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In [3] Kamae proved that for each constant c, there exists a finite string y

such that

K(y)-K(y\x)>c

for all but finitely many finite strings x, where K( ) and K( \ •) are the uncon-
ditional and conditional minimal-program complexity measures respectively of
Kolmogorov [4], By considering infinite sequences we are able to obtain a
slightly stronger statement of this result.

Let X00 denote the set of all infinite binary strings. For x^X00 let xn denote
the initial segment of x of length n, i.e., x"=x(l) x(ri). To simplify matters
we will associate with each finite binary string y the integer n whose binary
representation is l y. By this means we will consider complexity expressions of
the form K(xn), K(xn\m) and K(m) for x^X°° and integers n and m. Then

K(x1t I n) is Kolmogorov's restricted conditional complexity. By a recursively
enumerable sequence we mean the characteristic sequence of a recursively
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enumerable set. By "3n" and "V/z" we mean respectively "There exist in-

finitely many integers n" and "For all but finitely many integers n."

Theorem. There exists a recursively enumerable sequence x, such that

\fc3n\fm. K(xn\n)~K(xn\m)>c.

Proof. We need the following two lemmas.

Lemma. For every recursively enumerable sequence x}

BCiVnVm. K(xn\m)<K(n)+c1.

Proof. Let h be a total recursive function which enumerates the Γs of
x, i.e., #(*')= 1̂ 3> h(j)=i. Define the total recursive function/(τz, m) as follows:
Step 1: Enumerate via h the first m Γs of the sequence x, i.e. compute h(l),-••,

h(nί).
Step 2: Output the following finite stringy of length n— y(i)=l^i appears on
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the list generated in Step 1, i.e. 3j<m. h(j)=i.
Using/ and the asymptotically optimal algorithm for K( \ •) the result follows.

Lemma. There exists a recursively enumerable sequence x such that Vn.
K(x2"\2n)>n-l.

Proof. Let A by the asymptotically optimal algorithm for K( | ) and

define the sequence x as follows: For each n and each m such that 1 <m<2n~l,
x(2n~l+m)=l^mth digit of A(m, 2n) is 0. Clearly x is recursively enumerable
and x2n^pA(y, 2n) for all programs j; of length<#— 1.

Combining these two lemmas we have that there exists a recursively enu-

merable sequence x such that

f. K(x2"\2n)-K(xzn m)>n-\-cΛ-K(2n) .

While it is true that K(2n) for most integers of the form 2n is about n, there are
infinitely many such integers which have descriptions of arbitrarily (in an
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effective sense) short length relative to n, i.e. Vc"3n. n— K(2n)>c. (see [1])
Combining these two inequalities yields the result. Q.E.D.

Recently, Chaitin (see [2]) has shown that a sequence x is recursive
<=^3^Vw. jK(#w) <£"(#)-(-£. Combining this result with the first lemma above
we have immediately

Corollary. For every non-recursive recursively enumerable sequence x,

VcBnVm. K(xn)-K(x"\m)>c.

However, the above theorem is the best result obtainable for any recursively
enumerable sequence in view of the following result which is proved in [1].

Theorem. For every recursively enumerable sequence x

3c3n. K(xn\n)<c.
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