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Introduction. In the present work we study multiplicative operations in
BP cohomology. In §1 we show that all multiplicative operations in BP* are
automorphisms (Theorem 1.3). Thus they from the group Aut (BP). In §2
we define Adams operations in BP* by the formal group ugzp of BP cohomology
and study the basic proprties of them. These oprations are primarily defined
for units in Z and then extended to p-adic units. Thereby we discuss BP*
by extending the ground ring Z,, to the ring ofp-adic integers Z,. To achieve
this extension simply by tensoring with Zp we restrict our cohomologies to the
category of finite CWW-complexes. Correspondingly we consider all multiplicative
operations in BP*( )X Z, whenever it becomes necessary to do so. Adams
operations could be defined also for non-units, but we are not interested in such
a case in this paper. In §3 we prove that the center of Aut (BP) consists of all
Adams operations (Theorem 3.1).

We regard the lecture note [2] as our basic reference and use the results con-
tained there rather freely.

1. Multiplicative operations in BP*.

Let BP* denote the Brown-Peterson cohomology for a specified prime p.
By a multiplicative operation in BP* we understand a stable, linear and degree-
preserving cohomology operation

1.1) ®,: BP*( ) — BP*( )

which is multiplicative and 8,(1)=1. The set of all multiplicative operations
in BP* forms a semi-group by composition, which will be denoted by Mult
(BP).

With respect to the standard complex orientation of BP* [1], [2], [7], we
denote by eBP(L)the Euler class of a complex line bundle L and by ugp the asso-
ciated formal group. Let ®,=Mult (BP). Putting

Ou(e? (L)) = 23 0™ (L)Y

for an arbitrary line bundle L, by naturality we obtain a well-determined power
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series

0(T)= 30.T%, 0,&BP**(T).

By naturality 8,=0 and by stability §,=1. In particular @, is invertible.
Put

$a(T)= 621T).
Then
(1.2) O Pt)xkrpp = Har ta = pppPa.

Recall that upp is typical. Hence p, is a typical formal group and ¢, is a typical
CUrve over ugp.

Conversely, given a typical curve ¢, over uzp, by the universality of BP*,
[2], Theorem 7.2, ¢, determines uniquely a multiplicative operation ©, in BP*
satisfying
(1.3) 8,(e°F(L)) = ¢a’(ePP(L)).

Thus, via (1.3) multiplicative operations ®, in BP* correspond bijectively
with typical curves ¢, over ugp such that

1.4 6,(T)=T mod deg 2 and dim ¢;'(eBP(L))= 2

for complex line bundles L.
Recall that a typical curve ¢, satisfying (1.4) can be expressed uniquely
as a Cauchy series

(1.5 ¢a(T)=k§’*akTﬁk, a,= 1, a,eBP* 2" (pt),

where p=pgp (cf., [2], [3]). Thus multiplicative operations ®, correspond
bijectively with sequences

(1.6) a = (a,ay, Ay, ), a,,EBPZ(""”(pt),

via (1.3) and (1.5). The identity operation corresponds to the zero sequence
0=(0, 0, )
First we remark

Proposition 1.1. Let ©, and ©, be multiplicative operations in BP* such
that

B,(pt) = ©y(pt) .
Then a=b as sequences (1.6). Hence 8,=®©,.

Proof. By (1.2) we see that

Ba = Hp -
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Then, by the uniqueness of logarithm we see that
Iogl"'a = logl"b )
or loggpod, = loggpog,-

thus ¢,=d¢;. q.e.d.
Let ©,=Mult(BP). We have

B.(pt)xlogpp(T) = loggpod.(T)
over BP*(pt)QQ. Putting
logpp(T) = ;§ mT?, n, = [CPp_]lp*,

expanding both sides of the above formula as power series of 7" and comparing
coefficients of 72" we get

(1.7) € —'}On,.agi,., E=0.

7
This is arecursive formula to describe ©,(n;), hence determines ©,(pt). We
discuss another formula to describe 8, (pt?).
Denote by £, and f§ the Frobenius operators for the prime p on curves
over ugp and u, respectively. Recall that, if we put

(1.8) (Fovo) (T= JV*T*>\ u = pse, ¥(T)=T,

then vkeBPm‘f’k’(pt)and the sequence (v,,v,, ***, v,, ***) forms a polynomial
basis of BP*(pt), [2].
Since O, (pt)xppp=pawe have

(370) (T) = (8u(pt)Fs7,) (T) = ;“ “@,(v,) T " .

Using the fact that ¢,: p,=%pgp,a strict isomorphism, we compute (@F 37,) (T')
in two ways as follows:

(Pas270) (T) = (Fra70) (T)
= (Fs82) (T) = 2T o(@sT? )
= (Fs70) (D 2 Pler(arT? )
= zzlﬂ‘va‘bk—l‘f‘“Z Z'szakplTpkH-l

120 k=1
by [2], Propositions 2.4, 2.5 and 2.9, on one hand, where
[plep(T) = 2w, T,  w, - p, we&BP* " #"(pt);
120

on the other hand
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(Batf 570) (T) = Pur 2@ (0) T
= 26007 ) = 3 3a,O,(v)? T
k21 =

Thus we obtain

(L9 PIPICUCHCALE L

120

— ZM‘Z)kTPk‘I—-‘[—’J'Z ZuwlakplTpk'*I'l .

k21 120 k21
This is a recursive formula to describe ©,(v,).
Let I=BP*(pt),the kernel of the augmentation &: BP*(pt)— Z,,. By [2],
§10, we see that
"the left hand side of (1.9)”

=310,(v,)T?" ™ mod I?
k21

=0,(v,)T+8,(v)T*+ - mod I,
and
“the right hand side of (1.9)”

EE“WkT”k—I—I—“kZEI“pakT”k_I mod I?
=(v+pa)T+ (v, +pa)T?+ - mod I
Hence (1.9) implies
(1.10) 8,(v,)=v,+pa, mod I*
for all k=1. In particular
O (vi)=v, mod (p)+1I°

for k= 1. This shows that {©,(v;),k=1} forms a polynomial basis of BP*(pt).
Thus we obtain

Proposition 1.2. For any ©,= Mult (BP)
O,(pt): BP*(pt)==BP*(pt), an isomorphism.

Let ®, and ®, be two multiplicative operations in BP* with corresponding
sequences a=(a,,a,, ***) and b=(b,,b,, ***). Putting

®c = @ac’@b? c= (Cly C "') y
we shall discuss the sequence ¢. Put
u(T) = O (pt)xps(T) = ;}Mﬂ@a(bk)Tpk .
Then
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B (Pt)s 1y = Of(Pt)x(s o1 oPp X Bp)
= Py opaoPs X by = npE*’ .
On the other hand
@a(Pt)*:u’b = @a(pt)*gb(Pt)*F’BP = @C(Pt)*lbgp = M-

Thus, likewise in the proof of Proposition 1.1, we have

(1.11) be = Ga°Ps
or equivalently
(1.12) S, T = ga( ©,(b)T")
k20 k20
= > 3"a,0,(b,)"'T?"" .
fe"OIgo

This is a recursive formula to describe c,.
A multiplicative operation ®,in BP* is called an automorphism of BP* if
0,(X, A): BP*(X,A)=BP*(X,A), isomorphic

for all finite CW-pair (X, 4). Clearly a multiplicative operation @, is an auto-
morphism of BP* iff it has an inverse. The set of all atutomorphisms of BP*

forms a group, which will be denoted by Aut(BP).

Theorem 1.3. Aut(BP)=DMult(BP).

Proof. It is sufficient to prove that every multiplicative operation @, has

a right inverse.
Let ¢=(7y,t, *+*) and s=(s,,5, ***) be sequences of indeterminates with

dim t,=dims,=2(1—p*%). Put
(*1) Su T =3 E“tzskplTpk“ )
F=0

£=0 I=0

where s,=t,=u,=1. Then over BP*(pt)[t, s/ we have
SV¥u, T2 = T+u,T?+u,T*+ ... mod I*
=0

and

> z#tlskplTpkHET_i“(s1+t1)Tp+(sz+t2)TP2+"‘ mod I ’

k201720

where I=(s, ¢), the ideal of BP*(pt) [s, t] generated bys,,s,, -+, 4,4, ***. Thus
we can put

(*2) U, = tk+sk+Pk(t1y ERTN FE Sy 0ty sk—1)) kgl .

Here Py is a polynomial of #,, ***, sy, s, -+, S5, With dim P,=2(1—p*)and
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P,=0 mod I°.
We want to find a right inverse of ®,. Putting

(*3) 0,8, = id

with undecided sequence b=(b,, b,, ---), we shall decide the sequence b. By
(1.12), (*1) and (*2), we get

(*4) ak+@a(bk)+Pk(a1)"" Ap-1» @a(b1)’ T ®a(bk—1)): (0)

for all k=1. Since the coefficients of P, depend neither on (4, a,, ***) nor on
(©,(b,), B,(b,), --+)we may use (*4) as a recursive formula to obtain O, (by), so
we get ©,(b,)as polynomials of @, ***, a, successively for k=1. By Proposition
1.2 ©,(pt)is an isomorphism. Thus we get a sequence (b;,b,, ***) so that it
satisfies (*4). Thereby @, is obtained to satisfy (*3). q.e.d.

2. Adams operations in BP*.

Let Z;, be the ring of integers localized at the prime p and Z, its comple-
tion, i.e., the ring of p-adic integers. As is well known the endomorphism

[a]pp €End (ugp)

is defined for each ¢ Z,;,s0 that

[a]lgp(T) = aT+ higher terms.

It is convenient for us to extend these endomorphisms [a]gpto aE Z,.
For this purpose we extend the groud ring Z,, of BP* to Z,by tensoring, i.e.,
we consider BP*( )@ Z,whenever it is necessary to takl of p-adic integers.
Let A=BP*(pt)Q@Z,. Let F and G be formal groups over A. Let

¢: Hom,(F,G) — A

be the homomorphism sending f to 4, when f(T)=a,T-+higher terms. Since A
is an integral domain of characteristic zero, ¢ is injective as is well known (cf.,
[41, [5])

Since A is a direct sum of copies of Zp (corresponding to each monomials of
v,'s) we give a direct limit topology to A. (Each direct summand is given the
topology of Zp). Then, using the argument of Lubin [5], Lemma 2.1,1, we see
that ¢ is an isomorphism onto a closed subgroup of A.

In case F=G=pgp,

Im CDZ(;;) ,
because ¢([a]gp)=a for aE Z,. Hence

Im C:)Z(p) = Zp.
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Since c¢ is injective, for each & Zthere exists a unique

[o]sp € End o(15p)

such that ¢([a] gp)=a. Thus the definition of [a]gp is extended to Zp.
Since ¢: End4(ugp)—4is a ring homomorphism, for any p-adic integers a
and 8 we have the following relations:

2.1) [a]gp(T)= aT+higher terms,
2.2) [a]sp+*[Blap = [a+Blze, U= KkBp,
(2.3) [a]spo[Bler= [aBlzp.

Let a€ Z,, (or €Zp)be a unit. Put

Yo T) = [a *]sp(aT) .
Since
(Fyra)(T) = Folla " ]sp(aT)) = [a  ]sp([@’)f7(T)) = 0

for every ¢>1 such that (p, g)=1by [2], Propositions 2.3 and 2.9, where v(T)
=T, we see that , is a typical curve over ugp. Moreover +, satisfies (1.4) as
is easily seen. Thus there corresponds a multiplicative operation in BP* to 4.
We denote this multiplicative operation by ¥® and call Adams operations in
BP*,

REMARK 1. Even for non-units a Adams operations can be defined on the
same way as above. But these operations are defined in BP*( )QQ or BP*
( )®Q, And these cohomology theories are essentially ordinary cohomologies
(corresponding to generalized Eilenberg-MacLane spectra), so we are not in-
terested in these operations in the present work.

REMARK 2. Adams operations in complex cobordism are defined by Novi-
kov [6]. When we regard BP* as a direct summand of U*( ), our Adams
operations will be the restrictions of Novikov’s Adams operations to BP*.

Let a be a unit of Z,, (or of Zp). Since
Vol '[alsp(T)) = [@ ' ]spelalepr(T)= T,
we see that
(2.4) WH(ePE (L)) = a™[alsp(¢(L))
for any complex line bundle L.

Since W*(pt)xppp=ppp’@we see that
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W*(pt)sloggp = loggpor, .

Here
(logzpovry) (T) = loggpla™ ] se(aT)
= a '+loggp(aT) = ;20. at* " 'n, TP .
Thus v (ng) T?" = i a?'n,T?"
or _ |
(2.5) ¥ fo) = a?''n, k=1,

after extending W*(pt) to ¥*(pt)R1,.

Proposition 2.1. V%(pt) BP *(pt)=a’id.

Proof. (m,,n,, --+)is a polynomial basis of BP*(pt)®QQ. Since ¥* is linear
and multiplicative, for every polynomials x, of n,’s with dim x,=— 25 by (2.5)
we see easily that

V(%)= o’x, . g.e.d.
Corollary 2.2. If we put
.U'BP(X) Y) = 2} ainiyj ’

them
popte(X, V) =3 a0, XY

Next we prove
Proposition 2.3. V*VE=W2t=LFfp”,
Proof. Put
[a]ap(T) = 25 a. T4, a, & BP*#72%(pt) .
For any complex line bundle_L we have
WHW(ePP(L)) = W [a]zp(e"7(L)))
= o WA e L))
=t g;,) BP0 (WA(eBP(L))) oo+t by Proposition 2.1
— @B G a(BYAPHLY) P
= a ' B [alsr([Blsr(e®F(L))) by (2:4)

— (aB) [aBlsp(e?P(L)) by (2.3)
= W(eBP(L)) .
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Therefore, by the universality of BP*, [2], Theorem 7.2, we concludes the
Proposition.
Let a and 8 be p-adic units. By Propositions 1.1 and 2.1 we see that

(2.6) ve = wh iff aft=pr".

Let U(Zp)be the multiplicative group of p-adic units and U,(Z,)be its sub-
group consisting of p-adic integers @ such that

a=1 modp .
As is well known
U(Z) = {a?"; ac U(Z,)} .

By Proposition 2.3 all Adams operations (for p-adic units) form a multi-
plicative subgroup of Aut(BP). We denote this subgroup by Ad(BP). Then,
(2.6) implies that

Proposition 2.4. Ad(BP)=U,(Z,).
And also
Proposition 2.5. v*=1 iff r\?'=1.

Next we discuss the relations of Adams operations with Quillen operations
(of Landweber-Novikov type). We recall the definition of Quillen operations,
[21, [7]. Let t=(¢, t,, *+*) be a sequence of indeterminates such that dim t,=

2(1—pFand
(T) = ;:ngpka thh=1,

a typical curve over ugp by extending the ground ring of ugp to BP*(pt)[t].
Then

7, BP*( ) — BP*( ) [1]
is the multiplicative operation such that
rdePF(L)) = ¢7(e(L))
for any complex line bundle L. Putting
7(x) = § re(x)t?, xeBP*X,A4),

where E— (e, e, <+**) runs over all sequences of non-negative integers such that
all e, but a finite are zero, we get linear stable operations

rp: BP¥( ) — BP**E|( )



352 S. ARAKI

of degree 2| E|, where | E|=2)e,(p' — 1).
Now for a p-adic unit ¢« we have

2.7 oW (eP7(L)) = r(v3'(eP7(L)))
= (r(p)xra) (7”7 (L))

= (peor(pt)sra) (eF(L)) -
And

(r(pD)s¥ra) (T) = ri(p)x([a ]sp(aT)) = [ Tw(aT),
where u'=pgp® Thus
(2.8) @eordp)sdral 1 = $ul[a”]w(aT))
= [a™]ap(¢(aT)) = [a"]ep(g“a’kikT’k) :
Let
0ut Zp[t] = Ziplt]
be an algebra homomorphism such that
oolte) = a? 7 'ty, k=1,
and define an operation
@*: BP*( ) [{] - BP*( ) [il
by ¥*=¥*®gc,. Then
(2.9 (Wery) (e27(L)) = (47 (e”"(L))
= (T*(pt)x9:) " (¥*(e" (L))
= (Voo (pt)xd:)'(eF(L)) -
Remark that
T(pt)sppe = pap® .
Thus
(T(pt)s) (T) = e 1,17,
where p”’=pgp?*. And .
(2.10) (PacT*(pt)1) (T) = V(T 0?14 T*")
— S ula 6T _
= e lar(@? 4T )
= [&-*]Bp(kz:g:ar"t,,:r»*) .
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Thus by (2.8) and (2.10) we see that
Geor(Pt)srg = Va0 T (Pt)x, ,
then, by (2.7) (2.9) and the universality of BP* we obtain
Proposition 2.6.  For any unit of Z, there holds the commutativity
7,0W® = Wr, .

Corollary 2.7. Let E=(e,, e,, ***) be a sequence of non negative integers of
which all but a finite terms are zero.  There holds the commutativity

rgoW?® = ! E1Wry .
Corollary 2.8.  For any linear stable cohomology operation
B, BP¥( ) — BP***( )
of degree 2s there holds the commutativity
B oW = q"¥U%E, .

Remark that every stable cohomology operation in BP* can be expressed as
linear combinations of Quillen operations 7z over BP*(pt). Then Corollary 2.8
follows from Proposition 2.1 and Corollary 2.7.

Corollary 2.9. Adams operations in BP* commute with all multiplicative
operations.

REMARK. Properties of Adams operations in complex cobordism which
correspond to Propositions 2.1, 2.2, 2.3, 2.7 and 2.8 are obtained in Novikov [7]

by different arguments.

3. The center of Aut(BP).

For any b BP*“~#"(pt)we define a sequence
(b, k)= (0, -+, 0,5, 0, -++)
with b as the k-th term and with all other terms zero. By (1.9) we obtain
g@w,k)(v,)Tﬁ"‘#gb.@(,,,,,)(v,)ﬁ”Tp’**"‘
= %"v,T""—f—"é‘s"w,bp'Tﬁ"“" :
In particular

S¥O (0 T# " =30, T# £ pbT#™ mod deg p*~+1 .
/=1 =1
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Recursively on /, 1<I<k, and deleting the same terms successively we see that

3.1 Bu.w(v)) = v, 1=I<k,
and
(3.2) O, 0(Ve) = vp+pb.

These imply that

(3.3) Ou.nw(x) = x  for anyxe BP*(pt),s<pF—1,
and
(3.9 O 1(y) = y+pcb for yeBPZ“‘P")(pt)

when y = c¢v, mod decomposables, c= Z,.
Let O, be in the center of Aut(BP). Then
@(u,,,k)°@a = @a°®(vk,k)
for all k=1. And by (1.12) we have
;}F@(vk w(ar) Tpl‘l‘ 'LIZEOF‘UI: Y CI ,k)(al)pk T
= S¥a,T?'+#5 e, ©,(v)?' T*"" .
120 120

In particular

Oy (@) T? +40, T
=a, T +"0,(v,) T mod deg p¥+-1.
Thus
3.5 Oy, (k) TVe = ap+0,(vy) .
Put
(3.6) A=\, mod decomposables, A, E Zp.

Then by (3.4) and (3.5) we obtain
3.7) Bu(vr) = (1+pNp)ve, k1.
Next, putting
v = ‘Uk‘|"vipk—1)/(p_1)
for k> 1, by commutativity

By 1°0; = 0,00,/ 1,
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and by the same argument as (3.5) we obtain
(3.8) B,/ 1w (ar)+v = a,+0,(v,) .
Applying (3.4) and (3.7) to (3.8) we obtain
(PR 075 = (L pr,Joy)#0
thus
(3.9) 1 phg = (1pa,)#H-0re=s
Let A be a p-adic unit such that
AT = 14PN, .
Then (3.9) implies that
(3.10) 1+pr, = A4
for all k=1. Thus, by (3.7), (3.10) and Proposition 2.1 we see that
8, | BP*(pt)= W* I BP*(pt).
Then by Proposition 1.1

e, =v".

355

In other words every multiplicative operation which is in the center of Aut(BP)
is a suitable Adams operation. Let Z(Aut(BP))enote the center of Aut(BP).

The above result and Corollary 2.9 imply
Theorem 3.1. Ad(BP)=Z(Aut(BP)).
Corollary 32. Z(Aut(BP)=U,(Z)).
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