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In this paper we will consider the BP4-Hopf invariant, 7x(S°)—
ExtyX gp)(BPx, BPy), i.e. the Hopf invariant defined by making use of the
homology theory of the Brown-Peterson spectrum BP. The BPy-Hopf in-
variant is essentially “the functional coaction character”. Similarly we will
define the BPy-e invariant (‘“the functional Chern-Dold character”) and show
that the BP,-Hopf invariant coincides with the BPy-e invariant by the BP-
analogue of Buhstaber-Panov’s theorem ([6], [7]). As applications we give a proof
of the non-existence of elements of Hopf invariant 1, and detect a-series.

We will use freely notations of Adams [2], [3], [4]. For example, S, H,
HZ, and HZ,, denote the sphere spectrum, the Eilenberg-MacLane spectrum,
Z, coefficient Eilenberg-MacLane spectrum and Z, coeffitient Eilenberg-
MacLane spectrum respectively, where Z,, is the ring of integers localized at
the fixed prime p. :

We list some well known facts:

7[*(BP) =BP*(S°) = BP* = Z(i))[‘vl, Vg "'] ’ ng U = | ‘Z);,I = 2(1)"—1) .
Hy(BP) = HZpn(BP) = Zop[ny, myy -], degmy =|my| = 2(pF—1).

The Hurewicz map
h? = (" Nlpgp)y : wy(BP) — Hy(BP)
is decided by the formula [5]
hH(vy) = pm— 33 W04 )", .
0 s<k
BPy(BP) = BP[t,, 1, ], degty =ty = 2(p*—1).
The Thom map BP £ HZ induces

BP(BP) > HZ ,u(BP) =Hy(BP), w(te) =1, w(ve1)=0
(k>0) and ([10])
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HZ (BP) S5 (HZ )u(HZ,),  pa(me) = c(84)

where ¢ is the conjugation map of the Hopf algebra (HZ,)«(HZ,) and
&x(k=1,2, .--) are Milnor’s basis of a polynomial subalgebra Z,[¢, &,, +--]C
(HZ ;)«(HZ ;). BP*(BP)=BP,Q®Z 4 {rs}, where E runs through sequences of
non-negative integers E=(e,, e,, ) in which all but finite number of terms are
zero and deg 7= |E|=|75| =2(3] ex(p¥—1)).

>3]

1. BP-analogue of Panov’s theorem

To compute ExtpX pp,(BPy, BPy) we define some subquotient group of
H (BP) and compute this group and next relate this with ExtpX zp,(BPx, BPy).

We may regard z4(BP) as a submodule of Hy4(BP) by the Hurewicz map
h®. Cohomology operations 7z act on H4(BP) so that we define

N=Nrz'(Imki¥) and N/Imh¥.
B0

We fix a prime p and discuss the Brown-Peterson spectrum associated with
this prime, then for n=3=2k(p—1) (N/Im k¥),=0 as H,(BP)=0, thus it remains
to decide the groups (N/Im h*),4p-1 -

Theorem 1.1. For odd prime p (N/Im h¥),4 p-y=2Z p*sco+1 with generator
0, %[p's® " where v (k) denotes the exponent of highest power of p dividing k. For
p=2 (N[Im h¥),,=Z, (k: 0dd), Z, (k=2) and Z ,y, )+, (R>2, even) with generators
0,512, v.*[4 and v,#[2"2F+> o k%0, [2 respectively.

Similar theorem for MU spectrum was first computed by Panov [7], and
Landweber [6] gave a shortened proof of which BP-analogue we follow faithfully.

Exponent sequences E=(e,, e,, **+), F=(f,, f, ***) are ordered as follows:
E>Fif

(1) [E|>|F]|,or
(2) |E|=|F|,andn(E):?ek<n(F), or
[>=31
(3) E=F, n(E)=n(F) and there exist a k such that e,>f,, e,=f; (i >k).

We have that if E>E’ and F>F' then E+F>E'+4F’, where the sum is com-
ponentwise. We say that an element a of N has type E if rg(a)éE(p)=p-Imh*
and rp(a)e(p) for any F>E, especially a has type 0 if ¢ has type (0,0, ---).
If a has type E, such a E is denoted by #(a).

Lemma 1.2.

(1) vy, has type pA, (k>1) and v, has type 0 (i.e. {(vg4,)=pA, (¢(v,)=0).
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( 2 ) rAIz+1(vk+l)=P'
(3) tv®)=(pe, pe,, -) where E=(e,, e,, ***)

and v means v{ivgz---.

Using the formula ([10])

_ [, E=pA;(+j=k);
Te(m) = { 0, otherwise,

and

S
Vp = P, 2 ‘vk-ﬂsns ’
0<s<k
the lemma can be proved by a routine induction on k&, so we omit it.

By the above lemma we get #(v®)==¢(v") for E<F, |E|=|F|.
Theorem 1.1 is divided into three lemmas as Landweber did in MU case.

Lemma 1.3. (N/Im kH),, ,_,, is cyclic (i.e., has one generator).

Lemma 1.4.

(1) vlk/Pv’(k)HENzkw—l)) and
(2) if p is odd, or p=2 and k is odd, or p=2 and k=2, then vF*[p’»®*!
represents the generator of (N/Im hH),p 5_,5.

Lemma 1.5. If p=2 and k>2, then v}*[2"*® 49 *0,[2 represents the
generator of (N/Im hH),,.

Proof of Lemma 1.3. Let ae N,u,-,, represent an element of order p in
(N/Im h¥)p -y, then pacIm . Write pa=nov* 1 vF14-N 0524 4005
with N, A ;EZp, | E;| =2k(p—1) and t(vF1)<t(vF2)<---<t(v®:). Apply 7,7

to the element pa. We get A;=0 mod (p) since X 7,,7;(v%)=0mod (p). Next
apply 7,,5-1,. By the same argument we have A, =0 mod (p). Continue these
argument, then we get A\, =)\, =--=)\,=0mod (p). So we conclude

pa = rv.* mod (p)
and hence
a=x(vfp) in (N/ImhH)u, .

This implies Lemma 1.3.
Proof of Lemma 1.4. (1) We get by induction

e ne o
(Fyprors, E=ens

rE(‘vlk) = {

0, otherwise,
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Using the formula ([6], [7])

vo((5)) = vaby—vale) for e<pr®,
we have
» p(<f) p‘)z vo(R)+1.
The equality holds for e=1. Hence
04PN E N ypyy, and 04 p s P EN sy

(2) For odd prime p, or p=2 and k: odd, or p=2 and k=2, v,*/p"»®** has
type A(<t(vF), | E|=2k(p—1), E==EkA,) by the above argument.

If a= 7\‘'Z)lla/.ﬁ“p(’a)-'-2""lq=_2k20‘_1) 7\'E"Z)Ee-lvzk(i)—l)’ 7\') PXEEZ(P) ’
BfrA,

then pa has type 0 so that p| A, p| Az by the same type-argument as the proof of
Lemma 1.3. This shows that there is no element a such that o */p*»®*'=pa
in (N/Im k*),,5_,,. 'This implies Lemma 1.4.

Proof of Lemma 1.5. In case p=2 and k>2,

yz((k)ze) — o)+l (e=1,2)

e

and

v2(<k>2">>v2(k)—|—1 (>2).

e
These imply that ©,#/2"2%** has type 2A,. After routine computations we obtain

75,(0,F[2V201) = o}™! = 7, (v1%v,) mod (2)

Pon (0, #[20H) = b2 = 7., (v4~%,) mod (2) .

So we conclude that v */2¥%#*' 0} ~%, has type 0, and thus ,%/2%®** 49} ~%,[2
ENy. Put P=o/k[2% %21 0t~%,/2. We decide the type of P in several steps.
YP)=A, ort(P)>A, by r,(P)=v{"°. The Cartan formula implies 7z(P)=
0mod (2) for E>A, andE=iA,, so that (P)=A, or iA, (i=4). Fori=4
—_ k { [DV(RI+2 oy k=5

riAl(P) = ; 2'/2 2 0] * mod (2) N
thus

(f) 2120+ = Omod (2) if v(k)=1,
and if v,(k)>2
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(’?)Zi/zuzq,m _ { 2D i<y (R)+2;
’ Omod (2), i>w,(k)+2.

This implies that #(P)=A, if v,(k)=1 and #(P)=4A, if v,(k)>2.

There is no element acIm k¥ such that 7z(P)=rg(a) mod (2) for any E.
If not, a is represented by a linear combination of v,%, vi~%v, and v{ %,% then
75,(@)=0mod (2) which contradicts the assumption. This implies Lemma 1.5
and also completes the proof of Theorem 1.1.

Next we lift the group (NV/Im k) to a subquotient group of BP4(BP) by

Thom map BP*(BP)-IiH «(BP). We denote by (rx)s« the right action of 7z on
BP4(BP) which is compatible under Thom map p with the action on Hy(BP).
We consider the groups

NB? = N (rg)5'(Im hZF) and NBP[Im hBP+ BPy-1,"
B0
on which Thom map induces the group homomorphism

N5P[Im hBP+4 BPy-1 A N/Im rH .
Theorem 1.6. i is isomorphic.
Proof. In BPy(BP)QQ = BP+QOQ[n,, n,, -]
0,(0%(0) = BP,@Q
so that in BP,(BP)
0,0570) = BP,1 (= BP,®1).
We get easily
Ker p N NBP ;qu(rE);‘(O) = BPy-1

and
Ker 4 = {(Im ABP+Ker p) N NBP+Im hBP+ BPy -1} [Im B4 BPy-1
=0

so that 4 is monomorphic.

For any prime p, h%7(v,)=v,=v,+ 14-pt,, and thus
kE_ok, 1 — k e k-¢s €
vf—ok-1 = 1529 (e)P [/ A
We get
(04— 0,5+ 1)[p"s*** € BPyyc ,-(BP)
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and

(vf =0 1) [p* P ENE H -
In case of p=2 and k>2,

hP%(v,) = v, = v, 1—30,°,—5v,¢,°+2t,—4¢°, ([3]).
We get

(v,f—v,%.1)[2%P*2 = (1/2)0t7't,4-(1/2)01 %2244,

(v %0, —(v4%0,)1)/2 = (—1/2)vt 't 4+-(—1/2)v17%t*+ B,
where 4, B&€ BP,(BP), and thus

(v,f—v,%1)/2"P*? | (0} %0,—(vi %0, )1)/2€ BP,(BP) .
We have easily

(v,f—v,%.1)/2" P2 4 (0} %0,—(v1 %0, 1)[2E NEF .

These conclude that ;4 is epimorphic and complete the proof of Theorem 1.6.
The conjugation map ¢ of the Hopf algebra BP4(BP) induces the isomor-
phism

¢: NBP[Im hBP 4 BP,-1 —>Eﬂ 75 (BPx+1)/Im A8+ BP-1
40
but ¢ preserves the generators given in Theorem 1.6 up to sign, so that we obtain
Corollary 1.7.
NEP[Im kPP BPy+1 = N rg'(BPx-1)/Im k3P4 BPy.-1
B0
We next show that

Extyfppy(BPx, BPy) = ﬂ 75 (BPy-1)/Im hBP 4 BP -1

= N/Im ht .
Let S—>BPLT be the cofibration obtained from the unit S->BP, [#—
1 B
ININ--«-AI (k-factors) and d; be the composition BP/\I""E-/\—> I&D

B 1 1
BPAI%**Y (or equivalently BPAI® — BPABPA® —/\—& BP N\I%*D),

Then we obtain the geometric resolution of Adams [4]

d d d d
BP = BPAI— BPAI® = BPAI® 3

which defines a chain complex of a spectrum X

BPy(X) °)*(BP/\I)*(X) @) (BPAI®)(X) —
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and

Extg# gpy(BPx, BPy(X)) = Ker (d;)/Im (ds_,)+ -

For X=S8° (d)s=p+h®" and (d)s=(p+®@1)¥; where BPy(BP)L: BP(I)—

v
BP4(BP)/BPy-1 is the canonical projection, BP(I) — BP, (BP) ®@pp,BP4(I)
is the coaction map of I for which

W, (x) = ; tEQrg(x) .

RemaARk. This coaction map is twisted by the conjugation map ¢ of
BP(BP) from the one denfied by Adams [2].

Ker (d,)x = {x BPy(BP)/BPy-1|r5(x) = 0, E+0}
p—v —1 . .
= N 7E(BPy-1)/BPy-1,
Im (d,)x = Im A%F/Im h3F N\ BPy-1 = Im hBP+ BPy+1/BPy-1.

Hence we obtain

Theorem 1.8.
Exth ppy(BPy, BPy) = BQFO 75 (BPy+1)/Im h?¥+BPy-1.

Corollary 1.9.
i
Exty# spy(BP, BPy) = N|[Im h¥ .

2. The BP.-Hopf invariant

Since BP(BP) is flat over BPy, BPy(BP) comodules and BP(BP) co-
module homomorphisms form a relative abelian category so that similar construc-
tion of Adams [1] is valid for BP, homology theory. We review the construction
of the BP4-Hopf invariant quickly; for a morphism f: X—Y of CW-spectra
in homotopy category such that f4=0, we have a short exact sequence

E(f): 0— BP4(Y) — BP4(C,) — BP4(SX) >0,

which is regarded as an element of Extpd zpy(BPx(X), BP4«(Y)). This is the
BP-Hopf invariant of f.

For X=S8%1"(q=2(p—1)), Y=S"° the BP,-Hopf invariant is defined on the
whole group z,-,(S°). For a short exact sequence E(f) we apply the Adamg
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resolution BP—BP AI—BP AI®—-.. then we obtain a short exact sequence of
chain complexes

0 0 0
J l !

0 — BP(S°) — (BPAI)4(S°) — (BPAI®)4(S%) — -
! | ix |

0 — BP4(C ;)= (BP AI)4(C;)—(BP AI®)4(C,) — -+
VJj ! !

0— BP*(TS"?”)—> (BP AI)5(S*7)—(BP A I®)5(Sk?)—>+-
! ! V
0 0 0

Let o4 € BP.(S*¥) be a generator and §(ok,) = [i5'(do)«j% (ora)] €
Exty4% sp5(BPyx, BPy) then the element 8(cy)=E(f)s(ckq) is just the element
E(f) by well known technique of homological algebra. This construction is
considered as follows; let oy=14(c,), 14 are generators of BP4(C ) of dimension
0, dimension kg respectively so that ju(pzs)=04, and let ng: BP—=S ABP—
BP A\ BP be the Boardman map and put 7g«(peg) =4 (0, e (4 ,E BP«(BP)).
Then A, represents E(f). Replacing BP—BP A\BP by BP—H N\BP, we have
the BP4—e invariant (or the functional Chern-Dold character) and is equivalent
to the BP,-Hopf invariant by Corollary 1.9.

3. Applications

For an element fez, ,(S°) (g=2(p—1)) we get a short exact sequence
0—(HZ )x(S)>(HZ )4x(C ;)—(HZ ,)4x(S*?)—0 and can choose generators o
and pig of (HZ,)«(C,)such that o,'=ix(c,) and ju(phs)=0%, where o, is a
canonical generator of (HZ,),(S"). Let ¥: (HZ,)«(C,)—A+Q(HZ ,)«(C) be
the coaction, then the definition of the Hopf invariant in the sence of Steenrod
is described as follows; f(E 74e-,(S°)) is said to have mod p Hopf invariant 1 if
{P* H >0, where P*is the Steenrod reduced power (interpreted as Sg** if

p=2) and W(pho)=H ,0,/+ s (H ;€ As).

Theorem 3.1 (Adams, Liulevicius, Shimada-Yamanoshita.) If f has mod
p Hopf invariant 1 then

(2) k=1,2o0r 4 for p=2;
(2) k=1 for odd prime p.

Proof, Consider the following diagram



BPy-HopF INVARIANT 195

BP4(C,) it (HZ,)4(C)

|7 o

®1 ®1
H(BP)®H«(C/,) b Ax®(HZ )«(C,) e AxQ(HZ ,)«(C,)

then
Y(phq) = Y pprg) = (1) (5 ®1)(4 s0, + 1}a)
= I1 0, H‘M;eq .

Since A4, is a multiple of o#p"s®+i=pk=Vs® ik or ¢ k2@ yl=3y, %
2k~Vo~2y k mod 2+ H,,(BP) by Theorem 1.1, H , is a multiple of p¥~»*~'¢/* or
2k-Vo-2e%  In case of an odd prime p H =0 for k>>1, in case of p=2 and odd
number & H =0 for k>1, in case of p=2 and even k& H =0 for k>4. This
completes the proof of Theorem 3.1.

Let V(0)=S° LPJ ¢' then there exists a map ¢: S¥?—S*?}(0)— V/(0) such that

G0 hg)=0,%+7, where o4, BP,,(S*) and v, BP(V(0)) are generators ([8]).
a-series elements oy (k=1, 2, +++) of 7,,(S°) are defined by a,=j¢, where

j: V(0)—S" is the canonical projection. We detect these elements by means of
the BP,-Hopf invariant. We have the following diagram of cofibrations;

A
si 2%, o) =4 €4, s sEn s ST(0)
[ |
seo X, o L, s s, g

|

A i —
Considering the above diagram following results are obtained;

BP,(S™ ( generator; o,
{ relations; none,
BP,(V(0)) = BP4«/(p) [ generator; 7,
{ relations; pv, =0,
BP(Cy,) ( generators; ax(7o), Megs:
relations;  (p, v,%)-ax(v,) =0
formula;  by(Ngors) = Pokes s
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BP*(Cm,,) generators; cx(01)s Hrans
relations; none
formula; ds(trgr1) = Tras1s

and the formula
h*(xkq+1) = Plbkq+1_7)1k€*(°'1) .

The coeflicient v,* of ¢«(,) is decided up to a multiple of a unit of Z.,,. The
image of these generators of Thom homomorphism are denoted by o/, 7., N
and p,’ respectively.

Theorem 3.2.
e(ay) = v.2p in N[Im h# =Extpt pp,(BPx, BPy).

B
Proof. By applying the Chern-Dold character BP4(C,,) iy (HABP)«(Cy,)
t0 prgrs We get Bu(ppgs)=Aax(0))+ thesr. Aa, represents BPy-e invariant
of atx in N/Im A#. The computation

py’;24+1 = h*B*(XkWH) = B*(Pl"kqﬂ_‘vlkc*(o'l))
= pl‘;eqﬂ‘*‘(PAmk_vlk)c*(o-l/)

implies pA,,=wv,* and this completes the proof.
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