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1. Introduction

Let M=G/K be a symmetric homogeneous space such that G is a simply
connected compact Lie group. In [I] the author showed that the unitary

K-group of M is isomorphic to the tensor product of R(K) ® Z and an exterior
R(&)

algebra E over Z, where R(G) and R(K) are the complex representation rigns of
G and K respectively, and in particular described the generators of E as an
exterior algebra explicitly.

The purpose of this paper is to present a structure of R(K) RQ(%)Z as a group

in the following nine cases:

Type of M = AIII, BDI(a)(Spin(2p-+2q-+2)/Spin(2p+1)- Spin(2g+1)) ,
BDII(b)(Spin(2n+-1)/Spin(2n)), DIII, CII, EI, FI, FII or G .

Now let us denote by 7#(L) the order of the Weyl group of a compact con-
nected Lie group L. We know that if U is a closed connected subgroup of G
of maximal rank then R(U) ® Z is a free module of rank #(G)/n(U) and is iso-

R(@)
morphic to K*(G/U) [12]. Throughout this paper we shall identify R(U) ® Z
R(&>
with the K-group of G/U in the above situation and denote by the same letter
p the element of K*(G/U) defined by an element p of R(U) in the natural

way. Furthermore we shall denote by Z(g) the free module generated by an
element g.

2. Representation rings

In this section we recall the structure of the complex representation rings
of classical groups.

Write p, for the canonical representations SU(n)—U(n), U(n)— U(n),
Sp(n)— U(2n) and Spin(n)—SO(n)— U(n) for each n, and write Ap,, for the i-th
exterior product of p,. According to [10] we have
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R(SU(?I)) = Z[)“lpm *tty )"”—lpn] ’

R(U(n)) = Z[A'lpm Ty 7\‘”Pm (K”Pn)—l] ’
(2.1) R(Sp(n)) = Z[N'pyy =+, N"ps] = Z[oy, =+, 0]

R(Spm(Zn—H)) = Z[le2n+1) ST Sk S Azm+1] ’

R(szn(zn)) = Z[xlpzm "ty X”_ng,,, A;m Az—n] .
Here we denote by o, ::+, o, the elementary symmetric functions in the n
variables ¢,+#%, -+, t,+t;' when we set R(T)=Z[t, t]', -+, ty t5'] for a
maximal torus T of Sp(n), and denote by Aj,, A;, and A,,,, the half-spin

representations of Spin(2n) and the spin representation of Spin(2n-1),
respectively.

Proposition 2.1 (See [17], p. 120). If G is a compact Lie group, N is a
finite normal subgroup of G and n: G—G|N is the canonical map, then there is a
homomorphism of R(G|N)-modules ry: R(G)—R(G|N) such that =.(1)=1.

Proof. It is easy to see that the correspondence V—V¥, where Vis a
G-module and V¥ the N-invariant submodule of V, defines the homomorphism
7 x, as desired. q.e.d.

Using Proposition 2.1 we can calculate the representation rings of some
quotient groups. For example,

(22) R(PSP(4)) = 2[7\‘2P4’ Ay, (PA)Z’ (7\'394)2’ P47\'aPA]
as a subring of R(Sp(4)) and
R(Sp(:;);( SU(Z)) = ZD"ZP:n (Pa)2; (xspa)z’ PsA’ps, (P2)2’ P2P3s szapa]

as a subring of R(Sp(3) X SU(2)) where Z, is the intersection of the centers of Sp(3)
and SU(2).

Using the relations of [10], §13, Theorem 10.3 we get
(2.3) R(Spin(2m+-1) X Spin(2n-+1))
22
= Z[)\.lpzm“, sty mezmﬂ) )"1P2n+1: * 7\”Pznﬂa Azm+1Azn+1]/I

as a subalgebra of R(Spin(2m+-1)x Spin(2n+1)), where Z, is the intersection of
the centers of Spin(2m-+1) and Spin(2n-+1), and I is the ideal generated by the

element

(Azm+1Azn+1)2—(7\mpzm+1+ . ‘+7\‘1sz+1+ 1) (X”P2n+1+ +7\'1P2n+1+ 1) .

3. AIII, BDI(a), BDII(b) and CII
Type AIII(U(m+n)/U(m)x U(n)). Let T=S]x---X .S, be the canonical
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maximal torus of U(n) where S}, 1<i=<n, are the circle groups, and set R(S})
=Z[t;, t7"] for each i where ¢; is a standard 1-dimensional non-trivial represen-
tation of S}. Moreover let us define F, to be the free module generated by
1, tg, oo, t7E-1 for k=1, .-+, n.

Lemma 3.1. R(Um)xT) is a free R(U(m~+n))-module (by restriction)
generated by t31---t3» (0=a,=m-+k—1). Namely,

with the above notation.

Proof. R(U(m)x U(1)) is freely generated as an R(U(m-1))-module by
1; t, .-, 7 when we put R(U(l))=Z[t, t-l] ([9]’ Lemma 73) Let
Up= U(m+k)xsi+1X"'XS,l. for k=0,:-,n—1
and  U,=Ulmtn).

Then we have
R(Up)=R(Up+1) @ F+,
for k=0, ---,n—1 and this implies Lemma 3.1.

Theorem 3.2.
K*( U(m+n)/ U(m) X U(n))g ﬁlgo.@ﬁﬁgo Z((>\‘lp")pl °* '(X”P”)p”)

pytretpusm

for m,n=1.
Proof. Put

G = U(m+n)[Um)x Uk)X S}4, X -+ XSs  for k=1, -,n—1,
G, = U(m~+n)|U(m)x U(n),
= 1521 (NEp, )2
and W, —plgog?p,zoz«x Pa)re--(MEpe)™)
pyteetp m
for k=1, -+, n.
K*(G,) is a free module of rank (m+n)!/m!k! and identified with R(U(m)
X U(k)x Sty X =X S3) ® Z for each k. In particular, from Lemma 3.1 we

RU (m+n))
have

K*(G,) = F,Q-QF,.

Therefore we see that K*(G,) contains W,QF;.,Q--®F, as a free subgroup
by considering the injective homomorphism K*(G,)—K*(G,) for each k
([1], Proposition 7.1).
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We have

rank Wk®Fk+1®"'®Fn = (E’:-okHs) (m+k+1)-(m—l—n)
= ("*)(m+k+1)---(m+n)
= (m-+n)!/m! k!

where  H,=(*}:7") is the number of the repeated combination. This proves

(a) K*(Gk)®Q = Wk®Fk+1®'"®Fn®Q for k= 1; R n'—'ly
K*G,)®0 = W,Q0 .

Next we shall prove by induction on %

(b) K*(Gk) = Wk®Fk+1®'"®Fn for k= 1) ) n—1 ’
KXG.) = W, .

Since W,=F, (b) in case of k=1 follows by Lemma 3.1. Suppose that (b) is
true when k=/. For any element x€ K*(G,,,) there is an integer N >0 such
that

Nx = 3 ab;---b,+1(7\41P1+1)p1'"(7\'1+1P1+x)p’+1

D120, Py 4120
byteetpppgsSm

where a,,...5,, ,EF;,,@-- ®F, by (a). Let
1*: K¥(G41) = K*(G))
be the natural injective homomorphism. Since

t*(Mop41) = Mpit+(NM T4 for i=1,-,1
and (N ) = (Ve

we have

(N praa) i (M p ) Pre)
= (A'p;)?2-+-(Np,)Pi+1tfiy " #i+1 lower monomials

where the lower monomial implies a monomial whose degree with respect to the
variable ¢,,, is lower than p,+---+p,,,. Observe the image of Nx by i* then
we see by the inductive hypothesis that a,,..., , is divisible by N. Thus we have
xeW, ,QF,,Q:-QF,. This completes the induction. q.e.d.

Type CII(Sp(m+n)/Sp(m)x Sp(n)). Let Sp,(1)X - X Sp,(n), where Sp;(1)
=S8p(1) (1=i=mn), be the subgroup of Sp(n) embedded diagonally, and put
R(Spi(1))=Z[6;] for each i where 0,=t;+t;' and ¢; is the standard 1-dimen-
sional non-trivial representation of a maximal torus of Sp;(1).

By replacing S; and #, in case of Type AIIl by Sp,(1) and 6, for
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k=1, .-+, n respectively, we obtain analogously the following results.

Lemma 3.3. Let E, be the free module generated by 1,0y, ---, Op**~" for
k=1, --,n. Then we have an isomorphism

R(Sp(m)x Spy(1) X -+ X Spu(1))= R(Sp(m+n)) RE,R -+ RE,
with the above notation.

Theroem 3.4.
K*(Sp(m-+n)[Sp(m) x Sp(n))= plgo,@,,@o Z(o%-+027)

Pyt pp<m

= _® _Z(Apa)’r-(AN"pa)*)
§120,0-, pu20
Dyteetppsm

for m, n>1.
The equality in Theorem 3.4 is obtained immediately by the formula

Nep, = o420 chti0,
for a,eZ and k=1, ---, n ([10], 13, Proposition 5.4).

Type BDI(a)(Spin(2m-+2n+2)/Spin(2m+-1)-Spin(2n+1)). From the re-
lations of [10], §13, Theorem 10.3 and (2.3) we see that
R(Spin(2m—4-1) - Spin(2n+- 1))R(spi”( g?””z))

= Z[lezmﬂ: *ty )”mpzmﬂ; 7\.lp2,,+1, ) 7"”P2n+1]/1

where I is the ideal generated by the elements

2i+j=l(7\'ip2m+1) (XjPzn+1)—(2m+z2”+2)
for all 1.
On the other hand, when we put \,/=\p,+N"p, (1=i{=<m) and
A=A PN T, (1S j<n)
R(Sp(m)x Sp(n)) ® Z = Z[Kl,i ) 7\'m/’ 7\'1; M) 7\'”]/]
R(Sp(m+n))
where J is the ideal generated by the elements

Zi+j=l7\'i/7\‘j—(2m+lzn+z)
for all 1.

Hence we see that the correspondences \;/—>Ap,,i; and A;—=A7psuy,
(1<i<m, 1< j<n)induce anisomorphism of algebras R(Sp(m)x Sp(n)) & Z

R(Sp(m+n))
and R(Spin(2m+-1)-Spin(2n-+1)) ® Z. Thus we have by Theorem 3.4

R(Spin(2m+2n+2))
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R(Spin(2m+1)-Spin(2n+1)) @

R(Spin(2m+2n+2))
@ Z(h{""‘),z")
5120, P20
pl ok pusm

= (&%) Z(()\'lpznﬂ)p'" - (xnpznﬂ)p”) .

£120,%, pu20
B+t busm

R

This and [I], Proposition 7.1 prove the following
Theorem 3.5.
K*(Spin(2m—+2n+2)/Spin(2m-+1) >;;S'pin(2n+ 1))
=1 DB Z(NPmsr)?(NPans1)?)} @ A(B(Bimszniz— A rans)) -

2120, pp20
byttt pusm
for m, n=0.

Type BDII(b) (Spin(2n+1)/Spin(2n)). The following is an immediate
result of [10], §13, Theorem 10.3.

Theorem 3.6. K*(Spin(2n+1)/Spin(2n))= N\ (B3) for n=1 where Az,=
Az —2"1

4. DII

We regard U(n) as a subgroup of SO(2n) by the map

A= () = ((Zorvms The )
Xoi 27 Xgi-1,27-1

where a;;=%,;_, ;;_,+V —1 %, 5 (1=4,5=n).
We see that the canonical inclusion map of SO(2r—1) to SO(2n) induces
a homeomorphism

(4.1) SO(2n—1)]U(n—1)~SO(2n)|U(n)

bacause of SO(2n—1)N U(n)=U(n—1) and SO(2n)=U(n)-SO(2n—1). Let
n: Spin(2n)—>SO(2n) denote the two fold covering map of SO(2n) and define
U(n) (resp. U(n—1)) to be the inverse image of U(n) (resp. U(n—1)) by =. By
(4.1) we have homeomorphisms

(4.2) Spin(2n—1)|Un—1)~ Spin(2n)] U(n)
and SO(2n)|U(n)~ Spin(2n)| U(n) .

Next we shall consider the complex representation ring of U(n). Let T
be the standard maximal torus of U(n) and put T=="*(T), which becomes a
maximal torus of U(n). Here, using the notation of [10], §13 we define the
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homomorphism
2 R(D) [ua] (wa—(et: et} ™) = R(T)

by flx+yus)=n*(x)+7*(y)(et, - atw)* x,y=R(T). Then we can easily
check that f is isomorphic and compatible with the actions of the Weyl groups
of U(n) and U{(n), and so we have

(4.3) R(U(n)) is isomorphic to the algebra

2DV vy Ny (V) 1
where I is the ideal generated by the elements
(W) (N"py) ' —1 and ud—(N"p,) " .
Theorem 4.1. With the above notation
K*(sz’n(Zn)/ﬁ(n))z!Fg? Z(uogh - gins?

0Sk<n—2
for n=2 where

go=ta{ 3 S (—1)(Dglm, 25,4 -+ Zou— ki 1))

Rt oiRe,

for k=1, .-, n—2 and
&(n, 1) = 7\‘”_’.Pn"l'7\'”_‘._zpn‘*‘ e
for i=0, -+, n.
Proof. Denote by i,: Spin(2n—1)/U(n—1)—Spin(2n)/U(n) the homeo-

morphism of (4.2) and put

R( T) = Z[av al_I’ *tty Olyy a;l’ (a1"°an)—1/2]

using the notation of [10], §13, Proposition 8.3. We proceed by induction on =.
The homomorphism i¥: K*(Spin(4)]U(2))—K*(Spin(3)/U(1)) is isomor-
phic, and we have
RUQM) @  Z=Zla"]/(a"—1)),

R(Spin(3))
i¥(u) =a
when we put R(U(1))=Z[a'?, @ '/*]. Therefore we get the statement when
n=2.
Put E=Spin(2n+1)|U(n), F=Spin(2n)|U(n) and denote the inclusions

(F, $)—(E, p)—(E, F) by i and j respectively. Then there is a short exact
sequence

0 — K*(E, F) 2> K*(E) - K*(F) > 0.
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Moreover we denote the projection E— Spin(2n-+1)/Spin(2n) by p. Then we
have an isomorphism

@: K¥(F)@K*(Spin(2n+1)/Spin(2n)) — K*(E, F)

defined by j*@p(x®@A3z,)=yp*(A3:) * K(F) where y is an element of K*(E)
such that 7*(y)=x.

Here suppose that the assertion for K*(Spin(2n)/U(n)) is true. By Theo-
rem 3.6 we may assume that K*(Spin(2n+1)/Spin(2n))= A (Azm—2"""). Con-
sider the element ¥, p*(Am—2""") of K*(Spin(2n+2)/U(n+1)). By the
definition of Az,

P*(Az—”_zn—l) — un(hn—lp”_i_xn—spn_‘_ ”.)_2’!—1 .
Hence
ap*(An—2"") = i {Dai(g(nt+1, 29)—g(n+1, 25+ 1))} -2
because of i¥,,(g(n+1, i)—g(n+1, i+1))=n""'p,.
For the completion of the induction it is sufficient to prove that
(nrit)*(nnn{ 2 gEi’ié(—1)"(”‘21)45,’(”-%1,2$1+----i-ZS:m—k-i—i)}) = &k
1= S gy 21
for k=2, ---,n—1. This follows from the following equalities:
un+1(s =1 2 22::5(—1)'(“"1)g(n+1: 251+ "'+2Sk+1—k+i))
1210 8y 21
= Upi { > 2 z(g(”‘l‘l: 25,4 o255, —R)+ 20 (— 1) (D) +(e21))g(n+1,25,
521,003, 21
et 284y — Rt i) (— 1) g1, 26,4 -4 24, +1)}
=l B S Dy 8+ L, 264254 200, )
25,
_g(n‘l"lr 2S1+"' +25k+23k+1_k+l+1)))}

and g(m, j)=(tn+1t)*(Xuz:(8(n+1,j+2k—1)—g(n+1, j+2k))) for j=0.

5. EI and FI (1)

In this section we discuss the symmetric spaces E/PSp(4) and F,/Sp(3)
X SU(2)(=F./Sp(3)-SU@)([11], p. 131).

We reproduce the Dynkin diagram of F, in [I] added the maximal root
@ and the simple roots a,, :**, a, corresponding to the vertexes.

a, o o ao —a

o N W Ady,
26 273 1274 52

(5.1)
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Then the Dynkin diagram of Sp(3) X SU(2) is obtained by omitting the vertex
with the symbol a,. :

B B B B
5.2 o O&==o )
(5-2) P Aps Aps P
6 14 14 2

where the explanation of the symbols and the numbers is quite similar to that
of the above diagram.

According to [16], Tables I, III and VIII, the fundamental weights of F,
and Sp(3)-SU(2) determined by the above fundamental root systems are as
follows:

w, = 20,1+ 3a,+40 420, = & ,
w, = 3a,+6a,+8a;+4a, ,

w, = 2a,+4a,+6a,+ 30, ,

w, = a,+2a,+3a,+2a,,

w,= Bl‘*‘ﬁz"'%ﬁa,

W,= B,+28:+8;,

By= B,+2Bs+ 3 Bs»

(5.3)

-1
W= 76 .
Hereafter, for simplicity we denote the weights m,a,+---+ma,, 1,8+
+n,8,, n,8,+ -+n,8;+nB by (m,---m,), (n,+-n;) and (n,---n,, n) respectively.
Since p, is the irreducible representation of Sp(3) with (1 ll> as the

2
highest weight, by acting the elements of the Weyl group on it we get the all

weights of p,:

5o (1) (1) (03) (0-1) (0-1-3) (-1-1-3).

Let 7: Sp(3)- SU(2)—F, be the inclusion of Sp(3): SU(2) and ¢*(w) denote
the reduction of a weight w of F, to Sp(3)-SU(2). Then we have
*(—a) = B, i*(a;) = By 1*(a)) = B, and *(a) = B,
and so using the first formula of (5.3)
. 3 1
* =(—-1—-2—=, ——
i (1000)_( 1-2—3, 2>,
1*(0100) = (001, 0),
(5.5) i%(0010) = (010, 0)
1*%(0001) = (100, 0) .
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Proposition 5.1. With the notations of (5.1) and (5.2) we have in R(Sp(3)-
SU(2))

() #(p") = Npstpeps—1,

(i) *(Adr,) = pNps—Npstpitpi—paps—1.

Proof. By restricting all the weights of the adjoint representation of E, to

F, we obtain those of o/, which are listed at the end of this section, since we
know all the roots of F, ([16], Table VIII). It follows obviously that the we-

ights of p, are %,8 and —%,8.

(i) When we observe the restrictions of the weights of p’ to Sp(3)-SU(2)
making use of (5.5) we get (i).
(ii) Considering that

Adspay = pi—Np, and Adgsye, = p;—1
we get (ii) similarly. q.e.d.
Lemma 5.2. In R(Sp(3)-SU(2)) @ Z we have
) R(F
(1) Npy= —p.pst27,
(i) pA’py = —p;—p;+80,
(iil) ps\°ps = pipi+popa—pi—27p;—30p,ps+432,
(iv)  (AM°ps)’ = p+ps—pip3+54p5ps+2p.03+ 6003
—216p,p,—136p2—812p2-6080 .

Proof. (i)and (ii) These are immediate results of Proposition 5.1.
(iii) From (i) of Proposition 5.1 we get
i*(xzp,+PI) = 7\'2(pzpz«x)‘}_(pzf:’:‘x)%'zpa‘l'7\'2()'293)
and by the direct calculation we have
{xz(PzPa) = (p;—2)\°pstp3
N(N'ps) = psA’ps—A7ps .
Therefore,
*(\p') = P37N3P3+(P§+P2Pa*4‘)7\2Pa+(P§_PzPa—l—1)
and so from (i), (iii) follows.
(iv) By the direct caluculation we get
N(p) = 2p3—2
NH(pY) = —2(\Fp.) 420007,
NM(Nps) = (Nps)'—pi+1
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and from (ii) we have

(Mps)*+ (P —2)N(Wps)+N*(p2) +27(p5)
+ PN pat 2PN st pip; = 3160 .

Therefore, making use of the above formulas, (i) and (ii) we have (iv).

Theorem 5.3. With the notation of [1], Proposition 7.3

K*(E[PSp(4))= A (B(pr—p2)s BV p1— N p))QZ[pL]/((Pi—64)") -

281

q.e.d.

Proof. Let j: Sp(3)-SU(2)—PSp(4) be the inclusion map of Sp(3)-
SU(2). Then we have
J¥(V’ps) = Npstpapst1
J¥(N'p) = pNpst207p,
J¥P) = (ptpo)

j *((7\'394)2) = (7\‘3P3+ P2 ps - Pa)2

j*(p4(7\'sp4)) = (P2+Ps) (7\'3P3+ 927\'2P3+P3)
and from Lemma 5.2 we have in R(PSp(4)) @ Z
R(Hg)

Ap, = 28

N, = —pi+134

pPNp, = —pi+512

(Mp.)? = pi—191pi+11264.
This and (2.2) show that

R(PSp(#)) @ Z = Z[p]/((ri—64))

and so Theorem 5.3 follows from [I], Proposition 7.3.

q.e.d.

(5.6) The weights of p” and the positive roots of F, are as follows respectively:

1232
1231
1221
1121
1111
1110
0110
0010
0000

0121
0111
0011
0001
0000

2342
1342
1242
232
231
221
220
120
110

et ek ek e e e

1222
1122
0122
0121
0120

1121
1111
0111



282 H. MINaAMI

00-10 000-1 1100 0110 0011
0-1-1 0 0 0-1-1 1000 0100 0010
-1-1-1 0 0-1-1-1
-1-1-1-1 0-1-2-1
-1-1-2-1
-1-2-2-1
-1-2-3-1
-1-2-3-2

where the sequence of integers m,---m, indicates a weight m,or,+-

6. EI and FI (2)

This section is a continuation of the section 5.

Put
(6.1) x=p;,y=(p,Fps) and w= ppstx.
Then
(6.2) W’ = xy

obviously. We obtain from Lemma 5.2

(i) Ap, = x—w+27,
(6.3) (iii) p,A°py = —2x+(2w—y-+80),

(iv) pAp, = (2—w)x+(w’—28w—y+-432),

V) (Mpy) = —&*+(2w—48)x*+(—w’+-44w—732)x

~+(6w*+ 56w —2yw--y*—136y-+6080)
and from Theorem 5.3
(6.4) (y—64)°=0.
From (6.2), (iii) and (iv) of (6.3) we have

(6.5) (i) w4 (—w’+24w—512)x+4 (4o*—yw+80w) =0,

+80y) =0.
From (6.2) and (6.5) we have
(6.6) —w'x+w'— 24w’ —4yw+512w+4y*—80y = 0.

0001

cot-myo,.

(i) —wx’+(20*—24w+512)x+(—w*+ 20w+ 5yw— 592w —y*
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From (6.2), (6.4) and (6.6) we have
(6.7) w'—yw*+ 24yw’ +4y*w—512yw—112y*+ 12288y — 262144 = 0 .
From (6.2), (iii) and (v) of (6.3) we have

(6.8) x4+ (48— 2w)x’+ (w’ — 44w+ 736)x° - (— 6w — 64w — 6400)x
+(2w*+ 144w’ + 320w — yw* — 4yw+-y*—160y4-6400) = 0 .

(2.2), (6.1) and (6.3) show that R(Sp(3)-SU(2))R<§‘)Z is generated by the
elements x,y and w as an algebra and moreover (6.4), (6.7) and (6.8) imply
Lemma 6.1. R(Sp(3)-S U(2))R§:)Z is generated by the elements x“ybw°®
for a,c=0,1,2,3 and b=0, 1,2, as a module.
Let M denote the submodule of R(Sp(3)- SU(Z))R(@‘)Z generated by the
elements:
1,x, %% %%y, w, 0, o, xw,
yw, y'w, yu', y'u', yw', y'w®
From (6.4) and (6.7) we have
(6.9) yw'eM for i,j=0.
Hence, from (6.6) we have
(6.10) xwit*eM  for j=0.
From (i) of (6.5), (6.9) and (6.10) we have
(6.11) vw'eM  for j=0.
From (i) of (6.5) and (6.6) we get
(6.12) x'w = w'—28w*+432w— 3yw—24xw+512x+y*—80y

and so we see that x*w, #’w, ¥’ and x’w® are contained in M from (6.9), (6.10)
and (6.11). Thus we obtain

Lemma 6.2. With the above notation
R(Sp(3)-SU22)) @ Z=M.
R(F

Theorem 6.3. With the notation of (6.1) K*(F,[Sp(3)-SU(2)) is a free
module generated by the elements

2 3 2 2 3 2
1, x, %% &%y, %, w, w?, w*, xw, yw, yw'* .
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Proof. Let N be the submodule of K*(F,/Sp(3)+SU(2)) generated by the
elements mentioned in the theorem.
From (iii), (iv) and (v) of (6.3) we have

—x*+(Bw—48)x’+(— 3w+ 94w —736)x*
+(w*— 42w+ 768w+ 5376)x+ (— Sw*— 168w° — 7456w 2yw?
—y*w+162yw+y*—512y+4-34560) = 0.

From this equality and (6.8) we have

wx’~(—2w°+ 50w)x’ 4 (w* — 48w*+ 704w — 1024)x
+(— 3w’ — 24w’ — 7136w+ yw’—y*w-+158yw+2y°*—672y-+40960) = 0 .

Moreover, from this equality, (6.5) and (6.6) we have
(6.13)  y*w = 512x*—512xw-+12288x— 10240w-+192yw— 512y+40960 .

This shows
(6.14) y'weN .
From (6.4) we have
(6.15) Y = 192yw’—12288w’+262144x

using (6.2) and so

(6.16) yw*eN .
From (6.2) and (6.13)
yw' = x(y'w)

= 512x°*—512x%w-+12288x*— 10240xw-+ 192w — 5122%°+-40960x .

and so we have
(6.17)  yw’'eN
since ¥’'we N by (6.12). From (6.15) and (6.17) we have
(6.18) yw*eN .
(6.14), (6.16), (6.17) and (6.18) imply Theorem 6.3 since K*(F,/Sp(3)-
SU(2)) is a free module of rank 12. q.e.d.
7. Flland G

Type FII(F,/Spin(9)). According to [15], Theorem 15.1 we have in
R(Spin(9))x§)Z
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ANp, = —A+25

py = —Ay+52
Ap, = AJ—23A,+196
(A,—16)° =

This proves
Theorem 7.1. K*(F,/Spin(9))==Z[A]/((A,—16)°).

Type G(G,/SU(2)-SU(2)). We observe the extended Dynkin diagram of
G, with the irreducible representations corresponding to the vertices and their
dimensions written next to vertices ([16], Table 30):

OEO o
(7.1) o Adg,
7 14

where «,, o, are the simple roots and & is the maximal root.

Let us denote by o the involutive automorphism of G, for the symmetrlc
space of type G ([11], Theorem 3.1). 'Then we see that the subgroup consisting
of fixed points of o is S U(2)2<SU(2)(=S U(2)-SU(2)) where Z, is the inter-

2

section of the centers of the two groups SU(2), and its Dynkin diagram is ob-
tained by omitting the vertex with the symbol a,.

B B
(72) P2 pzl
2 2

in which the explanation of the symbols and the numbers are as in the diagram
of G,.

If we denote the fundamental weights of G, and SU(2)-SU(2) by w, and
w,; for k=1, 2 respectively, then we have from [16], Tables I and IX

w, = 2a,+a,,
w, = 3a,+2a, = &,

(73) w,= %Bl ’
w,= %:82 .

Let 7: SU(2)-SU(2)—G, be the inclusion of SU(2)-SU(2) and i*(w) be
the reduction of a weight w of G, to SU(2)-SU(2). Since
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*(a,) = B, and *(—a)=B,,
we have by (7.3)
*(a,) = B,

(7.4)
i*(az) = ——%Bl——%ﬁ2 .

Proposition 7.2. With the notation of (7.1)
(i) *(p) = Pitpop/—1,
(il) *(4ds,) = pi+p,"+pp,'—2p.p,'—2

where i*: R(G,)—R(SU(2)-SU(2)) is the restriction.

Proof. Denote the weights m,a;,+m,a, and #n,8,+n,8, by (m, m,) and
(n,, n,) respectively.

(i) Since p is the irreducible representation of G, with (2 1) as the highest
weight, by operating the elements of the Weyl group on it we see that the
weights of p is as follows:

2 1) (1 1) (10)(00)(—10)(—1 —1) (—2 —1).

Consider the restrictions of the weights of p to SU(2)-SU(2) using (7.4) then
(i) follows because the weights of p, and p,” are

(3:0) (~40) i (0 3) (0 )
respectively.

(i) From [16], Table IX the weights of Adg, are as follows:

(32)(31)(21)(11)(10)(01)(00)(—3—2)
(=3 —1)(—=2 —1)(—1 —1) (—1 0) (0—1) (0 0)..

By observing the reduction of these weights to SU(2)-SU(2) we obtain (ii)
analogously. q.e.d.

Theorem 7.3. K*(G,/SUR) X SU@)=Z[]/((pi—4))
with the notation of (7.2). ’

Proof. By Proposition 7.2 we get in R(SU(2)- SU(Z))R(? VA
)
Pitpup,’ =8 and pitp*+pip/—2p,p, = 16.

From these equalities we have
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pop,’ = 8—p;
p.” = pi—11p;+32
(pi—4)P =0.

Therefore the theorem is proved because R(SU(2)-SU(2)) equals the ring
Z[py, Py, p7) qeend.
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