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0. Introduction

So far as mere analogies to the analytic functions or conformal mappings
were pursued in its earliest stage of the studies on quasiconformal mappings,
it only mattered whether the range of dilatations is bounded or not. With the
growth of the proper theory of quasiconformal mappings such as the extremal
quasiconformality due to Grϋtzsch, LavrentiefFs mapping problem etc., the
dilatation as continuous point-function has inevitably entered into consideration.
The modern definition of quasiconformality which dispenses with the continuous
differentiability has undoubtedly brought a rich variety of consequences into the
global theory thereof to say nothing of the local one. The generalized quasicon-
formality, however, stated in terms of global nature, determines the dilatation-
quotient as an essentially bounded point-function only almost everywhere. One
seems to know very little about its behaviour, when the mappings converge,
e.g., in the topology of uniform convergence.

In 1959 Lehto, Virtanen and Vaisala introduced the notion of maximal
dilatation at a point (cf. [4]), which turns out, by its very definition, upper semi-
continuous function. The present paper aims to develop their investigation on
the dilatation-like quantity which is well-determined everywhere and majorizes
the dilatation-quotient at almost every point: emphasis is laid on seeing how
they behave as functionals.

§1 resumes notations, terminologies and known results designed and ar-
ranged so as to fit our present setting. In §2 we define minimal dilatation by
analogy with the Lehto-Virtanen-Vaisala's maximal dilatation and show that
it provides a good estimate for dilatation-quotient from below: the semi-con-
tinuity of those extreme dilatations is set up, which will play an important role
in solving some extremum problem elsewhere. §3 deals with semi-continuities
of the weighted average of those dilatations. In the course of refining the
lower semi-continuity of the Dirichlet's functional we encounter in §4 a strong
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convergence of derivatives. The totality of quasiconformal disk-homeomor-
phisms forms a group, the operation being superposition of mappings: at the
unit element the convergence of the global maximal dilatation is stronger than
the mean square convergence of derivatives. The basic theorem on boundary
correspondence together with the existence theorem in the quasiconformal
mappings applies in quite a natural way to the study on such topology to produce
a new approximation theorem.

1. Preliminaries

Let Ω be a closed Jordan region lying in C={z: \ z | < <χ>} with four different
boundary points zlyz2yz3yz4 specified: these four points shall be located in this
order on the positively oriented boundary curve 9Ω. Such configuration is
termed quadrilateral (or topologίcal rectangle) and is denoted by Ω(zly z2y z3y z4).
An orientation-preserving topological mapping of the plane transforms quadri-
laterals into quadrilaterals.

Map the interior of the region Ω conformally onto a rectangular domain
R={ζ: 0<Re £ < l , 0<Im ζ<M}> in such a way that zly z2y z3y z4 correspond
to the vertices ξ=0> 1, \-\-ίMy iM respectively. The positive quantity \\M
is named modulus of the quadrilateral Ω(zly z2y z3y z4) and is denoted customarily
by the symbol mod Ω(zly z2i z3y z4). Though two figures Ω(zly z2y z3y z4) and
Ω(z2y #3, z4y zj are identical as point-sets, they should be distinguished from one
another as quadrilaterals in general, because mod Ω(z2y z3y z4y s^^l/mod Ω(zly

z2y z3y z4): the abbreviation Ω will be used only when no misunderstanding can
occur.

Throughout the following we shall make effective use of the two simple
facts, monotony and continuity of modulus:

(A) Monotony of modulus. Let 7 be a cross-cut of a quadrilateral

Ω(zly z2y z3y z4) whose end-points z2y z3 are located on the side zly z2y z3y z4 res-
pectively. Then there holds

m o d Ω(zly z2y z3y z4) > mod Ω(zu zr

2y zf

3y z4) + mod Ω(zf

2J z2y z3y z'3)

and in particular

mod Ω(z19 z2y z3y z4) > mod Ω(zly zr

2y z'3y z4).

(B) Continuity of modulus. Let the sequence of quadrilaterals {Ωcw)(,siw),
z%*\ z^\ ^4n))}»=i,2,.. t e n d t 0 a quadrilateral Ω(,2'1, z2y z3y z4) in the sense that the

έcart between the arcs zf\ zflx and zjy zJ+1 (j=l, 2, 3, 4; mod 4) converges
to zero as w-^-oo. Then we have

lim mod Ωin\z?\ zψ\ z$\ zT) = mod Ω(^, z2y z3y z4).

Let G be a bounded domain in C and let T(z) denote an orientation-
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preserving topological mapping defined in G. Let Ω be a quadrilateral com-
prised in G together with its boundary. The maximal dilatation of the home-
omorphism Tin the domain G is defined as Dτ[G]=sup {mod jΓ(Ω)/mod Ω}.

T is said quasionformal in G, if DT[G] is finite. Since our special interest centres
around the quasiconformal homeomorphisms between domains, we assume
henceforth that a finite constant K exists which dominates DT[G]. Such quasi-
conformal mapping will often be referred to as i£-quasiconformal (or briefly K-
q.c), when no ambiguity can result. If T is i£-quasiconformal in G, its in-
verse mapping T"1 is also K-q.c. in the domain T(G): the notation T"1 will some-
times be replaced by S in the sequel only in the interest of typography.

Let us denote by 3[G] the space of i£-quasiconformal mappings of the
domain G onto other bounded domain Gr normalized by the condition wo= T(z0)
(# o eG, wo^G' being fixed) and endowed with the topology of normal conver-
gence in G. Suppose Tn->T in 3[G] as τz-»oo. Every Tn(n=ίy 2, •••) satis-
fies modΓM(Ω)<i^modΩ for any quadrilateral Ω c G . Then mod T(Ω)<K
mod Ω by (B), hence the result known as the lower semi-continuity of the
maximal dilatation in a domain:

Proposition 1. If a sequence {Tn}n==12... of 3[G] converges to a Γ E 2 [ G ] ,

we have

DT[G] < lim^inf DTn[G].

In this paper dω shall stand for the area-element regardless of the variable
employed. By the way we summarize below some convenient notations and
terminologies which will be frequently referred to later: in the statements (C)
through (G) w=T(z) denotes a i^-q.c. homeomorphism belonging to 2[G].

(C) T(z) possesses the locally square-summable derivatives pτ{z)=dTjdz9

qτ(z)=dTjd% at almost every point of G.
(D) T{z) is totally diίferentiable almost everywhere in G: the estimate

I Pτ{*)I +1 ?r(*)\<K{\ pτ{z) I - Iqτ{z)\)

holds at all points where T(z) is totally diίferentiable.
(E) The Jacobian | pτ(z) \2—\ qτ{z) 12 is positive almost everywhere in G

and T(z) transforms every set of 2-dimensional measure zero into another such.
(F) A point z^G shall be named to be non-sίngnlar, if T(z) is totally

differentiate at z1 and further | pτ(z^) | 2 — | qΎ{z^) 12φ0: the set of points at which
T(z) ceases to be non-singular must necessarily be of 2-dimensional measure
zero.

(G) The Beltrami coefficient hτ{z)—qτ{z)jpτ{z) for T(z) can only be
determined at non-singular points, which is linked with the classical dilatation-
quotient Qτ(z) by Qτ{z) = [1+ |*τ(*)l]/[l- IM*)I]
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2. Maximal and minimal dilatation at point

Let a point z and α > 0 be arbitrary. We denote by N*(z) and by N*(z)
the α-neighbourhood and the deleted α-neighbourhood of z respectively: NΛ(z)

={?: I ? - * I <a\, N*(z)={ζ: 0< \ζ-z\ <a}. For all z^G we set D«τ(z)=
Dτ[N*(z)f]G].

Theorem 1. Dτ(z) is
1° a lower semi-continuous function in
2° a monotone decreasing function in a,
3° a lower semi-continuous functional in

Proof. 2° is trivial and 3° is nothing but a reproduction of Proposition 1.
Suppose, contrary to the assertion 1°, that G contain a point z where the lower
semi-continuity of Dχ(z) is violated: some sequence {zn}n=:12t...(zG tending to
z satisfies lim Dτ(zn)<Dτ(z). There is some constant c and some index nx

depending on c such that

( 1 ) D*τ{zn) < c < D«τ(z)

The inequalities (1) persist in its right half in the existence of some quadrilateral
Ω,(zN*{z) Π G such that mod Γ(Ω)/mod Ω<c. N*(zn) Π G will comprise the Ω
for all n from some index n2 on. If w>max (nly n2)> we have mod T(Ω)/mod
Ω<c by the left half of (1). This is a contradiction, q.e.d.

Letting α->0, we obtain a point-function Z5T(#)=inf D^{z)> the maximal

dilatation at z9 which Lehto-Virtanen-Vaisala [4] first introduced with its basic
properties:

Theorem 2. The estimate

( 2 ) Qτ(z)<Dτ(z)

is valid at every non-singular point z for T. The relation (2) holds with equality
if T is continuously dijferentiable in a neighbourhood of z.

The existence proofs for the usual minimization problem of maximal
dilatation rest on Proposition 1. We will present here a somewhat different
type of statement analogous to Proposition 1:

Theorem 3. sup Dτ(z) is a lower semi-continuous functional in T of 3[G],

Proof. Let α, a' be any positive number such that a<a'. Then obviously
sup DUz) < sup D%(z).
*€=0 Z66I
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Let c be any constant such that sup Dχ(z)<c: we have modjΓ(Ω)/mod Ω<c

for every quadrilateral Ω whose dimaeter is smaller than a. Since the local
quasiconformality implies the global one, the estimate mod T(Ω)/mod Ω<c
holds for every Ω c N*'(z): so D%{z) < c and sup D%(z) < c. Thus we have shown

that sup Dχ(z)=sup D%{z).

Next we shall see sup Dτ(z)=sup D^z). Suppose that sup D τ(#)<suρ

D%{z) for some α. Then there would be a constant c satisfying sup Dτ(z)<c<

sup Dj(,s:) for all α. The left half of these inequalities implies that for any zEίG

there is an a satisfying Dχ(z)<c, while the right half implies the presence of
some s ' e G satisfying Ό°^{zf)>c for any α. This is a contradiction. Hence
sup D r(#)>sup DΛ

τ{z). We have trivially sup Z)Γ(#)<sup Dy(^), and the asser-

tion is verified. Since D*τ(z) is a lower semi-continuous on 2*[G] (Theorem 1),
sup D τ(#)=sup DUz) is also a lower semi-continuous functional on 37G].

q.e.d.
Let B denote a square henceforth: but the symbol does not necessarily

indicate the same figure at each occurrence.

Theorem 4. sup mod T(B) = DT[G] for every T of 3TG1.
B(ZG

Proof. Let c be an arbitrary constant greater than sup modΓ(β). Taking

a non-singular point z^G for T at will, we consider a square B=B(zlyz2izz,zA)
C.G with one vertex at z1 and subject to the requirement 2 arg (z2—z1)=arg hτ

(zj. Given any £>0, there is a δ > 0 such that | Az\ < δ implies | Γ ^ + Δ ^ ) —
T{z^—pτ{z^Az—qτ(Zi)Δ%\ < £ | Δ^| . If we specify B so as to be \z2—z1\=8y

we see on account of (A)

c > mod T(B)>
(\Pτ(*i)\-\qτ(zϊ)\)\Δz\+2S\Az\

Letting £->0, we have )2r(#i)<£. Hence

( 3 ) ess sup Qτ{z) ^ sup mod T(B).

Next let cr be any constant dominating ess sup Qτ{
z) Then, since Q(z)<cf

a.e. in G, every Ω c G satisfies mod Γ(Ω)/mod Ω < ^ . Therefore

( 4 ) DT[G] < ess sup Qτ{z).
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Clearly sup mod T(B)<DT[G], so follows the desired identity from (3) and
βCZβ

(4). q.e.d.

Theorem 4 permits us to adopt squares in place of curvilinear quadrilaterals
in the definition of the maximal dilatation, which will, in conjunction with
Theorem 2, be suggestive of another local concept:

DEFINITION 1. Let Γ G 2[G] and z<= G. Take any point ζ of N«{z) Π G.
Let r be a positive number smaller than \/ 2 πiin (| ζ—z\, a— \ ζ—z\) and let

B=B(ζ; r; θ) dNa(z) Π G a square centred at ζ with a side of length r and of
argument θ. We set

D*τ{z) = inf [inf {max mod T(B(ζ; r; θ))}],

Dτ(z) = lim D"τ(z)

and term the latter of them minimal dilatation of T at z.

EXAMPLE 1. The extremal quasiconformal mapping T of closed Riemann
surfaces of genus > 2 : In terms of local coordinate z we have Dτ(z)=Dτ(z)=
const, without exception even at the zeros of the analytic quadratic differential
associated with T.

EXAMPLE 2. The extremal quasiconformal mappings T of StrebeΓs
chimney-shaped domain with prescribed boundary correspondence: Let G=
{z: Im z<0} [j{z: \ Re #| <1} be the domain in the Gaussian #-plane and let
T(z) a quasiconformal homeomorphism of G onto itself with the boundary con-
dition T{z)=z on {z: Im #=0, |Re#|>l} and T(z)=[(K+l)z-(K-l)g]β
on {z: Im #>0, | Re #| =1} . In this family of quasiconformal automorphisms
of G, the mapping

{[(K+ί)z~(K-ψ]β in {*:
W \[(K'+l)z(K'-l)2]l2 in I

is extremal quasiconformal for any constant K' such that 1/KKK' <K. But
Dτ(z)=Dτ(z)=coΏst. if and only if Kf=K.

Let a point z1 be of G. Suppose that lim sup Dτ(z)>Ώτ(zi) Then there

would be a constant c such that lim sup Dχ(z)>c>Dτ(zΛ: Na(zΛ must contain

some point f, such that m o d T ^ f ; r; θ))<c for some r whatever θ may be.

On the other hand if z2 is sufficiently close to zly N*(z2) comprises the squares

B(ζ\ r'>θ) (0<<9<27r) and yet we must have D%(z2)>c. It is impossible in view

of Definition 1. Hence we have proved lim sup DUz)<DUzΛ.

Let {Tn} n=1>2>... be a sequence of 3[G] convergent to Γ G 3 [ G ] . Let
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be arbitrary and let c any constant such that D^n(z')>c (n=ly 2, •••). Take a

point z^N*(z') at will which shall be fixed for a moment. If r denote any

constant smaller than γ/~2~ niin (| z—zr | , a— \ z—zr | ) , we have modTn(B(z; r;

θn))>c for some θn ( Λ = 1 , 2, •••): {(9«}M=1>2,... clusteres at some θ. It follows from

(B) that mod2χB(£; r; θ))>c, whence D*τ{z')>c. Thus lim sup D*Tn(z)<Da

τ(z).

We summarize the above results in

Theorem 5. DΛ

τ{z) is

1° an upper semi-continuous function in z^G,

2° a monotone increasing function in a,

3° an upper semi-continuous functional in Γ e 3[G],

Just corresponding to Theorem 2 we shall have

Theorem 6Ό. The estimate

( 5 ) Qτ{z)>Dτ{z)

is valid at every non-singular point z for T. The relation (5) holds with equality

if T is continuously differentίable in a neighbourhood of z.

Proof. Consider a non-singular point zx for T together with Nct(z1)9

Describe a square B=B(z1, z2y z3, z4) comprised in Na(zλ) with one vertex at zly

whose side-vector zlyz2 points to the direction [arg hτ(z1)]/2. By Definition

1 and (B) we see

( 6) % ) < max {mod T(B), I/mod T(B)} .

For any £>0 there is some Sx such that | Δ^Kδj implies

p^z^Az—q^z^Azl <S\Az\. Therefore, if the side of B is smaller than δx in

length, we have

\Pτ(*i)\-\qτ(*i)\-2£ m o d T ( B )

I pτ(zx) I - I qτ(zx) I - I S

in view of (A), (B). Substituting these into (6) and letting a-^0 after £->0

we complete the proof of the first assertion.

Suppose that T is continuously differentiable in G and that G contain a

non-singular point zλ for T satisfying Qτ(zi)>Ώτ(Zi) Then there would be

a constant c such that

( 7 ) Qτ(*i) > c > Dτ{zx).

1) M. Mohri collaborated in studying the minimal dilatation.
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T(z) is totally differntiable uniformly on a closed subregion Go of G containing
zx: hence for any £>0 there is some δ > 0 such that | T(z')—T(z)—pτ{z)(z'—z)

—qτ(z)(z'—*)\ <S\zf—z\ whenever the points z, z'<=G0 fulfill \z'—z\<8.

The right half of (7) requires that the NΛ(z1) comprises at least one square B=

B{ζ\ r; θ)=B(zί, zί, Z3, zί) such that mod T(B)<c: we may assume that the
arg(#£—z{)=θ attains the max mod T(B(ζ; r; θ)). We have then

Θ

mod T{B)
\pτ(zί)\-\qτ(*Ί)\+2€\z-zί\

Therefore

I Pτ(*ί) I - 1 ίτ(*ί) I I Pτ(*Ί) I - 1 ίτ(*O I

Letting £->0, we arrive at JJTO&I) < £ by (B), which contradicts (7). q.e.d.

The maximal and minimal dilatation at a point are named generically extreme
dilatation at the point.

3. Integral mean of dilatations

This section begins by recalling a few locutions as well as introductory
propositions in the mass distribution theory.

A mass distribution on the domain G should be interpreted as the completely
additive real-valued set-function defined on all the Borel subsets of G.

c5K[G]: the class of uniformly bounded non-negative mass distributions
μ on G

<3H'\G\: the class of uniformly bounded non-negative mass distributions
μ with continuous density on G

A sequence {μn}n=1>2,... of 3ί[G\ is termed convergent towards a μ^JM[G\
if and only if lim μn(e)=μ(e) for every Borel subset e of G which is regular with

respect to μ.

Lemma 1. (Vallέe-Poussin [8], p. 42). If φ(z) is a continuous function
on G and a sequence {μn} n=lf2,... of 3i\G\ tends to μ as n->ooy we have

lim

Lemma 2. (Schwartz [6], t. II, pp. 21-22). Let Go be an arbitrary closed
subregion of the domain G. Given any /iG JM[G], there exists μ£e 3ί'[G] such that

lim \ Λ]r(z)dμή(z) = I ΛΪr(z)dμ(z)
«->©» JG JG
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for every function ψ(z) of class C°° with a support comprised in G.

The extreme dilatation introduced in the preceding section has an advantage
of enjoying the semi-continuity as point-functions unlike the more familiar
dilatation-quotient, our knowledge about which seems no more than the bounded
measurability.

Theorem 7. The extreme dilatation Dτ(z) (resp. Dτ(z)) is an upper
semi-continuous (res p. alower semi-continuous) function in z.

Proof. Upper semi-continuity of the maximal dilatation was shown in
Lehto-Virtanen-Vaisala [4]: we have only to prove the lower semi-continuity of
Dτ(z).

Suppose G contain a point zx such that lim Ίnf Dτ(z)<Dτ(z1): a constant c

exists satisfying lim inf Dτ(z)<Cc<Dτ(z1). The right half of these inequalities

asserts the presence of some such a that #τ(#i)>£> while from the left half it

follows that the N*^) contain a z satisfying Dτ(z)<c. Let a'>0 be smaller

than m i n ( | # — s j , a—|#—srj): then Dτ(z)<c, so N*'(z) contain a point ζ
such that max moάT(B(ζ\ r;θ))<c for some r<y/Ύ min (| ζ—z\, a!— \ ζ—z\).

Θ

But the squares B(ζ\r\θ) (O<0<2τr) lie in N*(z^), which is a contradic-
tion, q.e.d.

DEFINITION 2. We set for Γ E 3[G\, μtΞ3l[G\

^ '••<*-

and analogously

Theorem 7 yields immediately the two corollaries:

Corollary 1. a[T; μ; G] (resp. a[T; μ; G]) is an upper semi-continuous (resp.
a lower semi-continuous) functional in μ e JH[G].

Proof. Let μn->μ (n->oo) on JM\G\. On account of the upper semi-
continuity of Dτ(z) in G there exists a bounded continuous function φm(z)
majorizing [DT(#)2+1]/2DT(#) in G. From Lemma 1 it follows that

limsup a[T; μn; G] < lim

Since [Dτ(zf+ l]/2Dτ(z) can be expressed as the monotone decreasing limit of
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such φm(z) (m=l, 2, •••), we have

lim sup a[T; μn; G] < a[T; μ\G\.

q.e.d.

Corollary 2. Let Go be an arbitrary compact subregion of G. For any

/ i G j [ G 0 ] there exists a sequence {μw}*=i,2,... of <3H'[G], such that

a[T; μ; G] > lim^sup a[T; μί; G],

a[T; μ; G] < lim inf a[T; μί; G].

Proof. Take a continuous function φ{z) majorizing the upper semi-
continuous function [Dτ(z)2-\-V\βDτ{z) on G. Given any £n>0 tending to zero
as n->oo, there are functions ψjz) of class C°° with a support GόdG (Go being
a domain comprising Go) such that \φ(z)—ψn(z)\ <£Λ/3 (w=l, 2, •••) uniformly
on Go Lemma 2 assures the existence of μή^JM'[Go\ such that

whence

| ( φ(z)dμ(z)-\ φ(z)dμίi(z)\ < Sn .
JG JG

Therefore for any index n we have

a[T; μί G] < ( φ(z)dμί(z) < [ φ(z)dμ(z) + 6n.
JG JG

Letting n tend to infinity we get

( 8 ) limjsup a[T; μί; G] < \ φ(z)dμ(z).

Since φ(z) is taken as close to [Dτ(z)2-\-l]/2Dτ(z) as one pleases, the left
hand side in (8) cannot be larger than a[T; μ\ G\ q.e.d.

Let us write A2—{z: | # | < 1 } : the set-function ω(e)=l dω belongs to
J e

c3ί[ΔJ if e is a Borel subset of Δ^. The space fffΔ^] with which we deal
henceforth shall consist of the normalized i^-quasiconformal homeomorphisms
T(z) between Δ, and Δ* such that Γ( l )=l , T(i)=i, T(-l)=-ί: X2[AZ]
denotes the space of all linear differential τ=ρ(z)dz-\-q(z)d% of summable square

in Az with the inner product (τx,
 τ

2 ) = \ [pi(z)p2{z)Λ-qi{z)q2(z)\dω(z) (Tj=pj(z)

dz+qj(z)dztEX2[Az] j=ίf 2) and the norm | |τ | | = λ /(τ,τ). Γ E 3 [ Δ J implies
2[Azl since \\dT\\2 = a[S; ω; Δ J < π(K2+ί)/2K by (G).
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L e m m a 3. If {Tn} M=lf2... converges to T in 3[AZ], then {Tή1}*^,... also
converges to 71"1 in

Proof. Set z=T~1(w) for an arbitrary w^Aw. If we write wn=Tn(z), we
see \wH—to\-*0. The equicontinuity of {TV1}*-^... yields | T-\w)-Tή\w)\
= \T-1(wn)—T»1(w)\->0 (w->oo). Therefore limΓή 1=7 1" 1. If this convergence

were not uniform, there would be some sequence {wn}n=12... on Δ^ such that
I Tn\Wtl)— T~1(wn)\ >c for some constant £>0. But it is a contradiction, since
{Tn1} n=i,2,... contains a subsequence {Tή*} k=i,2,.. convergent uniformly on Δw,
which implies | T»}(wHk)- T~\wn^ | -^0 (Λ->oo). q.e.d.

Next suppose a sequence of 2~[G] converges: then the behaviour of their
derivatives naturally comes into question. The first step in such direction
was perhaps be made by a theorem included in Ahlfors [1]:

Proposition 2. When a sequence {Tn}n=12... converges to T in the sapce
3 [ Δ J in its intrinsic topology, {^Tw}«=i,2>... (resp. feτM}n=i,2,...) converges to pτ

(resp. qτ) weakly in the space _£ 2[ΔJ.

This proposition provides us with the clearest and firmest background for
semi-continuity of the Dirichlet integral in its mapping-theoretic version:

Theorem 8. For any μ/ec5ff [ΔJ, a[T; μ\ Az] is a lower semi-continuous
functional on

Proof. Let lim Tn=T in 3[G] and let σ(z)=dμ'(z)ldω(z) be the density

of the smooth mass distribution μ. On setting τn=y/σ(Sn(w))[psJw)dw-\-

qsn(
w)dffi\> τ=\/σ(S(w))[ps(w)dw+qs(w)dffi], we see by Lemma 3 and Proposi-

tion 2 that {τ«}M=tl>2,... converges weakly to T in X2[AW]. Hence we have lim inf

IITJ| 2 > IITIΓ (cf. Riesz-Nagy [5], p. 200), which was to be proved by virtue
of(G).

4. Strong convergence in the space of quasiconformal disk-
homeomorphisms

In the final section we are concerned with different kinds of topologies in
a fixed family of quasiconformal homeomorphisms of a disk. Henceforth we
denote the variables in C by z, w, Z, W and write Hz= {Z: Im Z>0} though
the space 2[ΔJ is mainly treated, we need auxiliarily also the space 3[HZ] of
the i^-quasiconformal automorphisms of Hz which leaves 0, 1, oo fixed. The
passage to limit are all referred to the index n which grows indefinitely, unless
otherwise mentioned.

Besides the original topology with which 3[ΔJ is endowed intrincically
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there are some other topologies, which may be stronger and expressed in terms
of the convergence of derivatives or of Beltrami coefficient in addition to the
uniform convergence of mapping itself. Since it is known that the weak con-
vergence in the conclusion of Proposition 2 cannot be replaced by the strong
one, what is then the condition for those derivatives to converge strongly ? One
of the answers reads

Theorem 9. Let {Tn} M=1>2>... converge to T in 3[A2] in the uniform topology.
Then {pτn}n=i,2,..., {<ZTJΉ-I,2,... converges to the respective derivative pτ> qτ of the
limit mapping T in the topology of X2[A2~\ if and only if

\ιm{\\Pτn\ΐ+\\qτn\ΐ) = \\Pτ\\*+\\qτ\\\

or equίvalently

lim a[Sn; ω; Aw] = a[S;ω; Aw] .

Proof. Since

0 < \\Pτ-pτn\\2+\\qτ-qτn\\2

= ll/>rll2+ll?rll2+II^J|2+ll?rJ|2-2Re {(pTn,Pτ)+(qτ,,,qτ)} ,

it follows from Proposition 2 that

( 9 ) liminf (||/>rj|2+llgrj|2) > Ilί>rll2+ll?rll2

If lim (\\pτ—pτ \\2+\\qτ—qτ II2)=O, not only the limit subsists in (9) but

also the equality holds there, and vice versa, q.e.d.

DEFINITION 3. If a sequence {Γn}rt=1>2>... of 3 [ Δ J converges to
with the additional condition that the derivative pTn, qTn (fl=l, 2, •••) tends to
the respective derivative pτ,qτ of the limit mapping T in X2[AZ], {Tn} n=1>2,...
shall be said to converge to T in the ^-topology.

Theorem 10. In order that lim Tn=T on ΓΓΔJ in the Srtopology it is

necessary and sufficient that the sequence {Tn°T~ι}n=sl 2f... converges to the identity
on fffΔa,] in the same topology.

Proof. Assume that Tn->T on £Γ[ΔJ in the 5rtopology. Then Pn=Tno
T-^id. (Lemma 3). Substitution pPn=(PτPτn—qτ<ίτn)l( I PT 12— \qτ 12)> qpH=
(?τqτn-?τnqτ)l(\pτ\2-\qτ\2) gives l l^.-lir+llipJI^a^+lXH^-^jr
+ \\qτ—qTn\\2)l2K-^0. Verification of the converse will follow the similar line
of argument, q.e.d.

Restricted to our purpose at hand, i.e., the convergence problem of the
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normalized ίΓ-quasiconformal automorphisms, it sufEces to consdier only a
neighbourhood of the identity owing to Lemma 3, Theorem 10 and Proposition
2.

DEFINITION 4. Let a sequence {Tn} n=12... of the normalized 2£-quasicon-
formal automorphisms of the domain G converge normally to the identity. If
further the essential upper bound of | hTn | in G tends to zero, we shall say that
Tn (n=l , 2, •••) is convergent on G in the S2-topology.

Theorem 11. In the space 2 [ Δ J of K-quasiconformal automorphisms the
S2-topology is not weaker than the Sλ-topology.

Proof. If Tn-^id. on 2 [ Δ J in the S2-topology, we have

1+ess sup \hTn(z)\

π < \\PτJ\2+\\qτJ\2 < *' z — pr^T-ΓT - x •
1—ess sup \hTn(z)\

Hence \\pτj\
2+\\qτj\

2^π=\\pid\\2+\\qid\\\ so \\pTn-pJ\2+\\qTn-qid\\2- 0
by Theorem 9. q.e.d.

A deep result due to Beurling and Ahlfors enables us to reduce the investi-
gation on *S2-topology of 3[AZ] to that on boundary correspondence in 3[HZ].
Let 32 be a collection of real-valued monotone increasing continuous function
v=v(X) defined for — oo<X<oo such that lim v(X)=±oo.

DEFINITION 5. For any v^Jlwe set

±M,
—v(Λ—t)

where the supremum is referred to all Xy t varying over the whole real
axis (— oo, oo).

Suppose the upper half plane Im Z > 0 be mapped by means of a Γ E 3[HZ]
.K-quasiconformally onto the upper half plane Im W>0; such T induces a
boundary correspondence T(X) = v^Jl. ρ[T(X)] is known to be bounded.

Proposition 3. (Beurling-Ahlfors [3]). If a sequence {Tn}n=lt2t... of 3[HZ]
converges to the the identity in the S2-topologyy then lim ρ[Tn(X)]=l. Conversely,

given a sequence {vn(X)} M=1 >2... of Jl such that ρ[vn] tends to 1, there exists some

smooth non-singular mapping Tn in 3[HZ] ( n = l , 2 , •••) which satisfies Tn(X)=

vn(X) and converges to the identity in the S2-topology.

Theorem 12. Suppose a non-smooth K-quasiconformal homeomorphism

T(z) is given, which sends the disk | # | < 1 onto the disk | « ϋ | < l . Then there
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exists a sequence {Tn(z)} n==12... with the following properties:

1 ° Tn(z) maps \ z \ < 1 K'-quasicσnformaϊly onto \ w \ < 1,

2° Tn(z) is continuously differentiable and non-singular in \z\ < 1 , 2 )

3° Tn(z)=T(z) on | * | = 1 (n=l,2, .••).

4° {Tn(z)} M=1>2,... converges to T(z) uniformly on \ z \ < 1

5° though we must be content with the constant K1 larger than K3 K'—K

can be made as samll as we please.

Proof. We lose no generality if we assume T(z) belongs to S^ΔJ. Fix a

monotone-decreasing sequence {ρn\n=i,2,... tending to 1. Then there exists a

real sequence {vn(U)}n=lt2>... of a real variable U satisfying the conditions: (i) for

every n> vJJJ) is monotone-increasing function for — oo < [/< oo and lim vn{U)

= zt oo (ϋ) whatever value the real variables U, t may assume, we have

(iii) z/rt(0)=0, vn{\)=\, z;M(oo)—oo. According to Proposition 3 it is possible to

construct a mapping Fn(W) explicitly which belongs to 3[HW] and fulfills the

requirement Fn(U)=vn(U) (Re W= U), \pFn\ — \qFft| > 0 . On setting

we see that Ί,n(z)=θnoT(z) is in 3[AZ]. Let hrt,m(z) denote the complex-valued

function defined and smooth in G with a compact support containing Az such

that (i) \%u,Jz)\ <\h?,n{z)\ a.e. on Δ, and (ii) lim hn,m(z)=h?n(z) in X2[AZ~\.

Existence of such functions is seen, e.g., by averaging h^n{z) disk-wise. The

Beltrami equation (dwldg)l(dwldz)=hnm(z) has the unique solution w=Έ,nffn(z)

in 3[A2] which is of class C1 and non-singular (Ahlfors [2]). Let us examine

how an arbitrary quadrilateral ΩcΔ^, is distorted in modulus by the quasicon-

formal automorphism θnjm(w)=Έ/nmoT~1(w) of Aw: the condition (i) implies

mod Σ ^ o Γ - ^ Ω ) m o d T \ )
d Ω

(Ω) D rA i

modΩ mod Γ " 1 ^ ) mod

mod Γ " 1 ^ ) mod Θn(
<

~ mod T-\Ω) mod Ω mod Ω

whence Den m[Aw] <DΘn[Aw], Let Φn,m{W) be the quasiconformal automorphism

which is conformally equivalent to θ^l, and belongs to 3[HW], If n, m increase,

2) non-singular at every point of the domain.
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the positive quantity ρ[Φn,m(U)] — l becomes as close to zero as one pleases. For

any £>0 it is possible to construct a smooth non-singular quasiconformal auto-

morphism ψn>m(W) of 3[HW], such that ψn,m(U)=Φn>m(U) and D^>m[Hw]<8

if n, m>no(£). The smooth non-singular quasiconformal automorphism

is of 3 [AJ and satisfies DXntn[Aw]<£. Therefore Tn(z)=Xntfto^n n(z) (n=ί9

2, •••) is a desired sequence, q.e.d.
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