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1. Introduction

Dieudonné [I] showed that a commutative formal group over a perfect field
k of characteristic p>>0 corresponds to a certain type of matrix whose entries
are elements of a certain non-commutative formal power series ring over the
ring W(k)of Witt vectors over k. He also showed in [2] that if k is an alge-
braically closed field, then any commutative formal group over k is isogenous
to a direct product of simple commutative formal groups Gy, With (7, m)=1
and commutative formal groups of Witt vectors of finite length.

Honda [3] studied the theory of commutative formal groups over a certain
type of local ring o which is a generalization of the ring of Witt vectors W(k).
He lifted a commutative formal group over the residue field k£ to a commutative
formal group over o so that the both groups correspond to the same matrix.
As a special case, he obtained the Honda groups H, .(=G,,,in [3]), whose
reductions coincide to the Dieudonné groups G, . if k£ is a perfect field and
o=W/(k). He also found that the endomorphism ring of a #-dimensional com-
mutative formal group over o is isomorphic to a certain subring of M,(o).

The purpose of this paper is to determine the endomorphism rings
Endo(H, ,,)of the Honda groups H, ,, explicitly, by calculating the inverse of a
certain element of a non-commutative formal power series ring. Since the ring
is not commutative, we must distinguish many words in the expansion of the
above-mentioned inverse. The basic fact is that the word vanishes unless it
has an exceptionally regular form. As an application of present results we shall
study the relationship between the commutative formal groups and their endo-
morphism rings in the forthcomming paper.

The author thanks Professor Honda for suggesting the problem.

2. Preparations

Throughout this paper, we shall use the same notation and terminology as
in Honda [3].
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Let K be a field of characteristic zero, v a normalized discrete valuation of
K and o its valuation ring. We shall denote by b the maximal ideal of o, by =
a prime element of p and by k the residue field of 0. We shall assume that
p I1 Z contains a rational prime p and we shall set »(p) =e(>0). Moreover we
assume that there exists an endomorphism o of o such that

a’® = a? modp

for any a in o, where ¢ is a power of p. We shall fix 0 and & throughout this
paper.

Let n be a positive integer and m a non-negative integer. Let B,=
M, (K),[[T]] be the formal power series ring over the matrix ring M ,(K)with
the commutation rule

TA = AT  iiiieiiiie .(*)

for any 4 in M,(K). Let 2, be the subring of B, consisting of the elements
whose coefficients are in M,(0). We define nxn matrices N., N_and D, with
a in K in the following way:

Ny=["01 O N_=I"(1) 0 D=[a""" 0

| .. a’

0 , 0'1] o], 0 a

We shall set
w=n{l,—D,*N,T—D,'N_"**T™")
where I, is the unit matrix of order n. We shall easily see that

N*"'=[0 0

0 O

We adopt here the convention that N,.=0 and N_""'=1in case n=1. As
is easily seen z 'u is invertible in B,. We shall define the matrices B,’s by the
relation:

() '=u'nr =1,+>%1B,T".

For any column vector x=*(x,, ***, x,) of variables x,’s, we shall define a column
vector A(x)="(h(x), -+, h,(x)) of formal power series in K[[x]] by

h(x) = x+3>%1 B,x¥,

where x"r=’(x1"r,--~, x,,"') for any positive integer ». After these preparations
we shall define the formal group H(=H, ,,)by the equation:
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H(x,y) = b7 '(W(x)-+h(y)) -

This H is defined over o (cf. Theorem 2, [3]).
Now we are going to determine the endomorphism ring End, (H) of H
over 0. For this purpose several preparatory considerations will be required.

Lemma 1. For any non-negative integer k, we have
N n—lN+kN n_lf——-XOk n_;\er vn~1
where O denotes the Kronecker’sd.

The proof is elementary and will be omitted. For notational simplicity

we set

throughout the rest of this paper.
Lemma 2. For any a in Kwe have

N,TD,= D,N.T,

and

N_n—le-(-le — Dw’t‘N—n—-le-}-l .
Proof. By the commutation rule (*) we have
N,TD,= N,D,,T=[0a"""0 1T =D,N.T,

o

0 0
similarly we have

N_*'T™"'D, = N_""D,”""'T™* = [0 07 1+
0 m+
a0 0
= D,SN_*7T™*
Theorem 1. Let Uand V be defined by
U= D,'N.T, V=D, 'N_**'T"",
Then we have the fallowings:
a) Uk= D, *N_ *T*.

For any positive integer \ and non-negative integers r(1), -- ,7(A—1); i, j we have
the following two assertions.
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b) Ifr(s)F=n— 1 for some s, then we have
UiVU™ DY@ YU DY U =0 .

c) Ifr(s) =n—1for any s, then we have
Uivu vy ®...yu -»yuy?

n ia-T-aSR it - gar INT_#=1RT GTOBEMAGE

where k=i+j—(n—1).

Proof. Since D,™' commutes with N,.T by Lemma 2, we have

U* = (D,'N,T)-(D,*N,T)
=D, "D, (N, T)(N,T)
= D, kN *T*

Next we shall prove b). We suppose that there exists §,

This proves a).
Then by Lemma 1, 2 and the fact that any diagonal

such that r(s))==n— 1.
matrices commute each other, we have

vureeV
(DN TN D N Y DN )
= D,/ (N_*'T"")D, TS+t (N Ty CON _*1T"**
= D, D,/ TCotIIN TN TY SO N T

— Dﬂ—l—(r(so)+1)7N_;:—1N+r(s0)N—n-1T2(m+1)+r(so) =0 ,

by Lemma 2. Therefore
UVU V.- VU SV... VU VU =0.
Similaly if 7(s)=n— 1 for any s, we have the following by the

This proves b).
first part of this theorem.

UiV(U Vy-1U7
— (Dﬂ—-,‘N+,'T,')(D7t——1N_n—1Tm+1)(D1t—~nN+n—1N_n—1Tm+n))\~1(D1t—jN+jTj)

i M- 383 (A = 1)+ b1+ 7+

¢ —n 3> A _
= D, GOD, 23T, TNy v T v
RELSERS S LA ; - ;
— D.,,] 245=0 kN+’N_" 1N+JT(m+n))\+h .
Now the theorem is proved.

In Theorem 1 we have defined U and V. We shall define here W% as
follows and these notation will be fixed throughout this paper.
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Wo — Uk
for0<k<n,and
W = 3 nsea UV(UP VP10

for A= 1, |k| <mn. Then we have the following.
Lemma 3. a) W< is a monomial of degree (m+n)\—+kin T.
b) uln = Elk|<n,(m+n))\+k§o W()I;)' [ TTPTTPIPIPRON (E)

Proof. The first assertion is an immediate consequence of Theorem 1.
Now we have

win = (Li—(U+V))" = 220 (U+VY
=L+ U+ V+ U+ UV+VU+ 7+

From Theorem 1 it follows easily that

U = 20 UF+-2i20, j2opz UV(U VYUY
= 22:5 Uk‘f‘Zx,k Ei+,‘=n—x+k UiV(U”_IV)A_lUj
=>WP.

Corollary. If n"=m we have
u-~17r —_ 2 D‘—(ﬂ}\+lz)NkT(m+ﬁ)k+k
where N, denotes N * fork>0, I, for k=0 and N _* fork <0.
This corollary is easily verified by Theorem 1 and by the fact that D,"=D,.
Proposition 1. If m=0 wehave
¥ — Fna (D CTY = S DOCT*

where C=N,~+N_"*""and D is a diagonalmatrix whose (i, 1)-th entry 8}’ satisfies
the condition:

Y(8F) = —s
for any 1.
Proof. We have
ulr = (I,,—D_"ICT)‘I — E 0 (DK_ICT)S
and
(D,"ICT)S = (D"—IC)(D.,Z-IC)G“"(Dﬂ—lc)‘"s_lT" .
We shall see



462 Y. Yamasaki
(D, 'CTYy = D®C*T*

with the desired D® by induction on s. First we have
(D.'CT)Y = I,C°T.

Next we assume

(D *CTY = DOCT* = "8‘? 0 |C°T*

Lo s
with »(8P)=—1{ for any 2. Then we have

(D 'CTY* = (D, 'CT)D®C*T* = D, 'CD®°C°T**

=D,*[01 O07[8¥° 0 CsTs+!
I .

110 O 0 5

=D, [8%° 0 1CTs,
..‘8(:‘)“
L 0 397
We shall set
D(S+1) — 8(5:-{1) o) 1 — D,t-l 8(;)0’ 0
A N 8(;)"'
0 §¢F 0 597,

It is easy to see that
v(8¢IP) = —(s+1),
and this D¢*? satisfies the condition
(Dﬂ—lCT)S+1 — D(S+1)C$+1Ts+1 .
This completes the induction process.

Now we shall see the relationship between W%,
Lemma 4. a) W®R = WXUFU* " kP (U* V)
= UWM (VU YWy U1+
for x=1.
b) W& =UWX
for k=0, A=1.
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Proof. From the defining equation of W% we have

WY = Sizon seb-iz UV (UMY U 00
= (Dizansioizo UV(U VYU 250U
+ Un—H-kV(UrhlV)k—l
= WU+ U (U V)R,

The second equation of a) is obtained in a similar way. b) is an immediate
consequence of a) and the fact U”#=0 for k=0 (cf. Theorem 1).

Lemma 5. Suppose A=1. Let XV=[x;%],Y®=[y,¥] and Z®=
[2:%] be matrices in M, (K)satisfying the following equations (cf. Theorem 1)
respectively:

X(A)T("H—n)h — (Un-l V)A
Y()\)T<m+n))\ — (VU”_I)A
Z(A)T(mﬂt))\—l — W_(i\) .

Then we have the fallowings :
a) x%=0 for (i,7)*=(1, 1), and v(xY)= —nr.
b) y.Y =0 for (i,j)F(nn), and v(y,N)= —nr.
) %Y =0 for i— %1, and v(z,N;= —nr+1
for tffry § withj <n.

Proof. This lemma is an immediate consequence of Theorem 1 and the
fact that z°° is a prime element of p for any s.

We shall set £P=x,%, % =y,% and 7Y=2,% ;for anyj <n. These nota-
tion will be fixed throughout the rest of this paper.

Lemma 6. End, (H)=M,(oN u'Wu.

We owe this lemma to Honda [3] (Corollary of Theorem 3). We shall
identify Endo (H) with M ,(0)N 2 *W,u by the above isomorphism.

3. The ring End, (H) in case m>0

In this section we shall determine the structure of Endo (H) more explicitly,
in case m>0. We shall set

o = {a€o|a" = a}

and shall see the following theorem.
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Theorem 2. If m>0,then End, (H)=0'.

Proof. As is easily seen the following three conditions for a matrix 4 in
M, (0) are equivalent:

(1) A=Endo(H).
2 wAu'e¥d,.
B3 z 'wAu're¥NU,.
We shall express 7z 'udu"'z in a formal power series in T as
n udu"tr = D50 M(s)T* .

We shall denote by #n,(s) the i-th row vector of M(s).
First we shall prove that

End, (H)c {D,eM,(0)a" = a} .
Let A=[a;;]be a matrix in M,(0) such that
7 uAu 'z, .

We shall denote by @;=(a;;, ***, @;s)the i-th row vector of A.
Then we have

n'uA = (I,—D.,'N,.T—D,'N_""'T™"A4
=A—D, N, A°T—D, *N_*"14"" T+

- -1
=[la—n""a°T

a, ,—n °a,’T
- m+1
a,—n'a°® TT'.

which imply
7 udu ' = wm WA WY = [ (a,—7" " a,°T) X WY

(@ns—7"a,"T) YWY
(ay—n"a" T T Y WY

Thus we have
(=" "'a T WY =S om(s)T* =0 modo
for any /with :<<n and

(ay—7"'a """ T™) S WY = Somu(s)T°=0 modo.
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We shall look for the condition for a,, +-+,a, so that the coefficient vectors mys)
of T* have integral entries.

Step 1. Here we are looking for the condition
mys) =0 mod o

for any i with :<<z. Since m > 0 we shall easily see that if A =1, k=1 then W%’
is the only monomial of degree (m-+n)A--k in the expansion (E) (cf. Lemma 3).
We shall calculate m((m+n)\)and m;(m+n)r+1). We have

aW®—7""a,,, ) TWN=0 mod o
and
aW®—7""a,, ' TW®=0 modo,
which imply by Lemma 4
a (VU P +(a,U—7""""a;.., " TYWS 0 mod o
and (€)
—7" @, T(U* V) +(a,U— n-f"“‘a,.ﬂvT)Wi”U =0 modo -
By Lemma 5 we shall see that a(VU""), (@ U—=n"""" ‘a; " TYWX(a,V—

P

77 a;,"TYWXRU and z~°"~ a,ﬂ”T (U 'V)* are vectors of the following forms:
a,(VU* Y = (0, -+, 0, %),
(@;U—7z""" ' an TYWE = (%, -, %, 7,
(a;U—n"""a, s T)WRU = (0, *, -+, %),
—7 ", T(U " 'V= (%, 0, -+, 0).
Therefore each of the above four vectors is congruent to 0 mod o from
the congrence (C;). We shall consider only the first, second and fourth of

these congruences. By Lemma 5, we shall reduce these three congruences
respectively to the following forms:

A EPT™™AE 0 mod o,

"7 gt A —
(=" oy = W ) TP =0 mod o

for j<n, and
g a‘_+“o'5(¢')°'T(m+n):\+l -0 mod o .
Thus we have

o;n=0 mod p** |
_ o n—i _n-i
T A ;T Qi ja™ 0 mod p™ |

n—i
77 ;" =0 mod p™+t,
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Let A increase. Then we have
ain =0,
”_an_jaii_”w”_ia,-ﬂ =0
for j<n, and
A" =0,
respectively. Now by these equations, we have seen that
A =D,
where a==t, n.

Step 2. Here we are looking for the condition for A=D, so that the
coefficient vector m,(s) has integral entries. We shall easily see that there
exists at most two monomials W4*Pand W, whose degrees are (m-+n)n+m--1
and unique monomial W% whose degree is (m-+n)A in the expansion (E)
(cf. Lemma 3). We shall consider the congruence

m((m+n)r+m+1)
= @ WG+ a W —n " T
=0 modo. (Cy)
Here we have
a, Wity =0, 0,a)(VU* W,
a W1 =0
and
x7ta, " TR
=z a’, 0, , )T (U 'V +WXU) .

Therefore we have

m,(m-+n)x+m-1)
= (0, - ,0,a)(VU" WV
_n-‘l(af’ 0, -+, O)T"’_I((U"_IV)"—I— WQ{U)
=(0, -, 0, Q)V—n"Y(a",0, «++, )T YU 'V )
= ((a, 0, +++, 0)z ' T™ "' —7~ ("0, +++, O)T™ YU V) .

Hence by the congruence (C,) we have

(a, 0, -, 0)—(a", 0, -+, 0)z T (U*'V)= 0 modo.
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Let A increase. Then we have

(a: 07 * ,0) = (aT) 0; Tty 0)

namely

Now we have proved that any matrix 4 in M,(o)such that

rudAure A,

must be of the form

A =D,
with a"=a.
Conversely if a matrix A in M (o) satisfies
A=D,

with a¢"=q, then A commutes with N_**7”** N.T and D,”'. So A com-
mutes with =~ ‘u=I,—D,*N,T—D, 'N_*"*'T™". Therefore

7 WwAu 'r = Ar"'uu'r = A€, .

The ring consisting of such A4 is isomorphic to the ring ¢’ of @ in o with
a’=a. Now Theorem 2 is proved.

4. The ring End; (H) in case m=0
In this section we shall determine End, (H) more explicitly in case m=0.
First we shall prove the following proposition.
Proposition 2.  If m=0, then
End, (H) = {A€M,(0)| D.AD, ™ = CA°C*} .

Proof. As in Theorem 2 we shall identify Endo(H) with M,(o)N
u 70, x"*u. We have seen in Proposition 1 that

wr = 0 (D 'CTY = Yoo DOCT

where C and D® are defined as in Proposition 1. Then for any 4 in M,(0)

we have

(I,—D,'CT)A X0 (D, CTY
= I,+3%.(AD,'CT—D,*CTA)D,'CT)y
= I,+2%-0 (4D, 'C—D,*CA*)TD*C*T*

= I,+3 (ADﬂ“C_Dﬂ—1CA0')D(5)°'C$TS+1 .
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Since C and D®°D,~° are invertible matrices in M ,(0), we have

AcEnd, (H)
if and only if
AD,*C—D,*CA°s 0 mod »°

for any s, Let s increase. Then we have that

AeEndo (H)
if and only if
AD,'C = D, 'CA-,
ie.
D.AD,* = CA°C*.
This is the desired result.

Corollary. If m=Wndn—1,
Endy (H) = {a€o|la’"=a} =0’

This corollary is easily verified and the proof will be omitted.
We shall define a left o’-module structure on M,(o) by the following
equation:
a°X =D, X

for any @ in o’ and X in M,(o).
Proposition 3. If m=0,End, (H)is a o'-submodule of M ,(o0).

Proof. We shall only show that End, (H) admits the multiplication of an
element g in o’. For any A in Endy(H)we have

Dao4)D,* = DD, AD,* = DD, AD,™
= D,CA°C~' = CD,°A°C~' = C(D,A)’C~*= C(aod)y'C" .

by Proposition 2. On the other hand ac4 is an element of M,(0). Therefore
we have that a¢oA4 is an element of Endo (H). This is what we desire.

For any rational integer s we shall define a o'-submodule I of End, (H)
consisting of matrices 4’s in Endo (H) such that X®>=AC~* is a diagonal matrix.
Since C*=I,we have

C%1 = (C*2
and
M) — PR
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if s,—s, is divisible by z. By these equations we shall set C*=C*and TO®=9J1”
for any § in Z/nZ which is the reduction of a rational integer s mod n. We shall
denote by S the subset of Z\nZ consisting of §’s such that

M0
It is easy to see that S is a subgroup of Z\nZ
Proposition 4. If m=0 we have the followings '
a) End, (H)is isomorphicto P;cs M as a left o'-module.
b) IM® s afree if -module of rank one for any s in S.
Proof. Any matrix X in M,(0)is uniquely expressed as
X = 3Vczinz XOC°
where X is a diagonal matrix for any s. It is easy to see
D. XD, = CX°C*

if and only if
D (X®CHD, ' = C(X®C3)’C™

for any s. Therefore we have
Ends (H) = ®;e5 M®

as a left o’-module. Now we have proved a). Let XC° and X9°C* be non-
zero elements of M. Then we have

D (XPCHD, = C(XPC)yC?
for each 7. As is easily seen any non-zero element of M is invertible in M(K).
Therefore we have
Dﬁ(X(?{)Cé)Dﬂ—1(D1(X(§)C§)Dﬂ—1)— 1
— (C(X(ijcé)o'c‘1)(C(X(§)C§)6C_l)_1 .
This equation is equivalent to
X(E)X(g)—l — Dﬂ(X(Ti)X(g)—l)Dﬂ—l — C(X(TE)X(g)—l)O'C-l .
Now we shall easily see that there exists an element x of the quotient field K’
of o’ such that
XPXP* =D,.

Since M M,(0) and on the other hand o is a discrete valuation ring, there
exists an element B®’C’ of MS’such that
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IMS = p'o(BSOCT).
Now we have also proved b).
Corollary. [fm=0 and n"=mn, then we have
Endo (H) = {2sez/nzDa;C°eM,(0)|as= o;  for any S} .
This corollary is easily verified and the proof will be omitted.

5. The ring o

From now on we shall determine the ring o’ more explicitly. In this sec-
tion we suppose that o is complete. Let ¢ be the natural map from o to k. For
any element a of o such that "=, we have

Ha)™" = §(a) .
Therefore we shall regard ¢(o’) as GF(g™+™)N k.

Lemma 7. Let k, be a perfect subfieldof k.  Then the ring W(k,)of Witt
vectors is naturally embedded into o so that the diagram below commutes:

0 ? > k
twiky T T Lk,
Wik,) %o > ko

where ¢ yis the desiredembedding and vy js the natural embedding of kyinto k.

Proof. We shall only give the definition of ¢y, here, and the detail of
the proof will be omitted. Now the mapping ¢y, is given as follows.

twarp: 3 Yo(®:) P F> 3 (%) pf

where y (resp. v,) denotes the unique multiplicative representation of &, to
o(resp. W(k,)). From now on we shall regard W(k;)as a subring of o by this
embedding.

Now we shall show the following.

Theorem 3. If m>0 or n=1, m=0 whave the followings:
a) Endo (H) — 0o = Z,[w',7}

where w' is a generator of the group of (¢"*"— 1)-th roots of unity in o, and =’ is an
element of o such that d=v(n') is minimal positive in v(0’).
b) #’is a root of an Eisensteinpolynomialf of degree ¢ =e|d over Z p[w’].
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Proof. We shall set k,=GF(¢"*")N k. Then we easily obtain
W(k,) o',

and find a root @’=+(g)of unity in W(k,)where g is a generator of the multi-
plicative group k,*. Here we shall easily see

W(ky) = Z,[w'] .

On the other hand p is contained in o’. For any non-zero element a in o
with »(a)=d, there exists a pair (x, y) of rational integers such that

dx+ey=(d,e),
therefore we have
v(p’a®) = (d, )
and
pafeo .

Thus we can choose an element 7’ so that »(z’) is the minimal positive value in

v(0’)  For such z’ we have
v(7')|e.

From now on we shall denote d=v(z’). For any element 3 of o’ we have
Vod(B)E W(k,)

and

Vog(B)=  modp .
Since B—+Jrog(B) is invariant under 7, we have
B—vYrog(B)= 0 mod 7’0 . i, (c,)

Let a be an element of o’.  We shall define a series {a;}_,<;<- in o’ and a
series {%;},<; <~ in W(k,) inductively in the following way:

a, =0

x; = Jrod((aa—a;_,)[7"%)
and

a; = o+ xn'

for £=0. Then we have
a = Z?—o x,-7z"' .

As is easily seen 0’ is complete as a subring of o. Therefore we have
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o = Wk)[[~]]

as a subring of 0.  Since y(z’/4)=v(phnd other hand W(k,)is complete, there
exists an Eisenstein polynomial / of degree ¢’=e[d over W(k,)such that

f(=")=0.
Thus we have
o = Wik)[']

as a subring of o, by approximation. Since /is irreducible over W(k,)we can

regard W(k,)[n']las W(k,)[x]/(f(x)). Therefore we have
o= Zyw, 7).
Now our proofis complete.
Corollary. Ifm>0 or m=0, n=1 and moreover e= 1, then we have
Ends (H) = Z,['] .
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