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1. Introduction

Let X be a finite dimensional complex. We consider the general problem
of classifying real n-plane bundles over X, which are in a natural one-to-one

correspondence with [X\ BO(n)]y the set of homotopy classes of maps from
X to BO(n). Alternatively, if ξ is a real stable bundle over Xy we consider
the problem of classifying fl-plane bundles stably equivalent to ξ, which are in

one-to-one correspondence with [X\ BO(ri)\ f] = (ίf)~1[/]c:[-X'; BO(n)]y where
/: X-^BO is any map which classifies ξ.

Line bundles over Xare classified by w^Hl(X\ Z2), while 2-plane bundles
are classified by wλ and W2^H2(X\ Z[w^)y a (twisted if ft^φO) integer class
which reduces to w2. Oriented 3-plane bundles over a 4-complex were classified
by Dold and Whitney [3], while James and Thomas enumerated w-plane bundles
over an w-complex for n odd, n-plane bundles over an (τz-f-l)-complex for

n = 3(4), and oriented /z-plane bundles over an ^-complex for n even. [4] (Note
that "oriented" and "orientable" are equivalent concepts for bundles of odd,
but not even, dimensions.) In [9] this result was extended to the case of n-
plane bundles over an ^-complex for all n while in [6] the James and Thomas
result was restated for a few low-dimensional cases in a somewhat more explicit
form.

In [7], a spectral sequence approach was used, which (in theory) com-

pletely enumerates [̂  l7] in all cases where X is a finite complex and πλ(Y)
is Abelian. In fact, all real and complex bundles over Pk, &<5, are tabulated.

Nomura [16] has classified //-plane bundles over PH+1 for τzΞl(4) in most
cases, and w-plane bundles over Pn+2 for n = 3(4 ) is some cases.

In the present paper, we use the approach of affine actions, developed in
[9]. For the sake of space, it shall be assumed here that the reader is familiar
with the constructions and notations of that paper. A general enumeration
result is given for w-plane bundles over X of dimension, my provided m^2n—2
(the metastable assumption), and provided m^n-{-2. We give specific results
for X=Pm, real projective w-space, if m=n-\-\y w>3, or if
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After Nomura, let Nn(ξ X) be the number of equivalence classes of w-plane
bundles over X stably equivalent to ξ. Let η be the Hopf bundle over Pw, if

m>l. Clearly Nn(kη\ Pm)=Q if m>n and ( * - j is odd, since WM+1(^)ΦO.

In the cases covered by Theorems 1.1 and 1.2, that is the only obstruction
to //-dimensionality, in effect.

Theorem 1.1. Let even.

Case I [James and Thomas]: z/w = 3(4)

even
NJkη; Pn+l) =

Case II [Nomura, except for the last case]: tfn=l(4)

/ . odd,

2 if

0 ., fk\ ίk—l\ ,,2 if (r, I even, I ^ ) odd\ΔJ \n

even

Case III: z/wΞ0(4)

2 if k odd

3 if k=0(4),

2 Z/ A = 2(4),

5 ZJ Λ = 2(4), (J

.(*)\w/

even,

even

Case IV:



even

even
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( I if k odd, n=6

2 _r 7 /• / rv A
if K even, n=o, I *

2 if ft = 3(4),

4 ι / f t = 1(4),

6 ί/ ft wen, w>10, (nZι)

4- if k even, n^lO, ( Zi )

(^ ]\« ) orfJ

Theorem 1.2. L^ « = 3(4), n^7,and( * Λv ;> ^ ' \»+l/

[Nomura]

z/ r~J l even

Theorems 1.1 and 1.2 are condensed versions of 3.8 and 3.10, below.

2. The Main theory

We shall utilize the tecniques of Becker, McClendon, and the author with

regards to constructions over, and over-and-under a fixed space. [2, 8, 12]
If π: E->B is a fibration and /: X-*B is a map, let [X\ E]f be the set of

fiber-homotopy classes of liftings of/to E, and let [X; E',f]=(π$)~l[f]c:[X', E]
be the set of homotopy classes of liftings o f / to E. Recall that \X\ E \ f ] is
the set of orbits of a left action [9, 15]:

μ:aι(B*,f)x[X ,E],-»[X;E]f

Furthermore, if dimJf <2w, where each fiber of π is //-connected (the meta-
stable assumption), [X\ E]f is an Abelian affine group and μ is an affine action,

i.e., μ(a, ) is an affine automorphism for each a^πl(Bx,f). In that case, we
also have a left action γ of πλ(Bx,f) on [X E]f°, the difference group of [X', E]f.

Writing ax for γ(α, x) for all x^[X', £]/, we have a(a+x)=a+ax for all
a^[X] E]f, x^[X'y E]f°. More generally, if A* is any β-twisted cohomology

theory, a left action

γ : π,(Bx, /) X h*(X, A, /) -* A*(JΓ, ,̂ /)

can always be defined, for a subcomplex ^4; and 7 is functorial in all the obvious
ways.
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Let G=O, U, or Sp, and let r=l, 2, or 4, respectively. Let π : BG(ri)-+BG
be a fibration replacing the usual inclusion, and let Sn=SnG be the ΩBG-

spectrum associated with π (see [8]). Let Γn+l^Hl(BG'y Sn) be the single
obstruction to section of π. If ξ is a stable vector bundle over a complex ΛΓ
of dimension my classified by /: X—>BGy we can define a characteristic class
Γn+lξ^Hl(X;f~1Sn), the single (metastable) obstruction to ^-dimensionality of
ξ. We have [2, 8]:

REMARK 2.1. If g.d. ξ^n (g.d. = geometric dimension), TH+1ξ=Q. This
condition is sufficient if m^2rn-}-2r — 3.

Proof. The fiber of BG(n)->BG is r(n+ 1) — 2 connected.

Now let An(ξ\ X)=[X] BG(n)]fί the set of w-plane bundles stabilized to ξ,
an Abelian affine group in the metastable range, i.e., m^2rn-\-2r — 4.

REMARK 2.2. (I) If a, b(=An(ξ\ X), a unique difference class Δ(Λ,

H\X;f-lSn) is defined, such that Δ(α, <r)=Δ(0, δ)+Δ(δ, c) for all α, 6, c<EΞ
An(%\ X) (II) If m<2ra+2r— 4, Δ(0, i)=0 if and only if Λ=δ; while for any
a^An(ξ\ X) and x<=H°(X;f-lSn)9 there exists 6= β+Λ;e^[M(g; -Y) such that
Δ(α,&)=#. It follows that (III) If m<2m+2r-4, H\X\f~*Sn) corresponds
in a natural way to A^(ξ\ X), the difference group of An(ξ ^Γ); provided the
latter is non-empty.

Recall that Λξ: KG~\X}^πλ(BGx, f) in a natural way [4]. We thus have
a left action:

μ: KG-\X)xAn(ξ; X) -> An(ξ X]

and Vn(ξ ί̂), the set of equivalence classes of n-plane bundles stably equivalent
to ξy corresponds in a natural way to the set of orbits of μ. Write aa for

μ(a,a)y for any a^KG~\X), a^An(ξ\ X). Thus Nn(ξ', X) is simply the

cardinality of Vn(ξ\ X).
We summarize our general results for classification of real bundles in low

codimension cases. Throughout, let ξ be a real stable bundle over a complex
Xof dimension m, classified by/: X-+BO\ let Y= K(Z2, l)xK(Z2, 2), and let
β: BO-*Ybe a map such that β*(tί®l)=w1 and /8*(l®ί2)=a;2. Without loss
of generality, X is connected, thus we may identify H\X\ Z2) with Z2.

Theorem 2.3. Let m^2n—2y m<n+2. Then (I) There is an £lγ-spectrum
2n such that H*(X-9 (βf^aj^H^X'J^SJfσr all i^O (canonical isomorphism)
(II) There is a universal characteristic class φn+l^Hl(BO\ β~l<Ξ^ such that φξ=
f*φn+1=Γn+1ξ. (Ill) The constructions of 3n, φn+l are independent of X and ξ.

Proof. Let OY2) be the second stage of the Postnikov tower for SnO ό'M
(2)

has homotopy width three or less. By McClendon [14], Sn^=β~l3n for some
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Ωy-spectrum 3nί since β is a 3 -equivalence. Let φn=P$Tn, where P: Sn~>Sn^
is the projection. The remaining details are trivial, and we are done.

Let h—σWf+ίξΞH^O; Z2) for all />0, where σ is the looping suspension.
We have a short exact sequence :

(2-1) Q-+[X; Spm]

From 2.3 and [9, diagram (3-1)], we have

REMARK 2.4. Let m^2n—2y m^n-\-2. Then there is a homomorphism

i/g: [-Ϊ; Sρm]-»An\ξ;X) such that A*(«, «) = «+^a for all a£Ξ[X\ Spin],
a^An(ξ-, X).

We may express v$ in a very specific way. For any a^KO~1(X)y β F$t(A—

β°f°Px> where F$y0}: XxS->BO is a homotopy o f / representing Λ^α, and
px: X X S->X is the projection. Thus

H'(XxS; (βoFξ,a)-l2n) - H'(X; (βof)-*3H)+H'(XxS,X; (βofopx)~*3Λ)

and Vξd can be uniquely defined by the equation

where σ&πs(S) is the fundamental class of S in stable cohomotopy.
We now consider the action

7 : KO~\X) X An\ξ X) - An\ξ Z)

where we write ax for γ(α, Λ:). 2.5 can be restated as follows:

REMARK 2.5. For m^2n— 2, /n<rc+2, and fixed Λ:e^4M

0(f .AT), o:̂  depends
only on A0α: and ^α. Equivalently, If h0a=h1a=Q, ax=x for all x<=An°(ξ'y X).

We now give very specific expressions for j in the case m=n-}-l, and
the case m~n-\-2 for m^3(4). We shall assume that the reader is familiar
with the procedure for construction of the first two stages of the relative modi-
fied Postnikov tower for BO(ri)-+BO in all cases.

Generally, for any ιι^Hl(X\ Z2), let Z[u] be the sheaf of integers over X
twisted by u\ thus Z[Q]=Z, and Z[u+v]=Z[u]®Z[v]. Let p: H\X\ Z[u])->
H'(X', Z2) be reduction modulo 2, and let S[u]: H^X; Z2)-»Hί+l(X', Z[u]) be
the Bokstein homomorphism associated with the exact sequence of sheaves
Z[u]-+Z[u]-*Z2. Let w~w£ξ, the ith Stiefel Whitney class of ξ, for all z

Theorem 2.6. Let n=l(4), n^5, dim^— /n<n+l, and assume ^vn+1= 0.
Let θ=Sq2-}-w2{J . Then (I) We have an exact sequence:

H*-\X; Z2) -1 H™(X; Z2) ̂  An\ξ X) t H\X Z2) -+ 0
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(II) If x^Hn(X\ Z2) and z^p'lx} then 2z=\Sqlx.
(III) Ifx£ΞHn(X'y Z2) andzϊΞp-lx, and i

az = z-\- \((hίa-\-w1 U hQa) U x)

Theorem 2.7. Let rc^3(4), w>7, τw</x+2; dwd assume wn+1~0. Let

= (Sq2+w2 U +Wι U )Sy. (I) PFβ have an exact sequence:

n-l(X'9 Z2) - tf w+2(*; Z2) - Λ°(Γ, ̂ ) ̂  Hw(^; Z2) -> 0

(II) Ifx^H\X\ Z2) andz^p~lx, then 2z=\(Sq2+w2\J +ιv*\J)x
(III) Ifx^H*(X\ Z2) αn^ί ztΞp^x, and a^KO~l(X\ then

az ̂  ̂ +λ((A1α+^1 U A0

Theorem 2.8. Lei w = 0(4), w>4, w<w+l; αnrf assume 8[wl]w_. = 0.
Let θ(x, y)=(Sq2+w2 U )p^+^x U .y. (I) W<£ A«e;<? ΛW ^^Λ^ί sequence:

H"-\X; ZK])+ίί^; Z2) - H^(X'y Z2) ^(f; )̂

H"(X-, Z[wJ)+H»+1(^; Z2) - 0

(II) // x^Hn(X; Z[wJ), yt=H*+l(X;Z2), 2x=Q, and zζΞp-l(x,y), pick

w^Hn~\X] Z2) ίMcA ίAβί 81[α;1]tt;=Λ?. ΓA«ι 2ar=X(5?1p^+(5i2+w2 U )w).
(III) J/*e/Γ(;f;Z[^J),j;e^^

ίA^w α^=(^l)AoΛ^+λ((A1α+w1UA0«)UΛ;+A0αUy) (Recall //°(^Γ; Z2)=Z9; let
(-1)0=1, (_l)i=-l.)

Theorem 2.9. Let w = 2(4), w>6, w<n+l; αwrf assume S[wl]wn=Q. Let
(χ, y)=(Sq2-\-w2 U )px-\-Sqly. (I) W^ Aβ^ e an exact sequence:

; Zt) ί H"+\X; Z2) Λ ̂ ^ JQ ^>
+1(^; Z2) -* 0

(II) // x^H"(X; Z[wJ), ytΞH^X; Zt), 2x = 0, and zep-^x.y), pick
w=Hn-1(X; Z2) rocA ίΛαί S[a)Jw=«. ΓAen

2sr = X(5?1p*+('5?2+K'2 U )w+j) .

(III) // x&H"(X;Z[wl]),y<EΞH''+1(X ,Z.1), and zeρ-\x,y), then for any

af=KO-l(X), az=(-\yvtg+\((hla+wί U h,a) U x+h,a U y)

Proof of 2.6-2.9. (I) is obtained from the McClendon spectral sequence
[12], while (II) is computed using the extension results of [11]. (Ill) follows
from 4.2, 4.6, and 4.7. (Note that aw1=h(la, aw2=h1a-\-wί U h0a, in the notation

of §4.)
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In the range m^2n— 2, m^n-{-2, knowledge of the three things suffices to
enumerate Vn(ξ\ X}: namely, v$, 7, and a function sa: HG(X\ Z^)J

ΓH
λ(X\ Z^)—>

An\ξ\ X), for any fixed a^An(ξ X). [9, Thm 3.1] We shall see that sa is
determined by its values on generators, although it is not a homomorphism.

Without loss of generality, X is connected. Let p^KO~1(X) be classified
by a map which takes X to a single point of O which does not lie in the identity
component. For any u^H1(X\ Z2), let ^[u^^KO'^X) be classified by the

u W
composition X-^P^-^SO where Wis the Whitehead map: recall that W*hi=ut

for all i. We define (for fixed a^An(ξ\ X)), for (x,y)^H\X\ Z2)+H\X\ Z2);

if*=0
ϊ-Λ where α = .f -

if Λ?=I

For any (*, y)^H°(X; Z2)+H\X; Z2), and any *EΞ A^J X), let γ'(*, 3;, ^r)=
(x, y)z = pXtyZ&An°(ξ; X). It is clear that γ' is an action if m*ζ2n—2 and

/z+2.

From 2.4 and Theorem 3.1 of [9], we immediately have:

REMARK 2.10. Let X be a connected complex of dimension m, where
, m^n-\-2\ and let ξ be a real stable vector bundle over X which has

an 72-dimensional stabilization a. Let YaH\X\ Z2) be any generating set.
Then, in order to enumerate Vn(ξ\ X), it is sufficient to compute

( i ) the Abelian group An\ξ X)
(ii) the homomorphism z/$: [X; Spin]->An°(ξ:> X)
(iii) the action γ': #0(JΓ; Z^+tf1^; Z2)x^w°(g; X)->An\ξ; X)

(iv) ίβ(l, 0)-ίΛpe^Λ

0(?; X), and ίβ(0, ̂ ^ψMe^?; J5Q for all «eΓ.
The following lemma, which follows from James and Thomas [4, 1 .4] will

be a useful aid in computing sa. Let ρΛ: A°(£; X)-*Hn(X\ Z2) be the reduc-
tion defined in the obvious way, to wit, if x=a—b, where a and b are stabilized
vector bundles, classified by liftings £α, gb:X-*BO(n) of/: X-+BO, p^x is the
difference class of ga and gb defined by wn+1 in BO.

Lemma 2.11. Let ξ be a real stable bundle over a connected complex X of
dimension m, m^2n—2, and let a<=An(ξ\ X). (I)

„-,?. (II) Ifm^n+2y p*sap=wnξ, and

Proof. (I) follows immediately from the James and Thomas formula, and
(II) is an immediate corollary of (I).

3. Applications to projective spaces

Tensor products. Let ξ be a stable real, or complex vector bundle over a
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complex Xy and let L be a line bundle over X. Let £(w) be the virtual ra-plane
bundle representing ξ\ we define L®nξ to be the stable bundle represented by
the virtual n-plane bundle L®ξ^. Let t and tn, respectively, classify ® and
®n such that we have a commutative diagram:

BG(l)xBG(n) -

llxπ

 tnBG(l)χBG — ?U EG

If β<Ξ^4M(£; -X"), we can thus define L®a<=An(L®nξ\ X) as follows: if g: X-*
BG(ri) classifies ay t(l, g) classifies L®a\ where /: X-+BG(\) classifies L.

REMARK 3.1. (I) L®: An(ξ\ X)-*An(L®nξ\ X) is one-to-one and onto:
in fact its inverse is L'®, where L! is the line bundle conjugate to L (note that
L'=L in the real case). (II) In the metastable range, i.e., dimX^2rn+2r— 4,
L® is an affine isomorphism.

Proof. (I) is obvious; (II) requires some manipulation of the base spaces;
we leave the details to the reader.

Let l®n: BGX-*BGX be given by l®nf'=tn(l, /') for any/: X->BG. If
/: X-*BG classifies ξ, and Λξ: π,(BGx, f)^KG'\X) is the James-Thomas
isomorphism, let 8^Lt1t: KG~l(X)-*KG~l(X) be the composition

, l®nf)
 Λ^ KG~\X)

In the metastable range, define L®x<=An\L®nξ\ X) for all x^An°(ξ X) by
L®(a—b)=L®a—L®by for all α, b^An(ξ\ X). By simply chasing the defini-
tions, we can easily check that:

REMARK 3.2. (I) For all a<=ΞAn(ξ\X} and all a^KG~λ(X\ L®aa =
δt:)L>na(L®ά). (II) If w<2nr+2r-4, L®ax = δξ>L>na(L®x) for all *e
^}(5; X) and αe-KG-^J?).

And from the splitting theorem, we can compute

Lemma 3.3. In the real case, i.e., G=O, ί,ί*wΛ = Σί

i. (Where it is understood that if a<Q, b^Q, i f ) is defined (modulo 2) to

be far sufficiently large N.)

The null-element. Let ξ be real, henceforth. We define v^n^KO"1(X) to
be the element corresponding to Nξ^^π^BO^,/) where N%>n is the composition

XxS - S
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where £x represents the generator of 7^50(1), and T reverses coordinates. We
call the v$ιn null-element of ξ in dimension n.

Lemma 3.4. Let ξ be real. Then (I) v^n is /tinctorial in X, i.e., if
g: X'-^X is a map and ξf=g~lξ, then v^tH=glv^n. (II) For all a^An(ξ\ X),

vξ>na=a. (Ill) For all

Proof. (I) is obvious. (II) holds since, if g: X->BO(n) is a lifting o f/
which represents ay N$>n lifts to to(£1χg)oT: XxS->BO(n), a self-homotopy

of g. (Ill) follows immediately from 3.3.

Projective spaces. Henceforth, let Pr be real projective r-space for any
integer r>0, and let u^H\Pr\Z2) be the generator, if r^l. Let ψ=ψ[u]<^

KO~l(Pr}. It is well-known and easily computable that

Lemma 3.5. Let r^\. Then (I) if T*3(4), KO"l(Pr)^Z2+Z2, with
generators p and -ψ . (II) If r = 3(4), KO~1(Pr)^Z2+Z2+Z> with generators p,

ψ, and τy where τe[Pr; Spin} is classified by Pr-^Pr/Pr.1=Sr-^Spinf where Sr

represents the generator of πr(Spin)^Z. (Ill) KO\Pr)= [Pr\ BO]^Z2*, gener-

ated by η, the canonical line bundle over Pr (i.e., wtf=u), where s is the number
of positive integers less than or equal to r which are equivalent to 0, 1, 2, or 4
modulo 8. (IV) For all z>l, hίp=0y and hiψ=ui\ while h0p—l and h^— 0.
// r = 2(4), hrr=ur for r=2 or 6; while h{r = Q if ίφr or r>6. (V) For any

Lemma 3.6. For r> 1 and 0<Λ<2* (where s is computed as in 3.5 (III)),
(I) δ^iflψ=ψ. (Π) SfewP-p+ψ. (Ill) //r =

Proof. Clearly δ^^^ ψ and 8kη>Ύ1>np must be 2-torsion elements; the stated
results for (I) and (II) are the only answers which agree with 3.3. To prove
(III), consider the covering map c: Sr->Pr. Now c~lη=\y the trivial line

bundle, and Ker cl is generated by p and ψ. Thus 8kΎ)>7)tnτ=τ-{-\lp-ί

Γ\2\^ for

Again by 3.3, λj— λ2— 0.

Lemma 3.7. Let r>l, 0<&<2S. Then

ί 0 if n is even

v,n = \ P if n odd, k even

if n odd, k odd

Proof. For rφ2(4), the stated result is the only possible which agrees with

3.3. If r = 2(4), the result still holds, by 3.4(1), since kη lives in Pr+1.
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Notation. We give standard names, xQ1, #00, and x1Q, for generators of the
Abelian group A^(kη\ Pr) (which can be computed by one of the theorems

2.6-2.9), for r=n+l, n>3. If ΛΞj=3(4), let xol=\un+\ while if w = 3(4), let
#01=0. Let xQO be defined by the equation pχ00=un if n is odd, pxQO=(Sun~1

ί 0)

if n and & are both even. If n is even and k is odd, XQO shall not be defined.

If n is even, x10 shall be defined by the equation pχ1Q=(Q9 u
n+l). For odd n, x10

is not defined.

Note that x01 is always uniquely defined, but may be zero, while #00 and x10

are not always defined, have intederminacy x01, and are never zero. Intuitively,

if en and en+l are the bottom two cells of the Stiefel manifold Vn, and £, 77 are

the generators of the stable 0- and 1 -stems in the homotopy of spheres, we may

write x00=en®ι®un, xn=en®η®un+l, and xίQ=en+ί®η®un+ί.

Define endomorphisms %0 and ^ on An°(kη; Pr) for r = n+l, /z>3, as

follows: XOΛ?OI=%IΛIOI=O in all cases; %QχOQ=χol and %ΛO~ 0 if x00 exists; and
%0#10=0 and Xlxw=xQl if xlo exists.

/ k \Theorem 3.8. Let /z>3, and let k be any integer such that ί , , j is even.

(I) If τzφ6, £/Z£ homomorphism vkΎ]: [Pw+1; Spin\-^>A^(kη\ Pn+ι) is zero, while if
n=6, vkητ=±χ10. (II) TA^ group An°(kη'y Pn+l), the automorphisms γ(p, ) and

) on An\kη\ Pn+ί), the elements sap, sa^^A^(kη\ Pn+l) (for some choice of

\ Pn+l))y and the resulting value of Nn(kη\ Pn+1) are as in Table A.

Proof. The groups A^(kη\ Pn+1), with their generators and relations, come

from theorems 2.5-2.8, (I) and (II). The actions γ(p, ) and 7(ι|r, ) are

then from 2.5-2.8 (III). If n=£ 2(4), i;^=0 since [Pn+1; Spin]=0. If n = 2(4)y

[Pn+l;Spin]^Z generated by r (cf. 3.5) and vkΎ1τ=±x10by 2.11 if n=6. If

n>14, v^= 0 since Pn+l-+Sn+ί-+Spin can be lifted to Spίn(n) (see Barratt and

Mahowald [1]). If w=10 and Λ = 3(4), 1/^ = 0 since pΛ: ^10°(fc?; Pu)->

H™(Pκ\Z^ is mono. Let w=10, ft=4ί+Λ 0<y<2. Since π12(BSp)-+
π12(BSpin) is onto, £12: Sl2~^BSpin classifies a quaternionic bundle. Let

(Λ^)"1: KO-1(Pll)^π,(BOp^,f) be the James-Thomas isomorphism. Then

(A^)"^ is represented by FTjkη: Pπ X S->BO which classifies Q®jη, where Q is

a bundle with a quaternionic structure. One may easily verify that e3Q=Q,

hence g.d.Q^S. Thus ^τ>A;γ, lifts to BO(10), whence ^Λ77=-0.

The values of sap and ίαψ can now be computed up to the natural in-

determinacy caused by the choice of a, using 2.11, 3.1, 3.2, 3.3, 3.6, and 3.7;

and in the case w = 2(4), by lemma 3.9 below. This completes the proof of 3.8.

Lemma 3.9. (I) Let n = 2(4), (^even, ( .Λeven. Then ρa= a for some

atΞAn(k η PH+ί). (II) Let n = 2(4), A=l(4), (n^.1) even. Then (p+ψ)a=a for

some a<=An(kη, PH+1).
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Table A: w-plane bundles over Pn + 1 of stable type kη, for w>3,

335

n=3(4)

» = 1(4)

Λ=0(4)

n = l<4)

A = K4)

n = l(4)

AΞ2(4)

»=1(4)

A = 3(4)

ΠΓ

«=0(4)

£=0(4)

£ = 2(4)

7* = 2(4)

£ = 3(4)

72=2(4)

£=1(4)

::?<:;
7z=2(4)

AXkη P. + ύ

Z2

Z4

Z4

Z2

Z2

Z2

Z4 + Z2

Z24-Z2+Z2

Z2

Z4

Z4+Z2

Z< + Z2

generators
& relations

#00, #01

,0, =2*00=0

#00, #01

ΪΓΪΓ
#00, #01

ί io01

#00, #01

2*oo=*M=0

#00, #01

2#00=#oι=0

#10, #01

#00, #01, #10

2#oo==#oι

-0

#00, #10, #01

= 2#oι=0

#10, #01

2^ιo=^oι=0

#10, #01

2#ιo=#oι

2*01=0

#00, #01, #10

2*10 =#oι

-0

#00, #01, #10

2*oo=2#ιo

= #01

2*01=0

r(P, )

1

1

l + ro

1

1

1

1+^0 + 71

l + *ι

1

1

r(Ψ, )

1

l + Λ

l+^o

1

1

1

l + *o

l + ^o

1

1

l + /o

l + Z.

ίβ/0

G)λ'°°

0

β)*oo

0

(ί)-

0

(S-

UJ^00

0

0

0

a-

«rf
(n-lK

(*lί)*oβ

(»)*"

(n-l)x»»

(n-11)^

0

U-l)*M

( » )x»

0

0

"(*;%

e=ικ

Nn(Λ,;PB + 1)

2 if (Jl}) even

l i f ( ί l l )odd

3 if (Jl}) even

2 if (JlJ) odd

3if(*lj) even

2if(ίl})odd

2 if gl}) even

1 if (JlJ) odd

2if(Jl})even

lif(Jl})-dd

2

3if(*Il) odd

2if(*) odd

& (Jll) even

5 if both even

5 if 0 even

2 ifίjή odd

2i fτz>10

1 if 72 = 6

4 if 7z>10

1 if«=6

6ifτz>10,

(*-}) even
\7ί — I/

2i fτz=6,

(*-}) even\n— I/
4 if τt>10,

1 if 72=6,

C-l) odd
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Proof. (I) Let Σ be the line bundle classified by Pn+ίxS^ S-ϊBO(l).
If k=4t+jy j= 0 or 1, 4/τ? has a quaternionic structure, and £M+2(4/??)=0, thus

FpkΎ]:Pn+lχS->BO classifies , hence can be lifted to

BO(ri). Thus pa=a for some a. (II) If Λ=l(4), (k— 1)0? ®Σ) has a quater-

nionic structure, hence Fp+ψtkη, which classifies &(??®Σ)> ϋfts to BO(n): thus
pa=λ}ra for some α.

Theorem 3.101}. Lei w = 3(4), n^>7, and let k be any integer such that

( 4_ι) ^ even- Let χoo be an element of A0

n(kη-, PH+2) with ρQOχ = un and let

xιι=\u»+*9 Then

( i ) An\kn\ Pn+2)^Z4, 2xw=xufor k = Q, 3(4),

An\kη; Pn+2)^Z2+Z2, 2xw=2xu=0for k = l, 2(4);

furthermore An\kη; P »+,)-> An\krj\ Pn+1) is onto.

(ii) γ( ψ , Λ?00)=Λ?oo+^ιι, and γ(p, x^^x^+^Λx,,.

(iii) For any a<= An(kη\ Pn+2), sa^=(~^ ^ooi ^A indeterminacy xu

(based on the choice of a). Furthermore, sap=0 for k even, saρ=saψ for k odd',
both with no indeterminacy.

Proof. Similar to 3.8.

For the sake of uniformity, the above information is displayed in table B.

Table B2>: w-plane bundles over Pn + 2 of stable type k for w = 3(4), n>7, I , ^ J even.

*=0(4)

*-K4)

^2(4)

k=3(4)

An°(kr, Pn+2)

zt

Zΐ + Z2

Z2 + Z2

zt

generators
& relations

Xoΰt %ιι

2#oo=#ιι

#00, #11

2#oo=2#n

=0

#00, #11

=0

#00, #11

2#oo=#n

2#ιι=0

T(P, )

1

1 + Z

1

l + X

r(Ψ, )

ί + x

l + Z

1 + *

l + Z

*.P

0

Θ-

0

(n}x°°

*A

(ί-ί) Λ°°

Nn(kη;Pa+2)

3ifβl|)even

2if(Jl})odd

1), 2) The corrected statement of Theorem 3.10, and a corresponding correction of Table B,
were supplied by the referee.
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4. Actions

Let A* be any F-twisted cohomology theory satisfying the axioms given
in [2]. Fix, for the moment, a C.W.-pair (X, A) and a map /: X-+Y. We
have a natural left action

where <4ί=π1(Y-', f ) , defined as follows: if a^M is represented by FΛ : X X S
->y, where FΛ(x, *)=f(x) for all x<=X, let Fβ also denote the composition

p
XxI-*X X S-£Y. We have isomorphisms, where ί0 and x^: JΓ-^^f X / are
the inclusions along 0 and 1, respectively:

/ *
A*(.ϊ" x /, A x /, FΛ) z==

/ *

Let γ(#, Λ?)=αΛ?=ί0*(ί1*)"1Λ? for all x<=h*(X, A,f).
L,etβ<=Z2: we shall write (— Vf=±\^Z. For a^M> we shall define a

long exact action sequence for the pair (£ , a) and the theory A* :

X Γ., ̂  X ;5 U A X 21., Fβ) --> V(Xt A,

where T, is the torus if £=0, the Klein bottle if £=1, 5-* Γε-Ξ-S is the fibra-
tion, and j: S->T is the section. By a slight abuse of notation, write

Fa: XxT - XxS— ^>F. For * e A*(JΓ, -4, /), φa*x is given to be
ax— (— !)SΛ:. We let ^ be the composition

ί lXt)*
T,, Fa) - - 4. h"+1(X x ίS, AxiS\J X, f°ρx)

h"(X,A,f)

where ̂  is projection to X and ί is suspension. Let X be defined by com-
mutativity of the diagram :

h"-l(X, A, /) -i A*+1(^ x Γt, ̂  x jS U -4 x Γt, Fa)

iS, ^Γ U ^4 x iS, f°ρx) hk+\X x T,, X x (iS V S) U A X Γt,

β I ssέ \ a*I {FΛ * r
hk+1(XxiSxI, XxLuAxiSxI, F0) -̂ 4- hk+1(XxiSxI,
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where q: XxiSxI-»XxT9 is the obvious quotient map, L=iSx {0, 1} U

{*} XldiSxI, and Ft(oc, y, u)=(F(6oq)(χί y, 1— t(l—u)) for all ί, we/,

It is fairly straightforward to prove that the action sequence is exact and

natural with respect to stable Y-twisted cohomology operations, i.e., ^ψ —

tyφu> VΛ]r=ψv9 and Xψ=ι/r% for any such operation ψ. We leave the details

to the reader.

Now suppose that Ά*, "A* are Y- twisted cohomology theories classified

by ΩF-sρectra '£, "6, respectively. Let ψ: Ά*->"A* be a stable Y-twisted

cohomology operation of degree, say, rf, classified by an Ωy-spectrum map

Λ/T: '(?->"<?. If we let A* be the Y- twisted cohomology theory classified by <?,

the fiber of -v/r, we obtain the long exact sequence associated to -ψ* :

(4_2) . . '**-'(*, Λ, /) A "**«->(*, A, /) -

where λ, )̂ are now stable Y- twisted cohomology operations of degrees d—l

and 0, respectively,

We now examine the following question. Suppose we know the action

of M on 'h*(X, A,f) and 7/A*(Jf, A,f). How can we determine the action of

M on A*(^Γ, A, f) ? We give a partial answer, which suffices for our applica-

tions to vector bundles.

Let tfeKer-v/r in the sequence above, and suppose ax= (— l)ε# for some

a^M, £<=Z2. If z^hk(X, A, /) and pz=xy it is clear that (— l)ε# differs from

α# by λzϋ for some w^"hk+d~1(X, A,f). This element w—Φ^oc clearly has

indeterminancy. In fact (as is trivial to check), we have a homomorphism

Analogous to diagram (3-2) of [11] and Fig. 2 of [10], we have a commutative

diagram with exact rows and columns :

V V ΦJ V
,, XxjS(jAxTt, Fa) — *'H<(X, A,f)--^+'hl'(X, A,f)

"h*+*-\X, AJ) ^^fh^d-i(χ^ A,f)-t+"hk+<i+i(Xx Tβ, XxjS \jAxTs, FΛ) —*"£*+<*(X, A,f)
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We define a homomorphism:

*φΛ

ε = χ-1^!/-1: KerψnKerφΛ

8 -> /7A*(-Y, ^,/)/Imι/τ+Im^ε

and, analogous to Theorem 2.5 of [10] and Theorem 3.2 of [11], we have

Theorem 4.1. Φβ

β=—*ΦΛ

8

Proof. Analogous to that of Theorem 2.5, [10].

The usefulness of ΦΛ

ε as a computational tool is illustrated by the follow-
ing remark:

REMARK 4.2. Let £: M-+Z2 be a homomorphism such that (in sequence
(4-2)) ax=(-iγ*x and ay=(—l)"y for all atΞM and all x&'h*(X, A9f),

Γ, A, /). If Γdc# is a generating set, knowledge of Φ/** for all
hk(X, Ayf) and all αeΓ suffices to determine the action of M on

W(X,A,f).

Proof. We leave to the reader.
We proceed to compute *Φ# in certain cases which are applicable to vector

bundles. Henceforth, assume that 'h* is an ordinary twisted cohomology
theory of type Z or Z2, i.e., with coefficients in a sheaf G over F, where each
stalk of G is isomorphic to either Z or Z2. Thus G=Z2 or G=Z[u] for some
u^H1(Y]Z2). The same assumption shall be made concerning "λ*, namely
that it is also an ordinary twisted theory of type Z or Z2, and is determined by
a sheaf H over Y.

We shall make specific computations of the homomorphisms

v: fh*(X XT,,XXJSUAX Γβ, FΛ) -

Tt, XxjS\jAxT,y FΛ)-+"h*(XxTt, XxiS \jA*Tt, FΛ)

,f)-+ "h*(X XT^XXJSUAXT^F*}

φΛ':'h*(X9A,f)-+'h(X,A,f)

φΛ':"h*(X9A,f)^"h(X9A9f)

in each possible case. If XA*, "h* are in fact direct sums of ordinary theories,
no additional complication ensues, since -ψ will be a matrix of ordinary opera-

tions, and v, %, and φ# shall each be a vector consisting of the corresponding

homomorphisms in the ordinary component cases.
Recall that FΛ\XxS-+ Y classifies a<=M\ as before, we let FΛ=FΛo(l X π):

X X Tζ-+Y. If ytΞkH(Y\ Z2), let *y^Hk~l(X\ Z2) be defined by the equation

FΛ*y=f*y®l+*y®σJ where σ^H\S\ Z) is the fundamental class of S. We
shall assume X is connected, thus Λu^H\X\ Z2)=Z2 if u&H\Y\ Z2). If

*«=£, and yt=H*(Y; Z[u])9 let Λy^Hk'\X\ Z[f*u]) be defined by F^y=
f*y®\+«y®σ.
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The cohomology of Γg is well-known and easily computed. Let a=pπ*σ
l(T,\ Z2), and let B^H\T,\ Z[βa]) be uniquely defined by the equation

=σ; and let b=pB. We have:

REMARK 4.3. #*(Γε; Z2) is generated by a and 6, subject only to the re-

lations a2=Q and b2=βab.

Lemma 4.4. We have isomorphisms (for any u^Hl(Y\ Z2)):
(I) ι: Hk-\X,A',Z2)+Hk-2(X,A',Z2)^Hk(Xx T^XxjSϋAx Γε; Z2),

where L (x, x'}=^x®bj\-xf®ab.
(II) L: Hk~l(Xy A-, Z[f*u])+Hk~2(X, A\ Z[f*u])^Hk(X X Tε, XxjS\J

A X T , ' , Z[f*u]), where t(x, x')=x®B+x'®π*σUB\ if*u=6.
(III) t: Hk-2(Xy A]Z2)^Hk(XxTζ, XxjS^Ax Γε; Z [/%]), where

Lemma 4.5. Consider the action sequence for h*(X, A, f)—H*(X, A \
where G=Z2 or Z[u], u^H\Y\ Z2). Then

(I) // G-=Z2, φ*x=Q:, Xx=ι(Q,x) and VL(X, x')=xfor any

(II) If G=Z[u], *u=£, then φ(Λ

ζx=Oί 'X,x=ι(Q, x), and vι(x, x')=x for any

(Ill) IfG=Z[u], "z/Φ£, then ψΛ*x=±2x, Xx=cpx, and wz=8[f*u]z for
any xtΞH*(X, A\ Z[f*u]), zEίH*(X, A; Z2).

Proof of 4.4 and 4.5. Straightforward; by 4.3 and the definitions of φ^,
%, and v.

We give a useful way of expressing -ψ*: H*(XxT,, XxjS(jAx Γε; FΛ~
1G)

-*H*(XxTs, XxjS(jAx Γε; F^Ή), for G and H both Z2 or Z[u].
Let SI be the mod 2 Steenrod algebra. Let K: Sϊ->Sl be the derivation of

degree —1 defined by Kristensen [5]; we write θ'=κθ. The following pro-
perty also defines θ' ': if x^H*(W\ Z2), y^Hl(W\ Z2), where PFis any space,
θ(χ U y)=θx U y+θ'x U Sqly.

Lemma 4.6. (I) Let G=H=Z2, ψ=yuθfor some yίΞH*(Y]Z2},

Then for x&H*-\X, A Z2), xf^Hk~\X, A Z2), ψι(x, tf)=ι(f*y U θof,f*y U θx'
+*y U θx+βf*y U θ'x). (II) Let G=Z[u], H=Z2, ψ=p, reduction modulo 2. //
u=6, ψι(x, tf)=ι(px, px')for x<=Hk~\X, A\ Z[f*u]), x'^Hk~\X, A', Z[f*u}}.

[J)x/). (Ill) Let G=Z2, H=Z[v], ψ=δ[v].
ί;UΛ /) far x^Hk~\X, A\ Z2), xf^Hk~2(X,

A;Z2). Ifv«=£, ψι(x, tf) = ι(δ[f*v]x, S[f*v]xf) for x^Hk~\X, A\ Z2), x'^
Hk-\X, A] Z2). (IV) Let G=Z[u], H=Z[v], ψ=D\J, where D(ΞH*(Y; Z[u

+v\). If *u=ε, x^Hk'l(X, A;Z[f*u]), and yf^Hk'2(X,A\Z[f*u\\ then
ψι(x,x')=ι(f*D\Jx,f*D\Jx'+*D\Jx) if *v=8, while tyι(x, x'}=ι(«(pD}x\jx
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+f*(ρD)\Jΰc') if v**ε. On the other hand, if *u*6, and x<=Hk-\X, A; Z2),
ψιx=ι(δ[f*v](pf*D\Jx), δ[/*0](%o0)U*)) far «v=S, while if *v*ε, ψ*x =
ι(ρf*D U x+«D U /*M U x+*D U Sqlx).

Proof. Case (I) is elementary. For cases (II) and (III), the formulas
given are the only ones consistent with case (I) in the respective universal exam-
ples. Case (IV) is proved somewhat similarly (it is necessary to observe that if
*u**v, (Sq^f^u U +/**; U )Λ(pD)=f*(pD)) , we leave the details to the reader.

If Ά*, "h* can both be expressed as direct sums of ordinary twisted coho-
mologies of types Z2 and Z, Φ/ can be easily computed using 4.1, 4.4, 4.5, and
4.6. We write the specific results in all cases where each has only one summand.

Corollary 4.7. Let f: X-» Y, (X, A) a C.W.-pair, X connected,
TΓ^y 5,/), and £eZ2. Let Ά*, "h* be twisted cohomology theories determined by
sheaves of local coefficients G and H, respectively, over Ύ y and let i/r: //i*-^//A* be
a stable Ύ -twisted cohomology operation. Let x^H*(X, A /^G), such that
ψx=Qy ψ*a=Q. Then (where in each case, yλ(ΞH*(Y; Z2), 0λeSί for each
λeΛ, some finite indexing set\ and u, v^H1 (Y; Z2)): (I) If G=H=Z2 and
ψ-ΣλeΛ^Λ U θλ. Then ΦΛ

βΛ=Σλ6A^λ U θλx+εf*y U θλ'x. (II) // G=Z[u],
H=Z2, andψ= ΣλeΛ^x U 6>λp, then

ΦΛ'* =

uwhere, if ε^F*u, ztΞH*(X, A\ Z) is chosen such that 8[f*u]z=x. (Ill) G=Z2,
H=Z[v], ψ=δ[ϋ] ΣλeΛjΆ U θλ. Then

I 1/9 r-J-P /"*ι; I I /
•- 5 I - L^ - J ^ i/icux ^ Λ U ^λ1^ 1̂  C7 _Xλ U '

ΦΛ X =

?, ifε^*v, w^H*(X,A',Z[f*v\) is chosen such that ρw=-^λ^Af^yλ\
(IV) If G=Z[u], H=Z[v], and ψ=D(J +S[vJΣλeAyλl)θλ for some
H*(Y; Z[u + v])9 then

^ ^/ £ - Λw Φ %

δ U*v}(«(pD} U ar + ΣλeΛ/*jΛ U 0λ* + -yλ U θλz + 6/*jλ U ̂ /P^

if ε*«u

where (when necessary), w^H*(X, A] Z[f*v]) and z^H*(X, A', Z2) are chosen
by the equations ρw=*(pD) U px + ΣλeΛ/*)^ U θλpx, and S[f*u]z=x.

CALIFORNIA STATE COLLEGE, DOMINGUEZ HILLS
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