exp{Σ5-,Γlog φj{x)dNiJ{x)} \L( = y]
Jo

(cf. Doney [5]), u\y)={u{{y\ •• ,*4(j>)) with u){y)=uJ(t— y) if t>y and = 1 if

t<y, and Fh'(x)=E[Nij(x)]. By 1 we mean I

2. Assumptions and statement of results

Again, let Fij(x)=E[Nij(x)] and set m iy=F i y(+oo).

(2.1) Assumptions:

(i) F(x)=[Fij(x)] is a non-lattice matrix of Borel measures (see Crump

[3]) and F(0+)=0.

(ii) H(s)=(H1(s)f*"iHp(s)) is nonsingular (see Harris [6]), where

(iii) m, y<oo all i,y and M=\mij~\ is positively regular,

(iv) Since M is positively regular, it has a positive eigenvalue p of

maximum modulus. We suppose that p> 1.

Assumption (iii) guarantees that the process X(t) is regular; i.e., no explosion

(see Mode [12]). Assumption (iv) just says that we are in the supercritical

case. In the supercritical case, it is known that the extinction probability

q=(qly - ,qp) is strictly less than 1=(1, •••, 1) and is the smallest nonnegative

root of q=H(q)=(H1(q), •••, Hp(q)). Furthermore, if q* is any other nonnegative

root, then either q*=q or #*=(). Note also that

Hi(s)=[Ή%s)dGi(y)
Jo

where s=(sly •••, sp) and \s£\ < 1 all i.

Let us define a new matrix M(μ) by

Since M(μ) is also positively regular, it has a positive eigenvalue p(α) of

maximum modulus. We choose α>0 such that ρ(α)=l and set \=α. It

is known that such an α exists since p=p(0)>l . λ is called the Malthusian

parameter.

From the Frobenius theory, it follows that corresponding to λ there ex-

ists strictly positive left and right eigenvectors of M(λ), μ and v respectively,
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satisfying <μ, 1>=1 and <μ, *>>=1. Here < , •> denotes the inner product.
Lastly, we set w,v*=fw,7(λ) and M*=M(λ).

According to Crump [3], it then follows from our assumptions that given
8==(gi>'">gp) s u c h ^ a t each^, is bounded on finite ^-intervals, (1.2) has a unique
solution v=(v19

 m"9vp) which is bounded on finite ί-intervals; moreover, if each
gi{t)=[\ — Gi{t)]e~xtgi{t) is directly Riemann integrable, then

(2.2) Vi(t)e-» - dv

as 2—>oo, where d is a positive constant independent of g.
In particular, if we take g=ej (considered as a vector of functions, then

as t->oo9 where c~d\ e~λt[ί — Gj(t)]dt. Here Zj(t) just counts the number
Jo

of particles of type 7 alive at time t.
Let us now define Wi(t)=Zi(t)lcie

λt and ϊΓ(ί)=(W?

1(ί), - , Wp(t)). Set
JF*(ί)=<Z/j PF(ί)>. Then we shall prove the following.

S oo

e'^dNiΛx). Consider
0

(*) sup, 7 £[Y < 7 | l o g y t 7 | ] .

Then W*(t) converges in distribution to a nontrivial random variable W* iff (*)
is finite; moreover, in this case, Pi(W^=0)=qi and Ei[W*]=Pg all i.

Corollary 1°. // (*) is finite, then W{t)->μW* in distribution.

Let Zi(x; t) be the number of particles of type / alive at time t and of age

<x. Set Wi(x; f)=Zi(x\ ί)\Ci(x)ext where ci(x)=d[Xe-λt[l-Gi(t)]dt. If x=(xly

Jo

- , xp), we set W(x; t)=(Wx(xx\ t), - , Wp{xp\ t)).

Corollary 2°. // (*) is finite, W{x\t)^μW* in distribution.

Theorem 2.2. Assume that (*) is finite. If in addition we assume that for
at least one index i, the random variable

(**)

can take on at least two values with positive probability, then W* has a continuous
density on (0, 00).

Let Yi(t) denote the total number of objects of type / born in [0, t] in-
cluding the ancestor if it is also of type i. Set Vi(t)=XYi(t)ldeλt and V(t)=
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Theorem 2.3. // (*) is finite, (W(x; t), V(t))-^(μW*9 μW*) in distribu-
tion.

Corollary. Under the hypothesis of Theorem 22, we have that Z{(x\ t)j
I Y(t)\ -^μiCi^Xd'1 in probability off

Q = {Z(ή = (Zψ), - , Zp(ή) - 0}. Here \ Y(t)\ =

Furthermore, if we start from a particle of type j then Zt(#; t)jYy(ί)
in probability off Q.

REMARK. Since convergence in probability is preserved under addition
and mulitplication, it follows for example that Zi(x;t)IZk(y;t)-+μiAi(x)lμkAk(y),
\Z(t)\l\ Y(t)\-^λί-Uirt and Ziix ήllZify^μ&WΓΣtί-iμifi* in proba-
bility off Q. If we start from a particle of type 7, then we also have Yj(t)/\ Y(t)\
->μj in probability off. Q. Here Ai(x)=ci(x)lci is the limiting age distribution.

In section 4 we consider a generalized immigration model. Basically
it is a (p+1)—type Crump and Mode process corresponding to (N0(i), iVj(ί),
-•',Np(f)) in which (N^t), ~-,Np(t)) produces no particles of type 0. N0(t)
can thus be considered as the immigration component. Under the assump-
tions of section 4 we have the following

Theorem 2.4. In the supercritical case, all of the preceeding results remain
valid for this immigration model {provided we don't divide by μ0 in Remark of
Theorem 2.3. since μo=O). In particular, starting with a particle of type 0,

in distribution to a nontrivial random variable iff (*) is finite in this case, P0(W*)
=q0 and E0(W*)=v0. Fruthermore, if (**) is also true, W* has a continuous
density on (0, 00).

REMARK. For the immigration process, we take the sup over all l<i,j<p
in (*) and we only consider the random variables *ΣB=iYijvj> l^*5Ξ/>, for (**)

3. Proofs

Let Φi(u, t)=Ei[exp(-uW*(t))] be the Laplace transform of W*(t). It
follows from (1.1) that Φ, satisfies

Φ,(«, ί) = exp{-ue-uv{lc

By Φf(w£~λφ, •) we mean the vector function <!>(#£"**, t—x) if t>x and the vector
1 if t<x.
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Since Ei[W*(t)]-+Vi as t->oo, {W*(ή} is tight (with respect to each P f ).
Suppose now that W*(t)->W* in distribution. Then Φi(u)=Ei[exp{—uW*}]
satisfies

(3.1) Φ,(«)

If we now let «f oo, then we see that qf=Pi(W*=0) satisfies

Hence either q*=l or q*=q<l. In the former case, it follows that W*=0
a.s. (Pi), all i.

For 0 a strictly positive />-vector, let
C(θ)= {φ=(φ1} .. , φ^): φt is the Laplace transform of a probability measure

on [0, oo) and limMi0 fΓ^l —φί(κ)]=0f } and set C=\J9>JC(Θ). According to
the above, we see that either Φ Ξ I or Φ e C (Actually, we can say in this case
that Φ (= C(θ) for some θ < v).

Before we can proceed further we shall need a few preliminaries.

Lemma 3.1. If 0 < φ < ψ < l as vector functions, then Hi(φ)<Hi(ψ) and

φj(x)~Ψj(x)IdFtJ(x), \<i<p .

The proof is similar to the one-dimensional version given in Doney [5].
Let φ=(φi, •••, φp) with 0<φ t < l and set

Again as in Doney [5], we have that if 0<φ<ψ<l, then
We define Ai(φ)=Ai((φy •••, φ)) and set -4*(φ)=Σf= 1^ ίiϊ f(Φ). It is not hard
to see that A* corresponds to iV* exactly as A corresponds to iV in Doney, where
N*(t) is the counting process which with probability μ{ looks like Σj=iiVt y(ί).
Since

E[\~e-»dN*(x)] =
Jo

we are in a position to use the one-dimensional results of Doney. Let
ψ*(u)=u'1A*(exp{—ue~λ'}) for u>0. Then

Lemma 3.2. For every δ < 0 and 0 < r < 1,

Ψ*(δO = 0
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The second "iff" can be verified as in Athreya [2],

Lemma 3.3. Let Φ be a solution of (3.1). Then Φ G C only if (*) is
finite.

Proof. Suppose Φ G C . Then there are constants £>0, δ>0 such that
for all w<δ, l-Φj(u)>cu. Let gi(u)=u-1[l—Φi(u)] for u>0. From (3.1) we
have that

for all 0 < # < δ , where Ffj is a probability measure (if jw?j=O, let Ff3 be
any nontrivial probability measure on [0, oo) having finite mean). Since each
gjiue'**) f as x f we can find a nondegenerate probability measure G such that

x) all ί,;. Now set^( M )=2?=,^,(«) . Then

g(u) <

Proceeding as in Doney, we have the desired result.

Lemma 3.4. Let I4(u, t)=u~1 Ei[^{-uW*{t)}+uW*(t)-\] for u>0.
Then if (*) is finite, limMψ0sup#:>0|/,-(*/, t)\ =0, l<i<p.

Proof. Define mt(t)=Ei[W*(t)]. Using (1.1) and (1.2) we can rewrite
/,• as

(^"^ t-y)dFUy)

Since 7,(n, ί)>0,Φ,(tf, f)^l—n *»?(*). Recalling that mf(t)->Vi as £-»oo and
is bounded on finite ^-intervals, it follows that there exist positive constants
c,η, and δ such that 1—Φi(u,t)<cu all u,t,i and Φ^u, ί ) > ^ " ^ all 0<w<δ,
ί and ί. Consequently, for 0<w<δ
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and

Now set /f(M)=supo^ ίST/, (M, t). Then there is a constant M > 0 such that

Since each If(u) is nondecreasing in u, we can find a non-degenerate probability

measure G such that ( ^ ^ " ^ F f X ^ ^ t ^ K ^ - ^ y G ^ ) for all i,j,u>Oy

Jo Jo

T> 0. Thus if we set /Γ(w)=Σ?=i μ, ΛΓ(«), then

Now proceed as in Doney [5].

Lemma 3.5. // Φ1, Φ2<ΞC(0) and both satisfy (3.1), then Φ ^ Φ 2 .

Proof. Let g^uj^u'11 Φ}(W)-Φ?(M) | for u>0. Then

where ^Γt y is a random variable with distribution function Ff5\ moreover, we
may assume that they are independent. Iterating yields,

where jo=i and

The supercript / refers to independent copies of the same random variable.
Since E[minitj(X]tj)]>0 we can now proceed as in Kaplan [8] to deduce that
£, = 0 all u>0 and hence Φ 1 = Φ 2 .

Proof of Theorem 2.1. Suppose (*) is infinite and W*(t)->W* in dis-
tribution. Then it follows from Lemma 3.3. that W*=0 w.p. 1. On the
other hand suppose (*) is finite. Set

= lim sup^ooSup^oίΓ11 Φi(u, t+s)—Φi(u, t) \ for u>0 .

It is an easy consequence of Lemma 3.4 that limu^0Ki(u)=Ki(0-\-)=0 all
/. Now making use of the equation that Φ, satisfies it is not hard to show
(cf. Athreya [1]) that
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where Xh- is as in the proof of Lemma 3.5. It follows then that Ki(u)=0
for u>0 and all t. Consequently lim^ooΦ^w, t)=Φi(u) exists and satisfies
(3.1). Because of tightness we conclude that W*(i) converges in distribution to
a nonnegative random variable W*\ furthermore, it follows from Lemma 3.4
that Ej[W*]=Vi and hence is nontrivial.

Proof of Corollary 1° of Theorem 2.1. All we need show is that <JJS W(φ
- K ^ μ) W* in distribution for any nonnegative />-vector η. First observe
that Ei[<7jy W(φ]-*<ri9 μ>Vi as *-^oo. Secondly, it follows from (1.1) that if
we do have convergence in distribution, then the transform of the limit ran-
dom variable is a solution of (3.1). Lastly, we see that there exists a positive
constant K such that 0<<rjy W(φ<K<j>, W(φ=KW*(t). Since B(x)=e'x

-\-x— 1 increases in x for x>0y

u-^PKv, Wiφ^KiuKyE^BiuKW^t))] = KI^uK, t).

Hence \\mu^%\i^t^u~ιEi[B{u<jί^W{φ)]=Q all i if (*) is finite. Now proceed
as in the proof of Theorem 2.1.

Everything that we have done above can be extended to the following
situation. Let g=(gly •*•>£/,) be a vector of nonnegative bounded functions

which are directly Riemann integrable and set Ci(gi)=d\ e~λt[l — Gi(t)]gi(i)dt.
Jo

Assume for the moment that each £,•(&•)>0. Set

and W(g; t) = (W.fo; ί), - , Wp(gp; t)).

Since for each nonnegative />-vector η> there is a constant ^ > 0 such that
<V, W(g; φ<KW*(t) and £ t [<^, W(g; φ]-*<v9 μ>v{ as ί-> + oo, we deduce as
in the proof of Corollary 1 that W(g; t)-^>μW* in distribution. Equivalently,
we can say that

in distribution, where μ(g) is the />-vector with components μi(g)=μiCi(gi)
This latter statement remains valid even if some of the terms £,(&•) are zero.

Proof of Corollary 2° of Theorem 2.1. Take gi(y)==ho,xii(y)y l<i<p,
in the above.

Proof of Theorem 2.2. One can modify the proof given in Doney [5] for
the one-dimensional case along the same lines that Kaplan [8] used for the
Bellman-Harris model. The details will be omitted.

Proof of Theorem 2.3. Although this result is not a corollary of The-



358 T.H. SAVITS

orem 2.1, it is a corollary of its proof as we shall now show. Recall that Yj(t)
is the total number of objects of type j born in [0, t] including its acnestor if it
is also of type/. As in section 1, we can show that the following representation
is valid.

Consequently, «,-,(<)=2?I [Y ; (ί)] satisfies

ntj{t) = S

Hence, f ^ O O ^ X " 1 ^ , * * as t^ + oo. We set Vi(t)=\Yi(t)/deλt and V{t)=
(V^t), •••, Vp(t)). To prove our theorem, it suffices to consider sums of the
form U(t)=(ξ, Vtyy+ζη, W(x; t)y for nonnegative ^-vectors ξ and η. Note
that £ t [[/(*)]->ϊ>,<£+?7, μ> as *->oo. If ψf.(M, t)=Ei[exp{—uU(t)}]y then from
our representations, it follows that

*,(«, t) = expi-ue-v&Xd

Hence if U(t)-*U in distribution, its Laplace transform is a solution of (3.1).
Everything now follows as before once we rewrite /,-(«, t)=E{[B(uU(t))] as

/,(«, t) = tt-^l-

-1G, (ί) [exp {-

Mue-**, t-x)dFtk{x).
Jo

Proof of Corollary of Theorem 2.3. Apply the same technique as in Doney

[4]

4. Immigration processes

Let (N^ήyN^ήr yNpψ)) generate a (/>+l) dimensional Crump and Mode
process. We assume that each Ni(t) process (1 <i<p) cannot give birth to
objects of type O, but N0(t) gives birth to at least one object of type 1,2, ••• or
p; i.e., we assume that mi0=0 for z=l , •••,/>, and that there exists at least one
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such that mOJ + O. N0(t) can thus be considered as an immigration com-
ponent. We will call such a process a p-type age-dependent branching process
with immigration. This model seems to include all immigration models that
have appeared in the literature. For example, let N0(t)=(ί, 0, •••, 0)=e0 for
t<L and =(lyξ) for t>L where ξ is a ^-dimensional random variable in-
dependent of L having probability generating function h(s19 -ysp) and let
(NΊζήy -yNpζt)) generate a />-demensional Bellman-Harris model. The case
p=l was originally studied by Jagers [7] while the general />-dimensional version
was recently considered by Kaplan and Pakes [9]. If we want the times of im-
migration to obey a Poisson distribution, let N0(t)=(0, N01(t), •••, Nop(t)) where
(Noί(t), •••, Nop(t)) is a nonhomogeneous compound Poisson process.

The study of immigration processes thus reduces to the study of such {p-\-1)-
type models where we start with a particle of type 0. The only thing different
about these processes is that now the corresponding mean matrix M is reduci-
ble; specifically, M has the form

0

, ό

m01 '"Mop

M
M =

where M is the pxp matrix corresponding to the ^-dimensional process gene-
rated by (N^t), •••, Np(t)). The eigenvalue p of maximum modulus is given
by p=max(m00, p) where p is the eigenvalue of maximum modulus corres-
ponding to M. From now on we shall assume that (N^t), •••, Np(t)) satisfies
assumptions (2.1). We also assume that moi<oo all i=0, i>"-,p and that F00{x)
is a non-lattice Borel measure satisfying -FOo(0+)=0 In addition we shall make
the following assumption.

(4.1) Assumption. 1 > m00

Consequently it follows that p=ρ and if we choose α > 0 such that ρ(a)
= 1, then p(a)=ρ(a). Hence the Malthusian parameter λ = α corresponds to
that of the process generated by (N^t), •••, Np(t)). This assumption (4.1) is
satisfied for the supercritical immigration processes that have been considered
in the literature. Without (4.1) it is conceivable that p(a)=tn%=l>ρ(a) even
if we assume that p=ρ. This possibility will be investigated in the future as
well as the critical and subcritical cases for this model. For more information
on the reducible case, see Kesten and Stigum [11] and Mode [12].

Let ηz and v be the strictly positive left and right eigenvectors respectively
of M(\) satisfying (ηz, £>=1 and (ηz, 1>=1. Setting μ=(0, ηz) and v=(v0, v)
where i/0=(l—mfo)~

1'Σίsl=i m*kvk we see that μ and v are left and right eigenvec-
tors respectively of M(λ)=M* also satisfying <μ, z/>=l and <μ, 1>=1.
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It is not difficult to show in this case that all of the results in section 2
remain valid. The proofs make substantial use of the known results for the
p-type process X(t) and of the fact that ni&<l. The details of Theorem 2.4.
will be omitted, however.
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