Savits, T.H. Osaka J Math. 13 (1976), 349-360

THE SUPERCRITICAL MULTI-TYPE CRUMP AND MODE AGE-DEPENDENT MODEL

THOMAS H. SAVITS

(Received June 14, 1975)

1. Introduction

In 1966, Kesten and Stigum [10] obtained necessary and sufficient conditions for the supercritical p-type Galton-Watson process (appropriately normalized) to converge to a nontrivial limit distribution. These results have been extended to other models by various authors. The age-dependent Bellman-Harris model was considered by Athreya [1] in 1969 for p=1; more recently, N. Kaplan [8] traeted the general p-type version in 1975. The singletype (p=1) Crump and Mode model was considered by R. Doney [5] in 1972. In this paper, we consider the multi-type version of the Crump and Mode model. As in all of the above, the results depend upon the finiteness of $E[Y|\log Y|]$ for suitably defined random variables Y. Our proof relies heavily on the p=1 results and has the same flavor as a paper of Athreya's [2].

We shall first describe the model on an intuitive basis. Let $K_i(t) = (K_{i1}(t), \dots, K_{ip}(t)), 1 \le i \le p$, be arbitrary vector-valued counting processes. $K_{ij}(t)$ counts the potential number of offspring of the *jth* type born to an individual of the *ith* type during the time interval [0, t]. We arbitrarily stop the counting process K_i at a random time L_i , the lifetime of an individual of the *ith* type. Set

$$N_i(t) = \begin{cases} K_i(t) & \text{if } t < L_i \\ K_i(L_i) & \text{if } t \ge L_i \end{cases}$$

and $G_i(t) = Pr\{L_i \le t\}$. Thus N_i counts the actual number of offspring born to an individual of type *i* during its lifetime and G_i is its lifetime distribution. Each newborn object behaves similarly and all particles behave independently

Abstract. Let $X(t) = (X_1(t), \dots, X_p(t))$ be a *p*-dimensional supercritical Crump-Mode age-dependent branching process. If $Z(t) = (Z_1(t), \dots, Z_p(t))$ counts the number of objects alive at time *t*, we find necessary and sufficient conditions for $Z(t)e^{-\lambda t}$ to converge in distribution to a nontrivial random variable. We also investigate some of its properties. By considering the total progeny process we deduce convergence in probability to the limiting age distribution. Lastly we consider a generalized immigration model.

T.H. SAVITS

of all other particles. Using these ingredients, one can construct a stochastic population process $(\Omega, P, X(t))$ having the above characteristics (cf. Mode [12]). The process $X(t) = (X_1(t), \dots, X_p(t))$ not only keeps track of the number and type, but also age. Thus for each t and ω , either $X_i(t, \omega)=0$ (no particles of type i at time t), $+\infty$ (an infinite number of particles of type i at time t), or for some $n \ge 1$, $X_i(t, \omega) \in [0, \infty)^n$. In the latter case, if $X_i(t, \omega) = (x_1, \dots, x_n)$, then there are n objects of the *i*th type alive at time t and of ages x_1, \dots, x_n respectively.

If f and g are real-valued functions (defined on $[0, \infty)$) satisfying $|f| \leq 1$ and g nonnegative or bounded, we extend them to $\{0\} \cup \bigcup_{n=1}^{\infty} [0, \infty)^n \cup \{+\infty\}$ by

$$\hat{f}(x) = \begin{cases} 1 & \text{if } x = 0\\ \prod_{i=1}^{n} f(x_i) & \text{if } x = (x_1, \cdots, x_n) \in [0, \infty)^n\\ 0 & \text{if } x = +\infty \end{cases}$$

and

$$\check{g}(x) = \begin{cases} 0 & \text{if } x = 0 \text{ or } + \infty \\ \sum_{i=1}^{n} g(x_i) & \text{if } x = (x_1, \cdots, x_n) \in [0, \infty)^n \end{cases}$$

If $f=(f_1, \dots, f_p)$ and $g=(g_1, \dots, g_p)$ are vectors of such functions, then we set

$$\hat{f}(X(t)) = \prod_{i=1}^{p} \hat{f}_i(X_i(t))$$

and

$$\check{g}(X(t)) = \sum_{i=1}^{p} \check{g}_i(X_i(t)) .$$

Also let e_i be the *p*-vector $(\delta_{i_1}, \dots, \delta_{i_p})$ where δ_{i_j} is the Kronecker delta. Furthermore, we denote the conditional expectations $E[\cdot | X(0)=e_i]$ by $E_i[\cdot]$.

It is intuitively clear and can be rigorously shown that the following representations are valid. Let $_{i}X(t)$ denote the process X(t) given that we start with an object of type *i*. Then if *f* and *g* are vector valued functions we have

$$\hat{f}(X(t)) = \exp\{\delta(t - L_i)\log f_i(t)\} \prod_{k=1}^{p} \prod_{l=1}^{N_{ik}(t)} \hat{f}(X(t - t_i^k))\}$$

and

$$\check{g}(_{i}X(t)) = \delta(t-L_{i})g_{i}(t) + \sum_{k=1}^{p} \sum_{l=1}^{N_{ik}(t)} \check{g}(_{k}X(t-t_{il}^{k})),$$

where $0 \le t_{i_1}^* \le t_{i_2}^* \le \cdots$ are the successive times at which the process $N_{i_k}(t)$ increases by one, $\delta(t)=0$ or 1 accordingly as $t\ge 0$ or <0, and all the processes $\{{}_kX(t-t_{i_1}^k), t\ge t_{i_1}^k\}_{k,l}$ are conditionally independent given the process $\{N_i(t); t\ge 0\}$. Consequently, if $u_i(t)=E_i[\hat{f}(X_t)]$ and $v_i(t)=E_i[\check{g}(X_t)]$, then

(1.1)
$$u_i(t) = f_i(t) \int_t^\infty H^y_i[u^t] dG_i(y) + \int_0^t H^y_i[u^t] dG_i(y)$$

and

SUPERCRITICAL MULTI-TYPE CRUMP

(1.2)
$$v_i(t) = g_i(t) [1 - G_i(t)] + \sum_{j=1}^{p} \int_0^t v_j(t-y) dF_{ij}(y) \, dF_{$$

 $1 \le i \le p$, where H_i^{v} is the conditional probability generating functional given by

$$H_{i}^{y}(\phi) = H_{i}^{y}((\phi_{1}, \dots, \phi_{p})) = E_{i}[\exp\{\sum_{j=1}^{p}\int_{0}^{\infty}\log\phi_{j}(x)dN_{ij}(x)\} | L_{i} = y]$$

(cf. Doney [5]), $u^t(y) = (u_1^t(y), \dots, u_p^t(y))$ with $u_j^t(y) = u_j(t-y)$ if $t \ge y$ and = 1 if t < y, and $F_{ij}(x) = E[N_{ij}(x)]$. By \int_a^b we mean $\int_{(a,b]}$.

2. Assumptions and statement of results

Again, let $F_{ij}(x) = E[N_{ij}(x)]$ and set $m_{ij} = F_{ij}(+\infty)$.

- (2.1) Assumptions:
 - (i) $F(x)=[F_{ij}(x)]$ is a non-lattice matrix of Borel measures (see Crump [3]) and F(0+)=0.
 - (ii) $H(s) = (H_1(s), \dots, H_p(s))$ is nonsingular (see Harris [6]), where $H_i(s) = E[s^{N_i(+\infty)}]$.
 - (iii) $m_{ij} < \infty$ all i, j and $M = [m_{ij}]$ is positively regular.
 - (iv) Since M is positively regular, it has a positive eigenvalue ρ of maximum modulus. We suppose that $\rho > 1$.

Assumption (iii) guarantees that the process X(t) is regular; i.e., no explosion (see Mode [12]). Assumption (iv) just says that we are in the supercritical case. In the supercritical case, it is known that the extinction probability $q=(q_1, \dots, q_p)$ is strictly less than $1=(1, \dots, 1)$ and is the smallest nonnegative root of $q=H(q)=(H_1(q), \dots, H_p(q))$. Furthermore, if q^* is any other nonnegative root, then either $q^*=q$ or $q^*=0$. Note also that

$$H_i(s) = \int_0^\infty H_i^y(s) dG_i(y)$$

where $s = (s_1, \dots, s_p)$ and $|s_i| \le 1$ all *i*.

Let us define a new matrix $M(\alpha)$ by

$$m_{ij}(\alpha) = \int_0^\infty e^{-\alpha x} dN_{ij}(x)$$

Since $M(\alpha)$ is also positively regular, it has a positive eigenvalue $\rho(\alpha)$ of maximum modulus. We choose $\alpha > 0$ such that $\rho(\alpha)=1$ and set $\lambda = \alpha$. It is known that such an α exists since $\rho = \rho(0) > 1$. λ is called the Malthusian parameter.

From the Frobenius theory, it follows that corresponding to λ there exists strictly positive left and right eigenvectors of $M(\lambda)$, μ and ν respectively,

satisfying $\langle \mu, 1 \rangle = 1$ and $\langle \mu, \nu \rangle = 1$. Here $\langle \cdot, \cdot \rangle$ denotes the inner product. Lastly, we set $m_{ij}^* = m_{ij}(\lambda)$ and $M^* = M(\lambda)$.

According to Crump [3], it then follows from our assumptions that given $g=(g_1, \dots, g_p)$ such that each g_i is bounded on finite *t*-intervals, (1.2) has a unique solution $v=(v_1, \dots, v_p)$ which is bounded on finite *t*-intervals; moreover, if each $g_i(t)=[1-G_i(t)]e^{-\lambda t}g_i(t)$ is directly Riemann integrable, then

(2.2)
$$v_i(t)e^{-\lambda t} \to d\nu_i \sum_{j=1}^p \mu_j \int_0^\infty \overline{g}_j(t)dt$$

as $t \rightarrow \infty$, where d is a positive constant independent of g.

In particular, if we take $g=e_j$ (considered as a vector of functions, then

$$m_{ij}(t) = E_i[\check{e}_j(X_t)] = E_i[Z_j(t)] \sim \nu_i \mu_j c_j e^{\lambda t}$$

as $t \to \infty$, where $c_j = d \int_0^\infty e^{-\lambda t} [1 - G_j(t)] dt$. Here $Z_j(t)$ just counts the number of particles of type j alive at time t.

Let us now define $W_i(t) = Z_i(t)/c_i e^{\lambda t}$ and $W(t) = (W_1(t), \dots, W_p(t))$. Set $W^*(t) = \langle \nu, W(t) \rangle$. Then we shall prove the following.

Theorem 2.1. Define the random variables $Y_{ij} = \int_0^\infty e^{-\lambda x} dN_{ij}(x)$. Consider (*) $\sup_{ij} E[Y_{ij} | \log Y_{ij} |]$.

Then $W^*(t)$ converges in distribution to a nontrivial random variable W^* iff (*) is finite; moreover, in this case, $P_i(W^*=0)=q_i$ and $E_i[W^*]=\nu_i$ all *i*.

Corollary 1°. If (*) is finite, then $W(t) \rightarrow \mu W^*$ in distribution.

Let $Z_i(x; t)$ be the number of particles of type *i* alive at time *t* and of age $\leq x$. Set $W_i(x; t) = Z_i(x; t)/c_i(x)e^{\lambda t}$ where $c_i(x) = d \int_0^x e^{-\lambda t} [1-G_i(t)] dt$. If $x = (x_1, \dots, x_p)$, we set $W(x; t) = (W_1(x_1; t), \dots, W_p(x_p; t))$.

Corollary 2°. If (*) is finite, $W(x; t) \rightarrow \mu W^*$ in distribution.

Theorem 2.2. Assume that (*) is finite. If in addition we assume that for at least one index i, the random variable

$$(**) \qquad \qquad \sum_{j=1}^{p} Y_{ij} \nu_j$$

can take on at least two values with positive probability, then W^* has a continuous density on $(0, \infty)$.

Let $Y_i(t)$ denote the total number of objects of type *i* born in [0, t] including the ancestor if it is also of type *i*. Set $V_i(t) = \lambda Y_i(t)/de^{\lambda t}$ and $V(t) = (V_1(t), \dots, V_p(t))$.

Theorem 2.3. If (*) is finite, $(W(x; t), V(t)) \rightarrow (\mu W^*, \mu W^*)$ in distribution.

Corollary. Under the hypothesis of Theorem 2.2, we have that $Z_i(x;t)$ $|Y(t)| \rightarrow \mu_i c_i(x) \lambda d^{-1}$ in probability off

$$Q = \{Z(t) = (Z_1(t), \dots, Z_p(t)) \to 0\}. \quad Here \mid Y(t) \mid = \sum_{k=1}^{p} Y_k(t).$$

Furthermore, if we start from a particle of type j then $Z_i(x; t)/Y_j(t) \rightarrow \mu_i \lambda c_i(x)/\mu_j d$ in probability off Q.

REMARK. Since convergence in probability is preserved under addition and mulitplication, it follows for example that $Z_i(x;t)/Z_k(y;t) \rightarrow \mu_i A_i(x)/\mu_k A_k(y)$, $|Z(t)|/|Y(t)| \rightarrow \lambda d^{-1} \sum_{k=1}^{n} \mu_k c_k$ and $Z_i(x;t)/|Z(t)| \rightarrow \mu_i c_i(x)/\sum_{k=1}^{n} \mu_k c_k$ in probability off Q. If we start from a particle of type j, then we also have $Y_j(t)/|Y(t)|$ $\rightarrow \mu_j$ in probability off. Q. Here $A_i(x) = c_i(x)/c_i$ is the limiting age distribution.

In section 4 we consider a generalized immigration model. Basically it is a (p+1)-type Crump and Mode process corresponding to $(N_0(t), N_1(t), \dots, N_p(t))$ in which $(N_1(t), \dots, N_p(t))$ produces no particles of type 0. $N_0(t)$ can thus be considered as the immigration component. Under the assumptions of section 4 we have the following

Theorem 2.4. In the supercritical case, all of the preceeding results remain valid for this immigration model (provided we don't divide by μ_0 in Remark of Theorem 2.3. since $\mu_0=0$). In particular, starting with a particle of type 0,

$$(W_1(t), \cdots, W_p(t)) \rightarrow \overline{\mu}W^*$$

in distribution to a nontrivial random variable iff (*) is finite; in this case, $P_0(W^*) = q_0$ and $E_0(W^*) = \nu_0$. Fruthermore, if (**) is also true, W* has a continuous density on $(0, \infty)$.

REMARK. For the immigration process, we take the sup over all $1 \le i, j \le p$ in (*) and we only consider the random variables $\sum_{j=1}^{p} Y_{ij} \nu_j$, $1 \le i \le p$, for (**)

3. Proofs

Let $\Phi_i(u, t) = E_i[\exp(-uW^*(t))]$ be the Laplace transform of $W^*(t)$. It follows from (1.1) that Φ_i satisfies

$$\Phi_i(u, t) = \exp\{-ue^{-\lambda t}\nu_i/c_i\}\int_t^{\infty} H^{y}_i[\Phi^t(ue^{-\lambda \cdot}, \cdot)]dG_i(y) + \int_0^t H^{y}_i[\Phi^t(ue^{-\lambda \cdot}, \cdot)]dG_i(y).$$

By $\Phi^t(ue^{-\lambda x}, \cdot)$ we mean the vector function $\Phi(ue^{-\lambda x}, t-x)$ if $t \ge x$ and the vector 1 if t < x.

Since $E_i[W^*(t)] \rightarrow \nu_i$ as $t \rightarrow \infty$, $\{W^*(t)\}$ is tight (with respect to each P_i). Suppose now that $W^*(t) \rightarrow W^*$ in distribution. Then $\Phi_i(u) = E_i[\exp\{-uW^*\}]$ satisfies

(3.1)
$$\Phi_i(u) = \int_0^\infty H_i^{\nu}[\Phi(ue^{-\lambda})] dG_i(y) = H_i[\Phi(ue^{-\lambda})].$$

If we now let $u \uparrow \infty$, then we see that $q_i^* = P_i(W^* = 0)$ satisfies

$$q^* = H(q^*).$$

Hence either $q^*=1$ or $q^*=q<1$. In the former case, it follows that $W^*=0$ a.s. (P_i) , all *i*.

For θ a strictly positive *p*-vector, let

 $\mathcal{C}(\theta) = \{\phi = (\phi_1, \dots, \phi_p): \phi_i \text{ is the Laplace transform of a probability measure on } [0, \infty) \text{ and } \lim_{u \neq 0} u^{-1}[1 - \phi_i(u)] = \theta_i\} \text{ and set } \mathcal{C} = \bigcup_{\theta > 0} \mathcal{C}(\theta).$ According to the above, we see that either $\Phi \equiv 1$ or $\Phi \in \mathcal{C}$ (Actually, we can say in this case that $\Phi \in \mathcal{C}(\theta)$ for some $\theta \leq \nu$).

Before we can proceed further we shall need a few preliminaries.

Lemma 3.1. If $0 \le \phi \le \psi \le 1$ as vector functions, then $H_i(\phi) \le H_i(\psi)$ and

$$|H_i(\phi) - H_i(\psi)| \le \sum_{j=1}^p \int_0^\infty |\phi_j(x) - \psi_j(x)| dF_{ij}(x), \ 1 \le i \le p$$

The proof is similar to the one-dimensional version given in Doney [5]. Let $\phi = (\phi_1, \dots, \phi_p)$ with $0 \le \phi_i \le 1$ and set

$$A_{i}(\phi) = H_{i}(\phi) - 1 + \sum_{j=1}^{p} \int_{0}^{\infty} [1 - \phi_{j}(x)] dF_{ij}(x) \, .$$

Again as in Doney [5], we have that if $0 \le \phi \le \psi \le 1$, then $0 \le A_i(\psi) \le A_i(\phi)$. We define $\bar{A}_i(\phi) = A_i((\phi, \dots, \phi))$ and set $A^*(\phi) = \sum_{i=1}^{p} \mu_i \bar{A}_i(\phi)$. It is not hard to see that A^* corresponds to N^* exactly as A corresponds to N in Doney, where $N^*(t)$ is the counting process which with probability μ_i looks like $\sum_{j=1}^{p} N_{ij}(t)$. Since

$$E[\int_{0}^{\infty} e^{-\lambda x} dN^{*}(x)] = \sum_{i=1}^{p} \mu_{i} \sum_{j=1}^{p} \int_{0}^{\infty} e^{-\lambda x} dF_{ij}(x) = \sum_{i,j=1}^{p} \mu_{i} m_{ij}^{*} = 1 ,$$

we are in a position to use the one-dimensional results of Doney. Let $\psi^*(u) = u^{-1}A^*(\exp\{-ue^{-\lambda}\})$ for u > 0. Then

Lemma 3.2. For every $\delta < 0$ and 0 < r < 1,

 $\sum_{n=0}^{\infty}\psi^*(\delta r^n) < \infty$ and $\lim_{\delta \downarrow 0} \sum_{n=0}^{\infty}\psi^*(\delta r^n) = 0$

iff $E[Y^*|\log Y^*|] < \infty$, where $Y^* = \int_0^\infty e^{-\lambda x} dN^*(x)$; moreover, $E[Y^*|\log Y^*|] < \infty$ iff $\sup_{i,j} E[Y_{ij}|\log Y_{ij}|] < \infty$.

The second "iff" can be verified as in Athreya [2].

Lemma 3.3. Let Φ be a solution of (3.1). Then $\Phi \in C$ only if (*) is finite.

Proof. Suppose $\Phi \in \mathcal{C}$. Then there are constants c > 0, $\delta > 0$ such that for all $u \leq \delta$, $1 - \Phi_j(u) \geq cu$. Let $g_i(u) = u^{-1}[1 - \Phi_i(u)]$ for u > 0. From (3.1) we have that

$$g_{i}(u) = u^{-1}(1 - H_{i}[\Phi(ue^{-\lambda \cdot})])$$

$$= \sum_{j=1}^{p} \int_{0}^{\infty} g_{j}(ue^{-\lambda \cdot})e^{-\lambda \cdot}dF_{ij}(x) - u^{-1}A_{i}[\Phi(ue^{-\lambda \cdot})]$$

$$\leq \sum_{j=1}^{p} m_{ij}^{*} \int_{0}^{\infty} g_{j}(ue^{-\lambda \cdot})dF_{ij}^{*}(x) - u^{-1}\overline{A}_{i}[\exp\{-cue^{-\lambda \cdot}\}]$$

for all $0 < u \le \delta$, where F_{ij}^* is a probability measure (if $m_{ij}^*=0$, let F_{ij}^* be any nontrivial probability measure on $[0, \infty)$ having finite mean). Since each $g_j(ue^{-\lambda x}) \uparrow$ as $x \uparrow$ we can find a nondegenerate probability measure \tilde{G} such that $\int_0^\infty g_j(ue^{-\lambda x}) dF_{ij}^*(x) \le \int_0^\infty g_j(ue^{-\lambda x}) d\tilde{G}(x)$ all i, j. Now set $g(u) = \sum_{i=1}^p \mu_i g_i(u)$. Then $g(u) \le \int_0^\infty g(ue^{-\lambda x}) d\tilde{G}(x) - c\psi^*(cu)$.

Proceeding as in Doney, we have the desired result.

Lemma 3.4. Let $I_i(u, t) = u^{-1} E_i[\exp\{-uW^*(t)\} + uW^*(t) - 1]$ for u > 0. Then if (*) is finite, $\lim_{u \neq 0} \sup_{t \ge 0} |I_i(u, t)| = 0$, $1 \le i \le p$.

Proof. Define $m_i^*(t) = E_i[W^*(t)]$. Using (1.1) and (1.2) we can rewrite I_i as

$$\begin{split} I_{i}(u, t) &= u^{-1}[1 - G_{i}(t)] \left[\exp\{-u\nu_{i}e^{-\lambda t}/c_{i}\} + u\nu_{i}e^{-\lambda t}/c_{i} - 1 \right] \\ &+ u^{-1}[1 - \exp\{-u\nu_{i}e^{-\lambda t}/c_{i}\}] \int_{t}^{\infty} \{1 - H_{i}^{y}[\Phi^{t}(ue^{-\lambda \cdot}, \cdot)]\} dG_{i}(y) \\ &+ u^{-1}A_{i}[\Phi^{t}(ue^{-\lambda \cdot}, \cdot)] + \sum_{j=1}^{y} m_{ij}^{*} \int_{0}^{t} I_{j}(ue^{-\lambda y}, t-y) dF_{ij}^{*}(y) \,. \end{split}$$

Since $I_i(u, t) \ge 0$, $\Phi_i(u, t) \ge 1-u m_i^*(t)$. Recalling that $m_i^*(t) \rightarrow \nu_i$ as $t \rightarrow \infty$ and is bounded on finite *t*-intervals, it follows that there exist positive constants c, η , and δ such that $1-\Phi_i(u, t) \le cu$ all u, t, i and $\Phi_i(u, t) \ge e^{-\eta u}$ all $0 < u < \delta$, *i* and *t*. Consequently, for $0 < u < \delta$

$$1 - H_i[\Phi^t(ue^{-\lambda}, \cdot)] \leq \sum_{j=1}^n \int_0^t [1 - \Phi_j(ue^{-\lambda y}, t-y)] dF_{ij}(y)$$
$$\leq uc \sum_{j=1}^n \int_0^\infty e^{-\lambda y} dF_{ij}(y) = uc \sum_{j=1}^n m_{ij}^*$$

and

$$A_i[\Phi^t(ue^{-\lambda}, \cdot)] \leq \bar{A}_i[\exp\{-\eta ue^{-\lambda}\}]$$

Now set $I_i^T(u) = \sup_{0 \le t \le T} I_i(u, t)$. Then there is a constant M > 0 such that for all $0 < u \le \delta$,

$$I_{i}^{T}(u) \leq uM + u^{-1}\bar{A}_{i}[\exp\{-\eta u e^{-\lambda}\}] + \sum_{j=1}^{n} m_{ij}^{*} \int_{0}^{T} I_{j}^{T}(u e^{-\lambda y}) dF_{ij}^{*}(y) .$$

Since each $I_i^T(u)$ is nondecreasing in u, we can find a non-degenerate probability measure G such that $\int_0^T I_j^T(ue^{-\lambda y}) dF_{ij}^*(y) \le \int_0^T I_j^T(ue^{-\lambda y}) dG(y)$ for all i, j, u > 0, T > 0. Thus if we set $I^T(u) = \sum_{i=1}^p \mu_i I_i^T(u)$, then

$$I^{T}(u) \leq uM + \eta \psi^{*}(\eta u) + \int_{0}^{T} I^{T}(ue^{-\lambda y}) dG(y)$$

Now proceed as in Doney [5].

Lemma 3.5. If Φ^1 , $\Phi^2 \in C(\theta)$ and both satisfy (3.1), then $\Phi^1 = \Phi^2$.

Proof. Let $g_i(u) = u^{-1} |\Phi_i^1(u) - \Phi_i^2(u)|$ for u > 0. Then

$$g_i(u) \leq \sum_{j=1}^{\mathbf{v}} m_{ij}^* \int_0^\infty g_j(ue^{-\lambda y}) dF_{ij}^*(y)$$
$$= \sum_{j=1}^{\mathbf{v}} m_{ij}^* E[g_j(ue^{-\lambda X_{ij}})]$$

where X_{ij} is a random variable with distribution function F_{ij}^* ; moreover, we may assume that they are independent. Iterating yields,

$$g_{i}(u) \leq \sum_{1 \leq j_{1}, \dots, j_{k} \leq p} m_{ij_{1}}^{*} m_{j_{1}j_{2}}^{*} \cdots m_{j_{k-1}j_{k}}^{*} E[g_{j_{k}}(ue^{-\lambda S_{k}(j_{0}, j_{1}, \dots, j_{k})})]$$

where $j_0 = i$ and

$$S_{k}(j_{0}, j_{1}, \cdots, j_{k}) = \sum_{l=1}^{k} X_{j_{l-1}, j_{l}}^{l} \ge \sum_{l=1}^{k} \min_{i, j} (X_{ij}^{l}).$$

The supercript *l* refers to independent copies of the same random variable. Since $E[\min_{i,j}(X_{i,j}^1)] > 0$ we can now proceed as in Kaplan [8] to deduce that $g_i=0$ all u>0 and hence $\Phi^1=\Phi^2$.

Proof of Theorem 2.1. Suppose (*) is infinite and $W^*(t) \rightarrow W^*$ in distribution. Then it follows from Lemma 3.3. that $W^*=0$ w.p. 1. On the other hand suppose (*) is finite. Set

$$K_i(u) = \limsup_{t \to \infty} \sup_{s \ge 0} u^{-1} |\Phi_i(u, t+s) - \Phi_i(u, t)| \text{ for } u > 0$$

It is an easy consequence of Lemma 3.4 that $\lim_{u \neq 0} K_i(u) = K_i(0+) = 0$ all *i*. Now making use of the equation that Φ_i satisfies it is not hard to show (cf. Athreya [1]) that

$$K_i(u) \leq \sum_{j=1}^p m_{ij}^* E[K_j(ue^{-\lambda X_{ij}})]$$

where X_{ij} is as in the proof of Lemma 3.5. It follows then that $K_i(u)=0$ for u>0 and all *i*. Consequently $\lim_{t\to\infty} \Phi_i(u, t) = \Phi_i(u)$ exists and satisfies (3.1). Because of tightness we conclude that $W^*(t)$ converges in distribution to a nonnegative random variable W^* ; furthermore, it follows from Lemma 3.4 that $E_i[W^*]=\nu_i$ and hence is nontrivial.

Proof of Corollary 1° of Theorem 2.1. All we need show is that $\langle \eta, W(t) \rangle \rightarrow \langle \eta, \mu \rangle W^*$ in distribution for any nonnegative *p*-vector η . First observe that $E_i[\langle \eta, W(t) \rangle] \rightarrow \langle \eta, \mu \rangle \nu_i$ as $t \rightarrow \infty$. Secondly, it follows from (1.1) that if we do have convergence in distribution, then the transform of the limit random variable is a solution of (3.1). Lastly, we see that there exists a positive constant K such that $0 \leq \langle \eta, W(t) \rangle \geq K \langle \nu, W(t) \rangle = KW^*(t)$. Since $B(x) = e^{-x} + x - 1$ increases in x for $x \geq 0$,

$$u^{-1}E_i[B(u\langle \eta, W(t)\rangle)] \leq K(uK)^{-1}E_i[B(uKW^*(t))] = KI_i(uK, t).$$

Hence $\lim_{u\downarrow_0} \sup_{t\geq 0} u^{-1}E_i[B(u\langle \eta, W(t)\rangle)]=0$ all *i* if (*) is finite. Now proceed as in the proof of Theorem 2.1.

Everything that we have done above can be extended to the following situation. Let $g=(g_1, \dots, g_p)$ be a vector of nonnegative bounded functions which are directly Riemann integrable and set $c_i(g_i)=d\int_0^\infty e^{-\lambda t}[1-G_i(t)]g_i(t)dt$. Assume for the moment that each $c_i(g_i)>0$. Set

$$W_i(g_i; t) = \check{g}_i(X_i(t))/c_i(g_i)e^{\lambda t}$$
 and $W(g; t) = (W_1(g_1; t), \dots, W_p(g_p; t))$.

Since for each nonnegative *p*-vector η , there is a constant K>0 such that $\langle \eta, W(g; t) \rangle \leq KW^*(t)$ and $E_i[\langle \eta, W(g; t) \rangle] \rightarrow \langle \eta, \mu \rangle \nu_i$ as $t \rightarrow +\infty$, we deduce as in the proof of Corollary 1 that $W(g; t) \rightarrow \mu W^*$ in distribution. Equivalently, we can say that

$$(\check{g}_1(X_1(t)), \cdots, \check{g}_p(X_p(t)))e^{-\lambda t} \to \mu(g)W^*$$

in distribution, where $\mu(g)$ is the *p*-vector with components $\mu_i(g) = \mu_i c_i(g_i)$. This latter statement remains valid even if some of the terms $c_i(g_i)$ are zero.

Proof of Corollary 2° of Theorem 2.1. Take $g_i(y) = 1_{[0,x_i]}(y), 1 \le i \le p$, in the above.

Proof of Theorem 2.2. One can modify the proof given in Doney [5] for the one-dimensional case along the same lines that Kaplan [8] used for the Bellman-Harris model. The details will be omitted.

Proof of Theorem 2.3. Although this result is not a corollary of The-

T.H. SAVITS

orem 2.1, it is a corollary of its proof as we shall now show. Recall that $Y_j(t)$ is the total number of objects of type j born in [0, t] including its acnestor if it is also of type j. As in section 1, we can show that the following representation is valid.

$$_{i}Y_{j}(t) = \delta_{ij} + \sum_{k=1}^{p} \sum_{l=1}^{N_{ik}(t)} V_{j}(t - t_{ik}^{l})$$

Consequently, $n_{ij}(t) = E_i[Y_j(t)]$ satisfies

$$n_{ij}(t) = \delta_{ij} + \sum_{k=1}^{p} \int_{0}^{t} n_{kj}(t-y) dF_{ik}(y).$$

Hence, $n_{ij}(t) \sim \lambda^{-1} d\nu_i \mu_j e^{\lambda t}$ as $t \to +\infty$. We set $V_i(t) = \lambda Y_i(t)/de^{\lambda t}$ and $V(t) = (V_1(t), \dots, V_p(t))$. To prove our theorem, it suffices to consider sums of the form $U(t) = \langle \xi, V(t) \rangle + \langle \eta, W(x; t) \rangle$ for nonnegative *p*-vectors ξ and η . Note that $E_i[U(t)] \to \nu_i \langle \xi + \eta, \mu \rangle$ as $t \to \infty$. If $\psi_i(u, t) = E_i[\exp\{-uU(t)\}]$, then from our representations, it follows that

$$\begin{split} \psi_i(u,t) &= \exp\left\{-ue^{-\lambda t}(\xi_i\lambda d^{-1}+\eta_i/c_i(x_i))\right\}\int_t^\infty H_i^y[\psi^t(ue^{-\lambda \cdot},\,\cdot)]dG_i(y) \\ &+ \exp\left\{-ue^{-\lambda t}\xi_i\lambda d^{-1}\right\}\int_0^t H_i^y[\psi^t(ue^{-\lambda \cdot},\,\cdot)]dG_i(y) \,. \end{split}$$

Hence if $U(t) \rightarrow U$ in distribution, its Laplace transform is a solution of (3.1). Everything now follows as before once we rewrite $J_i(u, t) = E_i[B(uU(t))]$ as

$$\begin{split} J_{i}(u,t) &= u^{-1}[1-G_{i}(t)] [\exp\{-ue^{-\lambda t}(\xi_{i}\lambda d^{-1}+\eta_{i}/c_{i}(x_{i}))\} \\ &+ ue^{-\lambda t}(\xi_{i}\lambda d^{-1}+\eta_{i}/c_{i}(x_{i}))-1] \\ &+ u^{-1}G_{i}(t) [\exp\{-ue^{-\lambda t}\xi_{i}\lambda d^{-1}\} + ue^{-\lambda t}\xi_{i}\lambda d^{-1}-1] \\ &+ u^{-1}[1-\exp\{-ue^{-\lambda t}(\xi_{i}\lambda d^{-1}+\eta_{i}/c_{i}(x_{i}))\}] \\ &\times \int_{t}^{\infty} \{1-H_{t}^{y}[\psi^{t}(ue^{-\lambda \cdot},\cdot)]\} dG_{i}(y) \\ &+ u^{-1}[1-\exp\{-ue^{-\lambda t}\xi_{i}\lambda d^{-1}\}] \int_{0}^{t} \{1-H_{t}^{y}[\psi^{t}(ue^{-\lambda \cdot},\cdot)]\} dG_{i}(y) \\ &+ u^{-1}A_{i}[\psi^{t}(ue^{-\lambda \cdot},\cdot)] + \sum_{k=1}^{n} m_{tk}^{*} \int_{0}^{t} J_{k}(ue^{-\lambda x},t-x) dF_{tk}^{*}(x) \,. \end{split}$$

Proof of Corollary of Theorem 2.3. Apply the same technique as in Doney [4].

4. Immigration processes

Let $(N_0(t), N_1(t), \dots, N_p(t))$ generate a (p+1) dimensional Crump and Mode process. We assume that each $N_i(t)$ process $(1 \le i \le p)$ cannot give birth to objects of type O, but $N_0(t)$ gives birth to at least one object of type $1, 2, \dots$ or p; *i.e.*, we assume that $m_{i_0}=0$ for $i=1, \dots, p$, and that there exists at least one

 $j \neq 0$ such that $m_{0j} \neq 0$. $N_0(t)$ can thus be considered as an immigration component. We will call such a process a *p*-type age-dependent branching process with immigration. This model seems to include all immigration models that have appeared in the literature. For example, let $N_0(t)=(1, 0, \dots, 0)=e_0$ for t < L and $=(1, \xi)$ for $t \ge L$ where ξ is a *p*-dimensional random variable independent of *L* having probability generating function $h(s_1, \dots, s_p)$ and let $(N_1(t), \dots, N_p(t))$ generate a *p*-demensional Bellman-Harris model. The case p=1 was originally studied by Jagers [7] while the general *p*-dimensional version was recently considered by Kaplan and Pakes [9]. If we want the times of immigration to obey a Poisson distribution, let $N_0(t)=(0, N_{01}(t), \dots, N_{0p}(t))$ where $(N_{01}(t), \dots, N_{0p}(t))$ is a nonhomogeneous compound Poisson process.

The study of immigration processes thus reduces to the study of such (p+1)type models where we start with a particle of type 0. The only thing different about these processes is that now the corresponding mean matrix M is reducible; specifically, M has the form

$$M = \begin{pmatrix} \frac{m_{00}}{0} & \frac{m_{01} \cdots m_{0p}}{0} \\ \vdots & \bar{M} \\ 0 & & \end{pmatrix}$$

where M is the $p \times p$ matrix corresponding to the p-dimensional process generated by $(N_1(t), \dots, N_p(t))$. The eigenvalue ρ of maximum modulus is given by $\rho = \max(m_{00}, \bar{\rho})$ where $\bar{\rho}$ is the eigenvalue of maximum modulus corresponding to \bar{M} . From now on we shall assume that $(N_1(t), \dots, N_p(t))$ satisfies assumptions (2.1). We also assume that $m_{0i} < \infty$ all $i=0, i, \dots, p$ and that $F_{00}(x)$ is a non-lattice Borel measure satisfying $F_{00}(0+)=0$. In addition we shall make the following assumption.

(4.1) Assumption. $1 \ge m_{00}$

Consequently it follows that $\rho = \overline{\rho}$ and if we choose $\alpha > 0$ such that $\rho(\alpha) = 1$, then $\rho(\alpha) = \overline{\rho}(\alpha)$. Hence the Malthusian parameter $\lambda = \alpha$ corresponds to that of the process generated by $(N_1(t), \dots, N_p(t))$. This assumption (4.1) is satisfied for the supercritical immigration processes that have been considered in the literature. Without (4.1) it is conceivable that $\rho(\alpha) = m_{00}^* = 1 > \overline{\rho}(\alpha)$ even if we assume that $\rho = \overline{\rho}$. This possibility will be investigated in the future as well as the critical and subcritical cases for this model. For more information on the reducible case, see Kesten and Stigum [11] and Mode [12].

Let $\overline{\mu}$ and $\overline{\nu}$ be the strictly positive left and right eigenvectors respectively of $\overline{M}(\lambda)$ satisfying $\langle \overline{\mu}, \overline{\nu} \rangle = 1$ and $\langle \overline{\mu}, 1 \rangle = 1$. Setting $\mu = (0, \overline{\mu})$ and $\nu = (\nu_0, \overline{\nu})$ where $\nu_0 = (1 - m_{00}^*)^{-1} \sum_{k=1}^{p} m_{0k}^* \overline{\nu}_k$ we see that μ and ν are left and right eigenvectors respectively of $M(\lambda) = M^*$ also satisfying $\langle \mu, \nu \rangle = 1$ and $\langle \mu, 1 \rangle = 1$.

T.H. SAVITS

It is not difficult to show in this case that all of the results in section 2 remain valid. The proofs make substantial use of the known results for the *p*-type process $\bar{X}(t)$ and of the fact that $m_{00}^* < 1$. The details of Theorem 2.4. will be omitted, however.

UNIVERSITY OF PITTSBOURGH

References

- [1] K. Athreya: On the supercritical one-dimensional age-dependent branching process, Ann. Math. Statist. 40 (1969), 743-763.
- K. Athreya: Supercritical multitype Galton-Watson branching processes, Ann. Math. Statist. 41 (1970), 195-202.
- [3] K.S. Crump: On systems of renewal equations, J. Math. Anal. Appl. 30 (1970), 425-434.
- [4] R.A. Doney: The progeny of a branching process, J. Appl. Prob ability. 8 (1971), 407-412.
- [5] R.A. Doney: A limit theorem for a class of supercritical branching processes, J. Appl. Probability 9 (1972), 707–724.
- [6] T.E. Harris: Theory of Branching Processes, Springer-Verlag, Berlin, 1963.
- [7] P. Jagers: Age-dependent branching process allowing immigration, Theor. Prob ability Appl. 13 (1968), 225-236.
- [8] N. Kaplan: The supercritical multitype age-dependent branching process, J. Math. Anal. Appl. 49 (1975), 1-19.
- [9] N. Kaplan and A.G. Pakes: Supercritical age-dependent branching processes allowing immigration, submitted to Stochastic Proc. Appl. (1974).
- [10] H. Kesten and B.P. Stigum: A limit theorem for multidimensional Galton-Watson processes, Ann. Math. Statist. 37 (1966), 1211–1223.
- [11] H. Kesten and B.P. Stigum: Limit theorems for decomposable multi-dimensional Galton-Watson processes, J. Math. Anal. Appl. 17 (1967), 309-338.
- [12] C.J. Mode: Multitype Branching Processes: Theory and Applications, American Elsevier, New York, 1971.