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1. Introduction. In 1962, Y. Tao [4] proved the following theorem in
this Osaka Mathematical Journal:

Theorem. Ifh is a fixed point free involution of S* X S? and if M is the
3-manifoldobtained by identifyingx and hx in S* X S?, then M is either homeomor-
phic to (1) S*x 8% or (2) the 3-dimensional Klein Bottle, or (3) S*'X P> or (4)
P3P,

In order to prove the theorem, Tao used a result of Livesay [2] and simple
cut and paste techniques. The question naturally arises as to whether or not T'ao’s
method can be applied to classify the orbit spaces of fixed point free involutions
on any manifold of the form S* X F, where Fis a compact surface. We answer
this question affirmatively in the case when F'is the 2-dimensional torus 7%. In
particular, we shall show that if 4 is a fixed point free involution on the 3-
dimensional torus 7°=S8"x T? then pasting the points equivalent under A,
we must obtain either T°, or S*X K?, or K3 or the torus bundle over S* obtained
from [0,1] X T?by identifying the boundaries with a homeomorphism 4 of period
two such that A(m)=m™" and A(l)=ml, where (m, /) is a meridian-longitude
system for 7°.

2. Preliminaries. The interior ofatopological mainfold M will be denot-
ed by int M and the boundaryby 0M. The n-dimensional sphere, torus and Klein
bottle will be denoted by S* T, and K", respectively.

Since we may assume [3] that 7° has a fixed triangulation and that % acts
piecewise linearly on this triangulation, the objects in this paper (maps, neighbor-
hoods, simple closed curves, etc.) should always be considered from the polyhedral
point of view.

We shall think of 7%, K®and S* X K’ as obtained from [0,1] X 7*by identify-
ing 0X 7% with 1 X T?% Thus, if (m,l) denotes a meridian-longitude pair for
T? and m;=ixm, l;=iX (1=0,1), then identifying 0x T? with 1 x 77 so that
m,, 1, gets glued onto m, [, respectively, results in a manifold homeomorphic to
T?. For K*® we must identify m,, [;with m7* and /7%, respectively, and for S* X
K2, m,, I, identifies with m1* and /,, respectively.
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3. Classification of 7°/h

Theorem 1. [fh is a fixed point free involution on T°, then there is a torus
T in T which does not separate T® and T has the property that either T—=hT or T
NhT=4¢.

Proof. Let T'=0x7T? 1If hT=+T and TNhT +¢, then, by using small
isotopic deformations of T whenever necessary, we may suppose that T NhT
consists of a finite number of disjoint simple closed curves. If/is a component
of T NhATthen J satisfies one of the following three properties:

(1) J is homotopically trivial on both T and AT.
(ii) J is homotopically trivial on one of T or AT, but not both.
(iii) / is homotopically non-trivial on both 7 and AT.

If J is a simple closed curve in TN AT such that J bounds a disc D on T
or hT with the property that int DN (T NAT)=g, then D is called an innermost
disc with respect of TNAT. Our next step is to eliminate all simple closed
curves in T NhAKhich bound innermost discs on AT and satisfy (i).

Suppose / is a component of T NATsatisfying (i) and bounding an inner-
most disc DChT. We denote by E the disc on T bounded by / and let /' be a
simple closed curve in T'— E, sufficiently close to /, such that the annulus 4 on 7'
bounded by / U J’ has the property that A NAT=]. We now choose a disc D’
so close to D that D’ satisfies D'NT=0D'=]" and D'NhT=DNhD'=¢.
This choice of D’ is possible since D is innermost and # is fixed point free.
Since we only replaced the disc A U E by the disc D', the torus T"=[T—(EU 4)]
U U does not separate 7°. It follows that 7N AT’ contains fewer components
of type (i) which bound innermost discs on #7. We repeat this process until
we obtain a non-separating torus 7" with the property that no component of 7"
N AT which satisfies (i) bounds an innermost disc on AT”.

For the sake of convenience, we shall again denote our adjusted torus 7
by T. Suppose / is a component of T NAT satisfying (ii) and bounding a
disc D on AT. If D is not innermost, then there is a compoent J’ of T'NAT
with J’Cint D so that the disc D’'C int D bounded by J’is innermost. By our
previous reduction argument, /' cannot satisfy (i), and hence, /' must be non-
trivial on 7. But this is impossible since D’ T'=J’and T'is incompressible in
T® Similarly, D cannot be innermost on AT.

If Jis trivial on T and non-trivial on AT, then k] is trivial on AT and non-
trivial on 7 which, by the above argument, is impossible. We may conclude
that T NAT contains no curves satisfying (ii). Furthermore, since all curves
satisfying (i) and bounding innermost discs have been removed, either T'NAT
=¢ or the components of T NAT must all satisfy (iii).

Since T does not separate T2, it is possible that T NATcontains exactly
one component. We shall consider this case first.

al
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A. T NhTconsists of exactly one simple closed curve J. Since AJ=],
there is a sufficiently small regular neighborhood N ofJ such that AN=N, 0N
separates T° and (7 UAT)N0Nconsists of four disjoint simple closed curves
¢, -+, ¢,. The set U ¢; divides dN into four annuli a,, -+, @, and we assume that
all subscripts have been arranged in order to satisfy a, N a,=c¢,C T, a,N a,=c,C
hT, a,Na,=c¢,CT and a,Na,=c,ChT (figure 1; the diagram represents a
"meridian" cut). The curves ¢, and ¢, divide 7T into two annuli A and B, and
we let B denote the annulus containing J. Since k’=1, h(a,Ua,)=a,Ua,. It
follows that 7V=A JhA Ua, U agmains invariant under 4. Thus, if T does
not separate 7%, then 7T satisfies the conclusion of Theorem 1.

Figure 1. Figure 2.

Suppose T”separates 7°. Let U and V denote the components of T°— T,
Let /' be a simple closed curve on T, transverse to ¢, and ¢, and let p and ¢
be the points ¢, N J’ and ¢;N J/, respectively. Letp’ and ¢’ be two points in int
a, and int a;, close to p and ¢, respectively (figure 2). We may choose simple
arcs a and B on a, and a,, respectively, with da=p\p’, 08=qUq’, aN J'=p,
An J'=qand (aU B)NhA=¢. Since a,I1 T'=0a,, either int a,C Uor int a,C
V, and we suppose that int a,C U. Hence ¢’ is a point in U and int NCU.
Ify denotes the arc « U B U (J'—int (BIT J’)), then 7N hA=¢ and we may push
v slightly offa, U @, U A, away from N and missing #4. Thus, we can obtain an
arc missing 77, with one end point in U and the other in V. It follows that 77
cannot separate T°.

B. TNAT contains more than one component. If n is the number of
components of I'NATthen T NhTdivides AT into n annuli, 4,, +++, A,, such
that TN int A;=¢. Fach annulus A; can satisfy one and only one of the
following conditions:

(1) 04;N0hA;=0A4;

(2) 04;NorA,=¢

(3) 0A4,T10kA;contains exactly one component of TITAT.

We consider each of these possibilities separately.
1. Suppose A;ChTis an annulus satisfying (1). Then 84;divides T into
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two annuli A and B. Since TN int A;=¢, we may suppose, without loss of
generality, that 24.=A. Let T,=A;JAand T,=A;UB. Then at least one
of the tori T, or T,does not separate 7°. For suppose both 7, and T, separate
T. Let U, V,and U, V,denote the components of T°— 7T, and 1°—7T,, re-
spectively. Since BN T,=0B, either int Bc U,, or int Bd V,,and we suppose,
without loss of generality, that int Bc U,. Similarly, we may suppose int Ad
U,. Letp be a point in int Band p,, p, two points sufficiently close to p such
thatp,e U,NU, and p,= U, 11 V,. Let a be a simple arc in T° going from p, to
P, and such that « NT=¢. Since p, liesin U, and p, in V,, a must intersect
T, and it can intersect 7, only in int A,, We may assume that « N A;consists
of a finite number of piercing points. Since p, and p, both lie in U, and since
each time we pierce through A; we pass from U, into V, or vice versa, the
number of piercing points in a IT int 4; must be even. Let ¢,, -:+,¢,, denote the
components of @ N int 4;, and let the subscripts be ordered such that g; precedes
g;+, When traversing a from p, to p,. Let o; denote the subarc of a from g,;_,
to ¢.;. We now replace each ¢; by a simple arc ajC int 4; from g,;_, to g,; such
that a;Naj=4¢, if i4=j. Let the new arc thus obtained be again denoted by
a. Then pushing each q; slightly off int 4; and into U,, we may delete the
intersection o N 4;,keeping o N T=¢. Thus, we may obtain an arcjoining p,
in U, with p, in V, and missing T,. This contradicts the assumption that 7,
separates T°.

If T, does not separate 7%, then since AT, =h(A;UA)=AUA,=1T, is
invariant under /4 and, therefore, satisfies the conclusion of Theorem 1.

If T, separates T°, then T, does not separate 7°. Let J and K denote the
components of d4;. We may choose disjoint simple closed curves J” and K’
on int B and sufficiently close J and K, respectively, such that the annuli R,C B
and R,C B with 0R,=J U J’, 0R,=K U K’have the property that AT'N int R;

kT

Figure 3.



FIXED POINT FREE INVOLUTIONS OF T 369

=¢. Let 47 be an annulus sufficiently close to 4; and B (figure 3) so that 4;
satisfies the following conditions:

(1) AiNT=A;NB=0A4,=]'UKand A;NhT=¢.

(ii) 7'=(B—UR,)U 4} does not separate 7"

(iii) AiNhA}=g.

Since T,=BU 4;does not separate 7%, condition (ii) can be easily satisfied for
Aj sufficiently close to 4 and J’, K’close to J and K, respectively. Condition
(iii) is obtainable since TN int A,=¢, hA;N T=¢and kA, N hAT=hoA,.

By our construction, the number of components of 77N AT"is strictly less
than the number of components of T'"NAT. Since the number of components
in TII AT is finite, we can find - by proceeding with the above argument - a torus
T" which does not separate 7°and satisfying exactly one of the following: (a)
RT"=T", (b) RT"NT"=¢,(c) T"NAT” contains exactly one simple closed
curve, (d) T”NAThas r components, 1<<r<<n, dividing AT" into r annuli,

¥, -+, A", such that no A" satisfies condition (1).

Both (a) and (b) satisfy the conclusion of Theorem 1. Case A applies if
(c) holds. Thus, in order to complete our proof, we have only to consider (d).
For convenience, we again denote 7" by T and A’ by A4,.

2. Suppose no annulus 4,C AT satisfies (1) and suppose that for some ¢,
A; satisfies (2). Then 04, divides T into two annuli 4 and B. Since TN int
A;=¢ and 0AN0kA,=¢, we may suppose, without loss of generality, that 24,
cintA. Let T'=A,UA, T,=AU B and J, Kthe boundary components of4;.
As before, at least one of the tori, T, or T,, does not separate T°.

If T, does not separate 72, let /' and K’be two simple closed curves on
int 4, close to J and K, respectively, and 4} an annulus sufficiently close to 4;
such that the following conditions are satisfied:

(i) AiNT=A,NA=0A4,=]' UK’ and A;NhT=¢.

(ii) If R, and R, denote the annuli on A4 bounded by /, /' and K, K’,
respectively, then AT N int R,=¢.

(iii) 7"=(4—UR,)U 4} does not separate T°.

(iv) AinhAdi=¢

As in argument 1. above, all these conditions can be satisfied. By con-
struction, the number of components of 7N AT” is strictly less than the number
of components of T'NAT.

If T, does not separate 7%, then J and K are not components of T,NAT,
and, hence, the number of components of T,NAT,is strictly less than the
number of components of TII AT.

Since repeated application of the above algorithm reduces the number of
annuli satisfying (2), we may now assume that there is a non-separating torus T
in T® such that either AT=T or AT N T consists of a finite number of simple
closed curves dividing AT into a finite number of annuli, with each annuli satisfy-
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ing only condition (3).

3.  Suppose each annulus 4;C ATsatisfies (3). Let / be a component of
T NAT which remains invariant under 4, and let 4; and A4; denote the two
annuli on AT with the property 4;,NA;=]. Let J; and J;denote the other
boundary components of 4; and 4, respectively. The curves J and J; divide
T into two annuli 4 and B, and we suppose, without loss of generality, that
hA4;c Aand, therefore, h4;c B. The set JU J;divides T into two annuli, B,
and B,, and we suppose that 24, B, (figure 4). For the same reasons as given
in B.1., at least one of the tori T,=A4;UB,or T,=A ;U Bdoes not separate T°.

Figure 4.

If T, does not separate 7%, let J4and J’ be two simple closed curves on int
B, close to Jj and ], respectively, and 4% an annulus with boundary JU J’,
and sufficiently close to 4 ;, such that the following hold:

(1) 4'NT=A4,NB,=]J4UJ and A;NhT=4é.

(ii) IfR, and R, denote the annuli on B, with boundary components J,
J' and J;, Jj, respectively, then ATN int R;=¢.

(iii) 7"=(B,—U R,)U 4/ does not separate T°.

(iv) INRA=d¢.

Again, all these conditions can be satisfied, and the number of components
of T"NAT’ is strictly less than the number of components of T'NAT.

If T separates T°, then T, cannot separate 7°. Hence, at least one of B U
A; or (B—int B,)UA4;UAdoes not separate 7°.

If BU A, does not separate, let J and J; be two simple closed curves on int
B, close to J and J;, respectively, and 4} an annulus sufficiently close to 4; such
that the following conditions are satisfied:

(i) AiIIT=AI1B=0A4;=]'UJ, andA,TI1hT=¢.

(ii) If R, and R, denote the two annuli on B bounded by J, /' and J,, J4,
respectively, then AT N int R;=¢.

(iii) 7"=(B—U Ri) U 4} does not separate T*.

(v)dinhdi=¢.

As in the previous cases, all these conditions are easily satisfied, and the
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number of components of TN AT is strictly less than the number of components
of TNAT.

If (B—int B,) UA4;UAgoes not separate, we simply set 7’=(B—intB,)
U4;U4and note that since 2J;NT'=¢, T'N AT’ contains fewer components
than T N AT.

We have shown that there is always a torus 77 in 7° which does not
separate I° and such that either AT'=T' or TN AT’ has fewer components
than TNAT. Since the number of components of T NAT is finite, a finite
number of repetition of the above argument will yield a torus 7 which does
not separate T and such that either 7" N AT"”=¢or T"=hT".

This proves Theorem 1.

Let M,=T% M,=K?* M,=S'xK?and M, the torus bundle over S*
obtained from [0,1]X T2 by identifying 0x T?with 1x T?by a homeomorphism
h of T? such that A*=1, h(m)=m* and h(l)=ml, where (m, /) is a meridian-
longitude system for 7.

Theorem 2. If h is a fixed point free involution on T°, then T3k is
homeomorphic to M; fosome i=1, 2, 3 or 4.

Proof. By Theorem 1, there is a torus T'c T® which does not separate 7%
and satisfies either T NAT=¢or T=hT. We divide our proof according to
these two possibilities.

A. We suppose that AT=T. Since T does not separate T2 and the inclu-
sion of T'into [0,1] X T induces an isomorphism on the fundamental groups, we
have by Theorem 3.4 of [1] that the space obtained from T2 by cutting 7° open
along 7 must be homeomorphic to [0,1]X 7. Thus, we may suppose that / is a
fixed point free involution of the toroidal shell [0,1] X 7%, leaving each boundary
invariant.

Let m; and I, denote the meridian and longitude, respectively, of X T?,
t=0.1. Since 4 is of period two and A(m,) U h(l;) is a pair of transverse simple
closed curves on 7x T? intersecting in exactly one point, it follows that either
h(m;)=m;and h(l;)=1*", or h(m;))=m,; *and h(l)=1*"or h(l,)=m]l;, or h(m;)=I;
and h(l;)=m;, or h(m;)=1,""and h(l)=m;*,or h(m;)=m]l;and h(l;)=I;"*,up to
isotopy on ix T? Using general positioning, we may assume that m; N h(m;)
consists of at most a finite number of crossing points. Since 4 is of even period
and fixed point free, the number of crossing points in m;N k(m;) cannot be odd.
Hence, h(m,;)=m,*" and, similarily, k(l,)=1,*", up to isotopy on ix T%.

Let V,=D*x S*where i=0, 1 and D*= {(x,y)€ R*|x*+y*<1}. Then the
space obtained by attaching V,U V, to [0, 1] X T? by gluing 8V to ix T such
that the meridian and longitude of V;gets identified with ra,- and [;, respectively,
is homeomorphic to the lens-space L(0, 1)=S*x.S?. Extending /4 radially to
the core of V;induces a piecewise linear extension 4’ of 4 to all of S*X .$>. By
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[5], #’ is equivalent to a standard rotation of S*X .S>. Therefore, 4 is equivalent
to exk: [0, 1] X T?°—[0, 1] X T? where e is the identity on [0, 1] and k is one of
the two standard fixed point free involutions of T?. Since T?k is either
homeomorphic to T2 or K? matching again the boundaries of [0, 1] X T?, we
observe that T%/his either homeomorphic to S*X T° or S*X K>

B. We suppose that TNAT=¢. Since T does not separate T°, we again
have by [1] that the set T UhATdivides T into two components ¥ and W, each
homeomorphic to [0, 1] X 72. We must consider two cases, namely #V= W and
- hV=V.

If AV =W, then T°/h may be viewed as being obtained from [0, 1] X T? by
identifying the boundaries with the homeomorphism 4. If m; and /; are as in
case 4, then either h(my)=m, and h(l)=["", or h(m,)=m,"* and h(l)=1*" or
h(ly)=ml,, or h(m,)=m,l,and h(l)=1,"*, or h(m,)=I, and h(l)=m,, or h(m)=1""
and A(L)=m,™",up to isotopy on T%. Thus, for all but the last two cases it is
clear that 7%k is homeomorphic to M, for some i=1,2, 3, or 4. If h(m,)=1and
h(l,)=m,,then T°/h must be homeomorphic to 7% In order to see this, let J be
a (1, I)-curve, myl,, on Ox T? and let R be an annulus properly embedded in V'
such that RN 8V=0R=JU#hJ. Then the torus 7"=R U kR does not separate
T® and case A4 applies. We use the exact same argument if A(m,)=1,""and h(l,)
=m," in order to obtain the non-separating torus 77. In this case T*/h=S*'X
K?up to homeomorphism since /4 is orientation reversing.

If h V=V with h(m,)=m,l and h(l))=1,"", then h(m,) is a non-trivial multiple
in V=[0, 1] x T? of /; and m,. Therefore, h(h(m,)) must be homologous in V to
a non-trivial multiple of k(Z) and h(m,). But h(h(m,))=m, while h(l,)=1["".
Hence, if hBV=V,we cannot have h(m,)=m,land h(l))=["*. Similarily, h(m,)
=m, " and h(l,)=m,], is impossible.

Ifh(m,)=1, and A(l)=m,, let S°® be obtained from V=[0, 1]1x T? by filling
in 8V with two solid tori ¥, and V, such that the meridian and longitude of V,
identify with m, and I, respectively, while the meridian and longitude of V,
identify with Z, and m,, respectively. Then 4 extends naturally to a fixed point
free involution of S® which interchanges the core of ¥V, with a core of V..
However, by chapter 3 of [3], this situation is impossible. Similarily, we
cannot have A(m\)=/[""and h(l)=m,".

If h(m,)=m, and h(l,)=1,, then as in case 4 let S*x S*be obtained from V
by filling in 0V with the two solid tori ¥V, and V,. We now extend A to all of
S*'Xx 8*by extending 4 radially to the core of V. More precisely, if (x,y, 2)
eV, where (x,y)€D? and 2 S", let R denote the radius of D*X{z} from
0, 0, ) to 0V, passing through (x,y, z). Then, if («,y’, z) denotes the point
RNV, map (x,9, z) to the point (x, ¥, ") in V,,where (x, y, z") lies on the
radius from A(x,y, 2)=(x", y”, ") to (0, 0, z"). If we again let 4 denote this
extension, then 4 is a fixed point free involution on S*X S?. It follows from [4]
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that /4 is conjugate to one of the four standard fixed point free rotations of
S'x 82 Hence, there is a torus 7”in [0, 1] X 7 which is isotopic to 0X T and
invariant under 4 and case 4 applies. We argue analogously if A(m,)=m,~! and
h(l)=I1*". This proves Theorem 2.
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