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1. Introduction

Throughout this note R is a ring with 1. We shall write /< R if /is a
right ideal of R. A non-empty set of right ideals I' of R is called a Gabriel
filter if it satisfies

T1. If IeT and reR,then (I:r)eT.

T2. If /is a right ideal and there exists J & I' such that (I:7)T for every
re J,then I T
It is well-known [4] that there is a one to one correspondence between Gabriel
filters of R and hereditary torsion theories for the category of right R-modules.
W. Schelter [3] investigated products of torsion theories or equivalently of
Gabriel filters that for a family of pairs {(R;, T;), T;: Gabriel filter of R;},
Ty= {D<7R;|D23sD,, D,eT;} is a Gabriel filter of the product ring zR;,
furthermore the ring of right quotient of zR; with respect to T, is isomorphic to
the product of rings of right quoteint of R; with respect to T;:(zR;)r,==7(R;)r,
This result generalizes one of Y. Utumi theorems [6]. In this paper these two
sets I, = {D<zR;|D2>nD;,D;= T;} and T',= {D<»R;|D2=D,D,;=T; and
almost all D,=R;} will be studied. T, does not always satisfy T2. A necessary
and sufficient condition for T, to be a Gabriel filter is given. It follows that T, is
a better notion of products of perfect torsion theories. However T, is a Gabriel
filter of #R;, and we use this fact to prove that over an algebraically closed field,
cocommutative coalgebra has a torsion rat functor if and only if each space of
primitives of its irreducible components is finitedimensional.

For a coalgebra (C, A, €) over a field K, there exists a natural algebra
structure on its dual space C*=Homg (C, K) induced by the diagonal map A
and every left comodule (M, ¢,s) over C can be defined as a right C*-module by
mc*=(c*@1)gpy(m)me M, c*=C*. Moroever a right C*-module M is called
a rational module if it is a left comodule (M, ¢,,) over C and its right C*-module
structure is derived in the way described above. With these observations we
can embed the category of left C-comodules €J1T, as a full subcategory, into the
category of right C*-modules J{c+. A subspace / of C* is callecd cofinite
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closed if / = V= for some finite-dimensional subspace V of C.

We assume the reader is familiar with torsion theories of modules and
elementary coalgebra theories. The terminology and notation are those of
Stenstrom [4] and Sweedler [5].

2. Some properties

In this section we derive some properties of I', and I,. For convenience,
we write a pair (R;, T';)as T'; is a Gabriel filter of R;. The following are easily
proved.

Lemma 1. [f [ is a right ideal of R and there exists J T such that
(I:7)ET for r runs through a family of generators of J, then I T

Lemma 2. T, T, satisfyT1.

Proposition 1. If {(R;,T));e;} is a family of pairs and each T'; has a
cofinal family of n-generated right ideals (for a fixed integer ri), then
T,={D<#nR;|D2xD,, D,cT;, all icl} is a Gabriel filter of xR;. Moreover

I I I

(”Ri)l‘.. = ”(Ri)pi .

Proof. It only has to check T2 for I',. Let T'<zR,and D €T such that
(T: rf)elli for every d=D. We can assume D=zD;, D,eT; and each D; has
n generators; x3, °*°-, 7. Construct n elements of zD;as &'=(x3), *--, ¥"=(«7),
then we have (7: x’)eT,. Therefore for eachj=1, ---, n, there is #D{” where
D = T'; such that x’zD{’c T. Howevre for fixed i the finite sum

Ji= Z”] xD’T; by Lemma 1 and zJ,=x'7zD{+----F«*2D{. This shows
=1
that 7r],-C TE Pl‘

Next we find an isomorphism from z(R,)r, to (zR;)r,. Let ([f:])E(=R))r,,
where f;&Homg. (D;, R;/(¢{R;))and [f;] is its equivalent class in (R,)r, and
define a =R;-homomorphism / from #zD; to =R,t(xR,)as f((d.))=(fd;)).
Since #(wR,)= nt(R;), m(R;[/t(R,))==R;[t(xR;}ye have a well-defined map «
from z(R;)r,to (zR))r,, as a([fD=1/], for if f; and f; agree on D; for each i,
then the corresponding f and f' agree on zD;. It is routine to check that a is a
one to one ring-homomorphism. Let f: zD,—nR,[/t(xRpe a mR,-homomor-
phism, D &T;and define f;==,fe;, where e; is the ith-inclusion, =; is the ith-
projection. Then a([f;])=[f]. Thus « is an isomorphism.

Note. (1) we agree that » generators of right ideals are not necessary
distinct.

(2) In proposition 1, T, also has a cofinal family of n-generated right
ideals.
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Proposition 2. [f {(R;, T,), i€I} is a family of pairs, then T,=
{I<zR;|I27D,;, D;&T; and almost all D,=R}} is a Gabriel filter of nR;.
I I I

Proof. Similarly it only has to check T, for T',. LetI<=zR; and DeT,
such that (/: d)yeTforalldeD. We can assume D==D,,D;= T, and except
for D;,,k=I, <<+, n, all other D, are equal to R;. Let eezD;be an element
with 7,-th component=0, other component=1. It follows that there is a right
ideal of the form = J; with J;&T; and almost all Ji=Ri such that I2DerJ;.
Also for each d;eD,, there exists a right ideal J{’€&T,, such that
I>e;(d, J®), where e;, is the 7 th inclusion. Now take H;,=>1d; J{,the

sum runs through all elements of D,,. We have H; &T';and
(¥) I 2 en]+e,(Hy)t+ +e,(H;,) -

However the right side of (*) is of the form = J; with J,€T'; and almost all
Ji=R;. ThusIE&T,.

3. Products of perfect torsion theories

For a fixed ring R with a perfect Gabriel filter I', we will investigate the

notion of their products.
The following two theorems (Chapt. 13, [4]) motivate our definition.

Theorem A. Thefollowing properties of a pair (R, T) are equivalent:
(1) Ker(M—>M QrRr)=t(M) for all right R-module M.
2 Yr(I)Rr=Rdor every /T.

Theorem B. If ¢: A— B is aring homomorphism. The following statements
are equivalent:

(1) ¢ is an epimorphismand makes B into a flat left A-module.

(2) The family T of right ideal I of A such that ¢(I)B=B is a Gabriel
filter , and there exists a ring isomorphism o: B—Arpsuch that c¢=nlr,.

(3)  Thefollowing two conditions are satisfied;

(3a) for every bE B, there exists a finite subset T,={(s;,0,), ***, (S, ba)} of
AxB such that bg(s;)E ¢(A4)aud >34(s)b,=1.

(3b) #if p(a)— O, then there exists a finite subset S,= {(s,,8,); ***s (Sus bu)}
such that as;— 0 and 3 ;¢4(s;)b,=1.

Note. A Gabriel filter I' of a ring R is called perfect if it has properties
listed in Theorem A. If I is perfect, then

(1) T has a cofinal family of finitely generated right ideals.

2 FZ{I <R| \l’R(I)Rr‘—“Rr‘} .

DEFINITION. If T is a perfect Gabriel filter of R, for each b= Rypdefine Ind
b=inf | T,|, T, runs through all subsets of R X Ry that satisfy Theorem B, 3(a).
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If Yrp(r)=0, define Ind r = Inf |S,|,S, runs through all subsets of RX Ry that
satisfy Theorem B, (3b). Then let

Ind Rr= Max {sup (Ind d), sup (Indnr)}.
bERp PYgtr)=0

Theorem 3. The following statements are equivalent for a perfect Gabriel
filter T of R.

(1) T has a confinafamily of n-generated right ideals.

(2) T,= {I<#zR|I272D,, D,cT} s a Gabriel filter of =R, for any direct
product of R.

(3) I1id Ry is finite.

Proof. (1)=(2). By Proposition 1.

(2)=(3). IfT,is a Gabriel filter, then it is perfect. Suppose there is a
sequence {b,,b,, ***,b,, - |b,= Rr}such that Ind b,>1Ind b,_,. Consider the
countable product #zR of R and the element x=(b,, b,, *+*). Then we have
81, oo, S, ExRxy, + -, the(tt,R) 712, such that xyr(s;) EyrrRand 2 yr(s;)x,=1 «
Projecting to each component, Ind b,<t for each n. This is a contradiction.

Similary we can prove that Sup {Indr} is finite.
W RCr=0

(3)=(1). If Ind Ry is finite, then any direct product zRp of Ry satisfies
Theorem B, (3). So the product zRy is a ring of right quotient of #R with
Tl ITl

respect to this perfect Gabriel filter = {D<7zR|$(D)xRr=rnRr.} Applying
Tl
the well-ordering theorem to the family I', the right ideal g%),.is inI. So zD;
D;€=

D,er
contains a n-generated right ideal J&T'. For each 7 J,, the i-th projection of

J is contained in D;. Since rp(J;)Rr=Ryr,J; €T. This shows that T' has a
cofinal family of z#-generated right ideals.

EXAMPLE. Let Z be the ring of integers, I'= {all non-zero ideals of Z},
take a countable product zZ of Z, then o= {I<7Z|I123eD, D,=T} is not
a perfact Gabriel filter. However I''= {/ < 2Z\ I2=D,;, D;T} is perfact.

4. Applications to coalgebras

In this section we consider a subfunctor of the identity for the category
of right C*-module N« and study when this subfunctor defines a hereditary
torsion theory. The main effect is to classify some types of cocommutative
coalgebras. If C is a coalgebra, for a right C*-module M there is a unique
maximal rational submodule M™t of M. Actually M™t={me M | Ann(m) is
cofinite closed in C*}. There are some properties of s

(1) If (M, ¢y) is a left C-comodule, M can be considered as a right
C*-module by mc*=(c*@1)pa(m). Then (M )™=*=M.
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(2) Direct sum of rational C*-modules is rational.

(3) (CH)==C.

(4) For a submodule N of a C*-module M, N®t=NN M ™,

(5) Homomorphic image of a rational module is rational.
So we have a subfunctor rat of the identity on Jl{.« just assigned each C*-
module M the maximal rational submodule M™* and each homomorphism /:
M — Nthe restriction map f: M™t—Nwt,

DEFINITION. A coalgebra C is said to have torsion rat functor if rat is a
left exact radical of JCcx.

Note. If C has the torsion rat functor, then

(1) the category of left C-comodules or equivalently of rational right
C*-modules is the torsion class.

(2) the corresponding Gabriel filter is

I' = {IKC#* [ is cofinite closed in C*} .

EXAMPLE. Let V be an infinite dimensional vector space and C=C(V)
denote the connected coalgebra K© V with

A(v) = 1Qv+o®1 Yoel
6(1) =1
&) =20 VYoel .

Take a basis {v;/i I} of Vand let {v¥*|ieI}be its dual independent set in
V*. Extending this set to a basis {vFf|i€I}of V*. We construct a linear
map / from C* to K as

{f(v;“) —1ifiel
=1,

this element f&C= C**?' however fo¥= f(v*)l=C for any v¥*V*. So
(C**/C**rat)rat:t:o.
The following proposition is proved in [2, p. 521].

Proposition. Suppose C is a coalgebra and 0—~M'—M —>M"—0 is an
exact sequence of right C*-modules with M' and M" rational. If the annihilator
of each m"EEM" is a finitely generated right ideal, then M is rational.

Note. From the proposition, we see that if C* is a right Noetherian, then
C has the torsion rat functor. In particular the universal cocommutative
pointed irreducible coalgebra B(V) over a finite dimensional vector space V
has the torsion rat functor.
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Proposition 4. [f D is a subcoalgebra of C, then D has the torsion rat
functor provided C has.

Proof. There exists a ring epimorphism =z: C* — » D*,  Every D*-
module M is a C*-module by mc*=mn(c*). Thus (Mp«)?*=(Mc+)™* and
(MD*/MD*rat)rat_: (Mc*/MC*rat)ratZO.

Corollary 5. For any pointed irreducible cocommutative coalgebra C, it
has the torsion rat functor if and only if its space of primitive elements P(C) is
finite-dimensional.

Proof. If P(C) is infinite-dimensional, the connected sub-coalgebra
D=K @P(C) of C does not have the torsion rat functor. Conversely if P(C)
is finite-dimensional there is an inclusion map from C to the universal
cocommutative pointed irreducible coalgebra over P(C). So by Proposition 4
C has the torsion rat functor.

Theorem 6. (*) If {C;|i=1I} is a family of coalgebras and C; has the
torsion rat functor for each 1t 1. Then the direct sum C=3>eC; has the torsion
rat functor.

Proof. Let T, = {D;< Cf|D; is cofinite closed in C¥}, and T=
{D< C* =zC¥D is cofinite closed in C*}. By proposition 2 T,=
{I<=C¥|I>=D; D;cT; and almost all D,= C¥}is a Gabriel filter of
C*=zC¥. Hence it is sufficient to show that T=T,. If D&T, then D=V " for
a finite dimensional subspace VofC=31sC;, and so V< C;P -+ @C;, for some n.

For each 2, let V, be the projection of V'to C;,. Then V;is a finite-
dimensional subspace, almost all V,=0 and V<=V, Hence we have
VS V+=DeT,. Conversely suppose I T,, since / contains a cofinite
closed subspace zD;, so / is also cofinite closed. Thus T'=T,.

Corollary 7. Over an algebraically closed field, a cocommutative coalgebra
has the torsion rat functor ifand only ifeach space of primitives of its irreducible
components is finite-dimensional.

Proof. Over an algebrically closed field, a cocommutative coalgebra is a
direct sum of its pointed irreducible components. So by Theorem 6 and
Corollary 5, we have this result.
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(*) This theorem also appeared in [1], here we use the notion of products of torsion theo-
ries to give a different proof.
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