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1. Introduction. Since R. Nevanlinna established the value distribution
theory for meromorphic functions in 1925 ([7]), many extensive works have been
done for its generalization in one way or another. One of the far reaching
generalization was given by H. Cartan ([3]), H. and J. Weyl ([9]) and L.V.
Ahlfors ([1]), which is well-known as a classical theory on the defect relation of
holomorphic curves. When we formulate their theory in the relatively new
language of the holomorphic line bundles as was done originally by S.S. Chern,
we strongly suspect that still further development should be possible. However
no substantial progress has been made yet beyond their result. Therefore the
author believes that it is of some use to give certain result in this direction
though it is rather direct from the classical theory. Thus the purpose of this
paper is to explain it in somewhat self-contained manner.

Let F:C— P” be a holomorphic mapping where C is the complex line and
P" is the n-dimensional complex projective space. We assume F to be non-
degenerate in the sense that the image F(C) does not belong to a hyperplane.
Then for each hyperplane @ we can define a defect 3 -(®), having the properties;
1) 0<8x(®)=1;2) 6(P)=1if F(C)ND is empty. Roughly speaking & (D)
measures how often F(C) intersects with ®. Then for a set of hyperplanes
@;(1=j=¢) in general position, we have

2351 0p(P;)=n+1.

The above is a very brief outline of the classical theory. Now we remark that
the set of all hyperplanes is the complete linear system of divisors given by the
hyperplane bundle over P”*. Then we are ready to consider the following
situation. Let M be a connected compact complex manifold and L be a holo-
morphic line bundle over M. Let V be a linear subspace of the space T'(M, L)
of all holomorphic cross-sections of L. Each non-zero element ¢ in V defines
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a divisor [¢]. Thus V gives us a linear system of divisors [IV]. Suppose we
are given a holomorphic mapping f:C—M which is non-degenerate in the sense
that f(C) does not belong to a divisor in [I']. Now we shall show that for a
divisor [¢]€[V] we can define a defect 8 ,([¢]) having the property; 1)
0=8 ([¢pD)=1;2) s ([¢p])=1 if f(C)N[¢] is empty. Our main results are
Theorem 7.1 and Theorem 7.2 in the section 7;

(1) There exists a positive number e (0=e=1) such that § ([¢])=e for
[BlelV]

(2) We have § ,([¢])=e for almost all [¢] with respect to some canonical
positive measure on [V].

(3) For a set of divisors [¢p;]=[V] (1=j=gq) in general position, we have

2518 ([p;])—e)=(1—¢) dim V,

under some condition on f (e.g., if f is transcendental and of finite type).

In the sections up to six we gather some materials which seem to be more or
less known and give a proof to some of them in such a way that it fits
to our purpose. More precisely in the section 2 we fix some notations. In the
sections 3 and 4 we make an analytic preparation and give a proof to what is essen-
tially the same as the classical Jensen formula. The section 5 is devoted to prove
the so-called first fundamental theorem. We remark here that a more generalized
version of this theorem is given in [5] and [8]. In the section 6 we recall the
classical theory for the case of the projective space. In the section 7 we shall
give a proof to our theorems. The final section 8 is for some remark.

Finally the author should mention that he has been strongly influenced by
[10] and that he has implicitly made use of some idea from there.

2. Hermitian line bundles. Let M be a connected compact complex
manifold. Let p: L—M be a holomorphic line bundle over M. We denote
by I'(M, L) the complex vector space of all holomorphic cross-sections of p: L
— M. We know that T(M, L) is of finite dimension. For an element ¢ in
I'(M, L) we denote by [¢] the divisor of M defined by ¢. We define supp (),
called the support of ¢, by

supp (p) = {z€ M| $(z) = 0} .

By a hermitian fibre metric h on L we mean a C”-mapping &: L— R such that
its restriction onto each fibre p~'(2) is a positive definite hermitian quadratic
form. We call a pair (L, k) a hermitian line bundle over M, and for a Z in L
we simply put ||Z||=HZ)">.

Let L—0 denote the bundle space L minus its zero section. We define a
closed 2-form Q on L—0 by
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2.1) Q=" dilogh,

T
where d°=#(6—9). It is easy to see that there exists uniquely a closed 2-form
of type (1.1) w on M such that

(2.2) prfo=0Q on L—O.

The 2-form o is called the Chern form of the hermitian line bundle (L, %) ([2]).
Let ¢ be a non-zero element of T'(M, L). Then clearly we have

(2.3) 0= ——Ldd"log l¢]l on M—supp (¢).
27

We denote by L* the dual bundle of L. Then L* has the hermitian
fibre metric 2* naturally induced from s, We call (L*, h*) the dual hermitian
line bundle of (L, k). The Chern form o* of (L*, h*) is given by

(2.4) ot = —a.

Let us consider some example. We denote by C”*** the (n+-1)-dimensional
complex euclidean space, i.e., C*"'={(2", %', .-+, 2") |’ C}. If Z=(2" -+, 2")
and W=(«’, :--, "), then the canonical inner product on C"** is

Z, Wy = 2u"+.--+2"w",
and the canonical symmetric bilinear form on C™** is
(Z, W) = 20+ ---f-2"w" .

We denote by P” the quotient (C***—{0})/C* by the multiplicative group C* of
non-zero complex numbers acting on C”*"'—{0}. Clearly C*"*—{0} is a
holomorphic principal bundle over P”. Let p,: L,—P” be its associated line
bundle over P”. We remark that L,—0 can be naturally identified with
C*"*—{0}. Define a mapping %,: L,— R by

Kz, 7> for ZeL,—0=cC"'—{0},

0 on the zero-section.

hy(Z) = {

Then A, is a hermitian fibre metric on L,. P” is called the n-dimensional
complex projective space and the hermitian line bundle (L, k,) is called the
tautological line bundle of P*. 'The dual hermitian line bundle (L, &) is called
the hyperplane bundle of P*. We shall see that the vector space I'(P", L¥) is
naturally isomorphic to C***. In fact let ® be any element of C***. Through
the identification L,—0 with C**'—{0}, ® define a mapping ¢: L,—0—C by the
formula,
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$(Z) = (P, Z).

We now extend the definition of ¢ to entire L, by putting zero on the zero-
section. It is trivial to see that ¢: L,—C is holomorphic and linear on each
fibre. Thus ¢ defines an element of T'(P*, L¥). Through the correspondence
D¢, C*** is identified with T'(P*, L¥). LetZbeany point in L,—0=C"""—
{0}. Then we have

. _ (@, Z)|*
(2.5) llp(L(2))I* = Nz
and
(2.6) supp(¢p) = p,({Z€C""'—{0}| (D, Z) = 0}) .

We have supp (¢)=[¢], and call supp (¢) a hyperplane in P*. Let o, be the
Chern form of (P*, L,). Then from (2.1) and (2.2) we have

2.7) ps“a)(,:—zl—dd’log(Z, Z> on C*—{0}.
T

Let of be the Chern form of (P”, L¥). From (2.4) and (2.7) we have

.8 pos = Lariog 25 on €0},
T

It is well-known that (of)"=w§ A - Aw§ (n-times exterior product) is a volume
element on P” and we have

(2.9) [ty =1.

3. Analytic preliminaries. For a real number r we put D(r)=
{tecl] [gl<e} and B(r)={¢=C| [{|=€"}. Let g(¢) be an entire function
different from zero-constant. Then it is well-known that for any real number
7, the function #—log| g(¢"**)| is Lebesgue measurable and integrable for
0=<20<z. Thus we put

1 27 3
m(g;r) = g S log| g(e**)|d6 .

Then, as is well-known, we have
(3.1) m(g; r) is a continuous and increasing function of r .

Lemma 3.1. Let {g;(§)};-...,... be a family of entire functions different from
zero-constant which converges uniformly on any compact subset to an entire
Sfunction g(¥) different from zero-constant. Then for any fixed r, {m(g;; 7)};_. ...
converges to m(g; r).
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Proof. In the case g(¢) has no zero on B(r), Lemma 3.1 is easy to see.
Since the zeros of g(¢) is discrete, there exists £>0 such that g({) has no zero on
B(t) for 0<|t—r|<<€. Then for any s (r—&<s<r) we have m(g;; s)=m(g;; 1)
from (3.1) and lim m(g;; s)=m(g;s). Thus we see m(g; s)< lim inf m(g;; 7).

j>oo j>oe

On the other hand for any ¢ (r<t<r+&) we have m(g;; r)<m(g,;t) and
lim m(g;; t)=m(g; t). Hence lim sup m(g;; r)<m(g; t). Therefore we have
i i

m(g; s)< lim inf m(g;; r)<lim sup m(g;; r)<m(g; t) for r—E<s<r<t<r+E&.
i i>o

From the continuity property in (3.1) we have lim m(g;; r)=m(g; 7). q.e.d.

Let A(¢) be a function on C satisfying the condition;

(3.2) A(L) has an expression of the form
AG) = &) la(?)

where g(§) is an entire function different from zero-constant and a(%) is positive and
C~. We define a function u on C by

0 ifg(t)=*0

w) = the order of the zero at { if g(§) = 0.

w(%) is determined by A(¢) and independent of the particular choice g({) in (3.2).
We call u(§) the multiplicity function of A(L). We put n(d;r)= > u(f).
¢

eD(r)
Then n(4; r) is an increasing and upper semi-continuous function of r. In
particular we have

(3.3) n(A; r) is a Lebesgue measurable function on R .
We define N(4; r) (r=0) by
(3.4) N(4; 7) = S n(A; t)dt .

We call N(A4; r) the counting function of A(f). On the other hand for any fixed
7, the function @i— log|A(e"*#)| is clearly Lebesgue measurable and integrable.
Put

1

(3.5) m(4d; r)= g

S”log A(er+)d6 .

Then from (3.1) and (3.2) we have
(3.6) m(A;r)is acontinuous function of r .

We call m(A4; r) the proximity function of A(¢). Since we have dd°log A=
dd° log a, we see
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(3.7) dd° log A is a smooth 2-form on C .

Hence for r=0 we put
(3.8) T(4d;7) =— - g dt| daloga.
2 DD

7T VYO
We call T(4; r) the characteristic function of A().
Lemma 3.2. Let the notations be as above. Then for r>0 we have
T(A;r)—m(A; 0) = N(4; r)—m(A4; 7).

Proof. (i) Let >0 be such that A(%) has no zero on B(r). Let §,,---,&,,
be all the distinct zeros of A(¢) in D(r). For £€>0 we put D(j, &)={f=C|
|t—¢;1 <€} and B(j, &={teC||t—t;|=€c} (1<j<]). If we take &
sufficiently small, the Stokes theorem implies

(3.9) —Lg dd° log 4 =__1_S & log A
27 D)~ DG, €) 27 B
+Z§=1LS d°log A.

27 IBG, ®

If w=u-}iv is a holomorphic local co-ordinate defined on an open subset U of
C, we have

(3.10) don = Mgy gy

ou 0v

for a C~-function » on U. On the other hand near the point §; (1=j<1), A(f)
has the form

AE) = [5=E;1%7 a,(8)

where u(j)=p(¢;) and a,({) is positive and C=. Thus we have

1imig d° log A:limLff)S dlog |£—t;] .
B(j,® B(j, e

€50 27[ €0 27[’

Putting {—&,=e***, (3.10) implies

1 . e
SBU-,s)d log |£—&;] =1.

27
Hence we have

(3.11) lim - 53(_ dlog A—ult)  (1=j=I).
78

e20 27
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Putting {=¢'"#, (3.10) together with the assumption on 7 implies

(3.12) zlﬂ SBm d°log A — % S” (% log A) (e7+)dg

1 [8 2 . ]
— 2| 9\ 1og 4 (et+i0)d
27 L0t So og A (¢4)d6

t=r

Therefore we have from (3.9), (3.11) and (3.12)

-ig dd* log A — 1im{—i
B

S dd* log A}
o e>0 27 ) D(r)— Sj=1D(j, €)

2

— [i 58; SO log A(e’“")d@l:r +235-1(85) -

Thus we have

2

1 1 0
3.13 —_ ddlog 4 = —| — 2
( ) 2z Sum °g 27z Ot S

0

log A(ef+£v)de] Tn(d; 7).
t=r

(i) Let 0<<s<<r be such that there is no zero of 4 in {{eC ||| <e"}.
Then integrating (3.13) we have

(G.14) — Lsr dtS dd° log A — —m(A; 1) +m(d; )+ S'n(A; 1)ds .
2 D s

7T Js
(iii) From (3.6) it is easy to see that (3.14) implies
1

T

S' dt s dd* log A = —m(4; 1)+ m(4; )+ | na; e
s D s

for arbitrary 0<s<<r. In particular we have

T(A;r)= —m(A4; r)+m(4; 0)+N(4; ). q.e.d.

4. The order and counting functions. Let M be a connected compact
complex manifold. Let (L, k) be a hermitian line bundle over M. Let f:
C—M be a holomorphic mapping.

Lemma 4.1. Take ¢ =T (M, L) such that ||¢o f|| is not zero-constant on C.
Then we have

(1) there exists an entire function g(8) such that {=C—g(5) $(f(§))eL
is a non-vanishing holomorphic mapping, and in particular

(ii) the function ||po f(8)|| satisfies the condition (3.2).

Proof. From the local triviality of the bundle L, we see that near a point
£,€C, ||¢pofl| has the form
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(#.1) llp o NI = [E—Eola(€)

where a,({) is positive and C~ and v is a non-negative integer. If » is positive,
&, is to be a zero of ||po f|| with the order v. From (4.1) the zeros of ||¢pof|| are
discrete in C. Then Weierstrass Theorem implies that there exists an entire
function g(§) whose zeros are exactly those of ||pof|| with the same order.
From (4.1) we see easily that g(£)~'¢(f(£)) is a non-vanishing holomorphic
mapping. ' q.e.d.

Let ¢ be in T(M, L) satisfying the condition;
(4.2) |l¢ o f|| is not zero-constant on C .

Then from (ii) of Lemma 4.1 we have the multiplicity function u(§) of ||¢pofl|
as in the section 3. We call u({) to be the intersection multiplicity of f(C) and
the divisor [¢] at the point f({). Also we have the functions z(||pof]|]; 7),
N(llpofll; 7), m(l|pofl]; r) and T(||pof]||; 7) for r>0 as explained in the section
3.

DeriniTION 4.1.  For a ¢=T(M, L) satisfying (4.2), we put for »=0
(4.3) n(p; 1) = n(||pefll; 7) = 2ecprmnmf) ,
(4:4) N, (5 1) = N(ligoflls 7) = | ntp3 Dat,

(45)  mpin) = mllgeslli )= 5| " log llg(Feiids
and

(46)  Tgsn =T(lgeflli ) = — 5_[at| da-togligesil.

We call N (¢; 7) (resp. m (¢; 7)) the counting (resp. proximity) function of .
Let w be the Chern form of the hermitian line bundle (L, ). For r>0

we put

(4.7) T () = S dt 5 fo.

D

DeriniTION 4.2, We call T (r) the order function of f.
Lemma 4.2. Let = T(M, L) satisfy (4.2). Then we have
TAr)=TA$;7) for r>0.

Proof. From (2.3) we have f*w=—(1/2z) dd° log ||¢o f|| on C except the
zeros of ||¢o f||. Then Lemma 4.2 follows from (3.7), (3.8) and (4.6).  q.e.d,
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Corollary. If p=T(M, L) satisfies (4.2), then for r>0 we have

Tf(r)*mf(‘i’; 0) = Nf(¢'; r)_mf(¢; 7).
Proof. This follows from Lemma 3.2 and Lemma 4.2. q.e.d.

5. The first fundamental theorem. Let (L, k) be a hermitian line

bundle over a connected compact complex manifold M. Let V be a fixed
linear subspace of T(M, L). We consider ¥ as a normed space by the following
norm;

(5.1) norm(¢) = sup llp(2)I| for p=V .

Let f: C—M be a holomorphic mapping. We say f to be non-degenerate
with respect to V if any =V — {0} satisfies the condition (4.2), or equivalently
J(C) does not belong to supp(p) for = V—{0}. In this section we assume
that f is non-degenerate with respect to V.

LemmaS5.1. Themapping <V —{0}—m (¢p;r)E Ris continuous for r=0.

Proof. Let {¢;};,_, ... be a sequence in V—{0} which converges to
¢V —{0}. From Lemma 4.1 there exists an entire function g(¢) such that
7(£)=g(8)'¢(f(£)) is a non-vanishing holomorphic mapping. Then from the
local triviality of the bundle L, it is easy to see that there exist entire functions
£;(&) (j=1,2,---) such that

(-2) bief(Q) =g;(En() forfeC(j=1,2, ).

Since o f(§)—d;0 f(E)=(g(£)—g,;(£))n(}) for any EEC, on any compact subset
X in € we have norm (9—g;) Z sup lige ()¢, ()l =sup| #0)—&,®) @)l

Remarking that [[»($)|| is positive, we see that {g;};=1 ., .converges to g uni-
formly on X. Thus {g;},_,,..converges to g uniformly on any compact
subset of C. On the other hand from (5.2) we have m .(¢p;7)—m (¢;;7)=m(g;7)
—m(g;;7) for j=1,2,---. Then Lemma 5.1 follows from Lemma 3.1. q.e.d.

Lemma 5.2 (i) We have N [(¢;r)=N (né;7) for ¢=V—{0}, r>0 and
reC— {0}.
(ii) N (¢ 7) is continuous on V—{0} for each r>0.

Proof. (i) is trivial. (ii) follows from Corollary to Lemma 4.2 and Lemma

5.1. q.e.d.

Theorem 5.1. (The first fundamental theorem.) Let (L, k) be a
hermitian line bundle over a commected compact manifold M. Let V be a linear
subspace of T'(M, L). Suppose we have a holomorphic mapping f:C—M which is
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non-degenerate with respect to V. Then there exists a positive constant K such that
(5.3) N (¢;n)<THr)+K for r>0and p=V—{0},
where K is independent of r and ¢.

Proof. Put S={p=V |norm (p)=1}. From (i) of Lemma 5.2 it suffices
to prove (5.3) for >0 and $=S. From Corollary to Lemma 4.2 we have

T (r)—mA$;0) = N p;r)—m ;7).

Since ¢ is in S, we have —m {¢;7)=0. On the other hand Lemma 5.1 implies
that —m (¢;0) has a finite maximum on the compact set S. Thus we have

TAN+Max {—md¢;0)} =N A¢;7)
for >0 and $=S. q.e.d.

6. The case of the projective space. Let the notation be as in the
section 2. Let G:C—C*"'—{0} be a holomorphic mapping. Then we define
a holomorphic mapping F:C—P” by F=p,cG. All through this section we
assume F to be non-degenerate with respect to T'(P”, L¥). Put G(§)=(£°¢), -+,

F4(9)8

Lemma 6.1. Let wf be the Chern form of the hyperplane bundle of P™.
Then we have

Fof = L dd*log (oo |¢'1) -
4z
Proof. Since we have F*wf=G*opfws, (2.8) implies F*wif=
(1/47)dd° log <G, G>=(1/4z)dd" log (30| £7]7). g.e.d.
Lemma 6.2. Let © be an element of T(P", L¥)=C""'. Then we have
NR(FENI= (P, G(E) (Z25-0] £71%)".

Proof. This follows from (2.5). q.e.d.

”

Lemma 6.3. We have (g° -+, g") \ (%%0 TN %) is not ero-constant.

Proof. Suppose (g° -+, g")/\(%%o, “e, ds’%

>=0 on C. Then we have
(%%(g), e, d—j}:({)) = (£)(£°(%), ...’g"(g)) .

It is easy to see ¢({) is holomorphic. Thus g%¢), --+, g%({) are solutions of the
first order linear ordinary differential equation:
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dg _

d g .
Hence g° -+, g” can not be linearly independent. This is absurd because F is
non-degenerate with respect to I'(P”*, L¥). q.e.d.

Proposition 6.1. Let the notation be as above, then we have
(i) T (r) is an increasing function and lim T p(r)=oo;
r->00

and

(i) lim T—’(—):O if and only if F cannot be extended holomorphically to the
r>o w(r

infinity.
Proof. Put F*w§=a({)dt NdE. From Lemma 6.1 we have

Frof — %(E%Ig"l2)‘2{(2’}=olg"|2)(Z?=odg"/\d£")

— (205087 dg/) N (25087 dg)} -
Thus we have a(¢)=0 and a(¢{)=0 holds if and only if

@@, gL @, % ©)=o0.

From Lemma 6.3 we see that a({)>0 for a.e. {&C. Hence S F*e¥ is an
D(r)

positive increasing function of . Then
7o) = | at Fropz [ ar| F*wa“—l—(s Fro¥)(r—s)
0 D 0 D D(sd
for 0<s<<r. From this our assertion (i) follows. To prove (ii) let us assume

first F can be extended holomorphically to the infinity. Then 'vzg F*of is
C

positive and finite.
Thus we have

To(r) = S:(zzg

Hence 7/Tz(r)=1/v>0. Therefore limr/Tz(r)=0 implies that F cannot be

r
F*w?}‘§v$ dt = or.
)

D(r. 0

extended holomorphically to the infinity. Conversely suppose lim7/T x(r)=0

does not hold, or more precisely

(6.1) limsup ——~ = B>0.
e Tx(r)
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We claim (6.1) implies that nz(®; r) is bounded for any ®=T(P*, L¥). Infact
suppose otherwise. Then for ¢>>1/3 there exists s>0 such that

ng(®;r)>c  for r=s.

From Theorem 5.1 there exists a positive constant K such that

T p(r)+K>N p(@;7) = S:nF((I); t)ds .
Thus we have
TF(r)—l—K>SZnF((I>;t) -+ c(r—s) .
Hence we have
L imint L,

7 >o00 r

This is a contradiction. From Lemma 6.2 we see that ag/+4bg* (0= j<k=n)
has only a finite number of zeros for @, beC. Hence g’/g¢ (0<j, k=n) is a
rational function. From this we can conclude that F can be extended holomor-

phically to the infinity. q.e.d.

Let ®; (1=j=q) be elements of T(P”*, L§)=C""'. We call {®;},<;<, to
be in general position if ¢g=n-+41 and n+1 of those are linearly independent.
We are now ready to recall

Theorem 6.1. (H. Cartan ([3]), L.V. Ahlfors ([1])). Let the notation be
as above. Suppose F is non-degenerate with respect to T'(P", LE). Let {®;},<;<q
be a set of elements in T'(P”, L¥) which is in general position. Then we have

(6.2) (g—n—1)T p(r)< 225-1 Np(P@;;57)+S(r)
where

(6.3) ' S(r) = Oflog T x(r)}+O{r}

as ¥r— oo

(6.4) through all values if we have lim sup 1_()g_7_"_F£r_)< oo, and

7300 7

(6.5) outside a set E if otherwise, where
S edi<co .
E

Proof. For a simple proof see [3]. Since the assertion (6.4) is usually not
mentioned in the papers available, we shall make some observation on this in

the section 8. q.e.d.
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We remark that T'(P”, L¥) has been identified with C**' in the section 2.
From Lemma 5.2 we can consider N ,(®;7) as a continuous function on P” for
r>0. With this in mind we recall the following classical result. '

Theorem 6.2. (The Crofton’s formula.) We have

Te) = Ne(@ind).

[olepP”

Proof. For the proof see [4].

7. The second fundamental theorem. Let (L, k) be a hermitian
line bundle over a connected compact manifold M. We assume dim I'(M, L)=2.
Let V be a linear subspace of T'(M, L) such that /=dim V'>=2. Let f:C—M
be a holomorphic mapping which is non-degenerate with respect to V.

Let {¢,, --*, ¢,} be a fixed basis of V. We may assume that

norm (p)=() " (=j=D.

From Lemma 4.1 there exists an entire function g,({) such that

(7.1) teC-n(8)=g.() *o.(f())E L is a non-vanishing holomorphic mapping.

Then there exist non-zero constant entire functions g,(¢), -+, g,(¢) such that

(7.2) $;(f€) = &,(On&)  (2=j=)).

It is easy to see {g,(£), -**, £,(£)} is determined up to the multiplication of a non-
vanishing entire function. From Weierstrass Theorem there exists an entire
function g(¢) such that

(7.3) {g./g -, &:/g} has no common zero on C.
We define a holomorphic mapping G: C—C*?—{0} by

G(&) = {8(0)/g(©), > 8L)/E()} -

We put F(§)=p,(G(£)). Thus from f we have a holomorphic mapping
F:.C—P' .

Lemma 7.1. F is non-degenerate with respect to T(P'~*, L¥) provided f is
non-degenerate with respect to V.

Proof. Suppose F is degenerate. From Lemma 6.2 there exists (¢!, --+, ¢/)
C’'—{0} such that >5_, ¢/(g;/g)=0. Thus >Y_,¢’g;n=0 on C. From (7.2)
we have >35., ¢/¢;(f(£))=0, which means f is degenerate. 'This is a contradic-
tion. q.e.d.
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We define a function H(¢) on C by
(7.4) H(E) = {205-allg;(fO)IY*  for teC.
Then (7.2) implies
(7.5) H(E) = {25-11g; Q) Plln@IIFY” = 18(6) 1 (235-118;()/8(@) 1*) (DIl
Hence H(¢) satisfies the condition (3.2). (7.5) implies
(7.6) n(H;r)=n(|g| ;7).

We define an identification between V' and C* by ¢=2>1}_, c/p;—~ D=
(¢!, -+, f)el!. We always denote by ®, W, --- the elements in C’ corres-
ponding to ¢, ¢, --- in V.

Lemma 7.2. We have
n p;r) = ny(®;r)-+n(H;r) .
Proof. Put¢p=33_;c’¢p;. Thus ®=(c, -+, ¢’). Then pof=31_; c/Pp;of=
251 67gm = (2051 ¢7(8;/8))n=¢(®P, F)n. Hence we have
llpefll = Ig I PfI{Z-1185/81°} I Inll = [|Dof || H .

Corollary. We have
Ny(¢p;r) = Np(®;7)+N(H;r)  for r>0.

Lemma 7.3. Let w be the Chern form of L and w¥§ be the Chern form of
(P*, LE). Then we have

— 1 44 t0g H = fro—Fror .
27
Proof. From (7.5) we have H=(21}_11g;/g|%)"”|g| |g.| *ll$;of|l. Hence
| 1 ;. 1 .
— 5 dd°log H=—_"—dd" log ||$,of || —~— log (23}-1 18;/g|®) -
27 2r 4
From Lemma 6.1 we have
1 daclog H = fro—F*ok.
27

Proposition 7.1. We have
TAr)—Tp(r) = —m(H;r)+m(H;0)+N(H;r)  for r>0.
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Proof. 'This follows from Lemma 7.3, Lemma 3.2 and (3.8). q.e.d.
Corollary. There exists a constant K, such that
TAr)>Tp(r)+K,  for r>0
where K, is independent of r.

Proof. Since we have assumed

norm(9)=(1)" (1=j=D,

we have H({)<1 on C. Thus m(H;r)<0. From Proposition 7.1 we have
T (r)—Tp(r)Zm(H;0)+N(H;ry=m(H;0). q.e.d.

DrriNiTION 7.1.  For = V—{0} we define § (¢) by
im i NA¢;7)
5 =1 fl1—220 7)),
A9) i ( T () )
Proposition 7.2. For any p=< V—{0} we have
0<5(p)=<1.

Proof. The assertion § {¢p)=<1 is trivial. Now from Theorem 5.1 there
exists a positive constant K such that

(7.7) Ny (p;r)<THr)+K  for r>0and p=V—{0}.

Thus lim inf {1—(N {¢;7)/T «(r))} =lim inf (—K/T ,(r))=0. The last equality

follow;}:om (i) of Proposition 6.1 angzorollary to Proposition 7.1. q.e.d.
Lemma 7.4. Put e=liminf {—m(H;7)/T/(r)}. Then ¢=0 and §($)=e

for any p= V—{0}. ”

Proof. The assertion e=0 is easy to see. From Proposition 7.1 and
Corollary to Lemma 7.2 we have

T (r)— T o(r) = —m(H;r)+m(H;0)+N [(b;7)— N po(D;7)

for any p=V—{0}. From Theorem 5.1 there exists a positive constant K,
such that

Np(®;n)<Tg(r)+K, for r>0and ®=C’—{0}.

From these formulas we have
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T () —N (37) 2 — Ky—m(H;7)+-m(H;0) .

Hence
1 NA;7) o —m(H;r) | m(H;0)—K,
Ty(r) T 4(r) TA)
Then our assertion follows from (i) of Proposition 6.1 and Corollary to Proposi-
tion 7.1. q-e.d.

From (i) of Lemma 5.2 it is easy to see that we have
S AND) = 8 ) for ¢=V—{0} and AeC*.

Thus we can consider § , as a function on P’~'. (Remark we have identified V/
with C’ at the beginning of this section.) We put [¢p]=p,(¢) for p= V—{0}.

Theorem 7.1.  Let the notation be as above. We have & ([¢])=e for almost
all [p]= P’ with respect to the positive measure (o) ~".

Proof. From Corollary to Lemma 7.2 we have
[ NAWln@Ry = (| N A1) oty NH;7)
for r>0. Then Theorem 6.2 implies
[, NAWL 8y = TA)+NE;7)  for r>0.
From Proposition 7.1 we have
[ NAWLA ™ = T +m(Hs)—m(H;0)  for r>0.

Hence (2.9) implies

S (1_MLM)(w*)[_]_m(H’O)_'—m(H;T)
P Tyr) )° T(r) ~ T,

for r>0.

Therefore we see

}HE inf Spl—1<1 —%‘%ﬂ)(wg‘)l—lge .

Since |1—Ng([¢];7)/Tr)| is bounded, Fubini Theorem implies that &, is
measurable and we have

[ Ay se.

Then Lemma 7.4 implies our assertion. q.e.d.
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Now take a set of elements +; (1<j< g) in general position from V=C".

Then Theorem 6.1 implies
(=0T p(r) =251 Np(rj;7)+S(r) for r>0,

where S(r) satisfies the conditions (6.3), (6.4) and (6.5). From Proposition 7.1
and Corollary to Lemma 7.2 we have :
(7.8) (=D TAr)=25-1 N(;37)—(q—D)m(H;7)+S(7) .
(We remark that m(H;0)<0).

DeriniTION 7.1.  Let (L, k) be an hermitian line bundle over a connected

compact complex manifold M. Let f:C—M be a holomorphic mapping. Let
o be the Chern form of (L, k). Then we have defined T (r) (»>0) by

T,(r) = S:dt SD(D f*o .

We call f to be transcendental with respect to (L, k) if we have

lim_" _—o0
> T ((r)

We call f to be transcendental of finite type with respect to (L, k) if we have

lim sup log (| Tf(")|)<oo )

7> 7

Theorem 7.2. (The second fundamental theorem.) Let (L, k) be a
hermitian line bundle over a connected compact complex manifold M such that
dim T(M, L)=2. Let V be a linear subspace of T(M, L) such that I=dim V=2,
Let f:C—M be a holomorphic mapping which is non-degenerate with respect to V.
Take a set of elements ¢; (1= j=q) of V in general position. Then we have

-1 {8 A[¢5])—et=(1—e) 1,

if one of the following conditions is satisfied (cf., Definition 7.1):
(1) fis transcendental of finite type with respect to (L, k) or
(i) f is transcendental with respect to (L, k) and there exists
1112 {—m(H;7)|T [(r), (which is then equal to ¢). Here e and H have been defined

in Lemma 7.4 and (7.4).
Proof. From (7.8) we have

(N ) SO)
(7.9) 231 {1 _—g‘fT} =l-(g=1) T 4(r) + T(r)

for r>0.
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If the condition (ii) is satisfied, then (7.9) clearly implies

1 3f([‘1"j])§l—-|—(q—l)e+l'i—’m" inf‘]“?%%-

Then Lemma 7.1, (i) of Proposition 6.1, Corollary to Proposition 7.1, (6.3),
(6.4), (6.5) and 1_1’13 {r/T ((r)}=0 imply

liminf 5 _ ¢
Ty(r)

r>o0 5 7
Now suppose the condition (i) is satisfied. Then from the same reason as above

we can easily see

r>oo

Iim sup M<oo .
r

Hence from (6.4) we see that lim {S(r)/T (r)} exists and is equal to zero.

Therefore (7.9) implies

. . of—m(H;r
1 8 L) S (g —1) lim in (%f(,)—)) .
By the definition lirl} inf {—m(H;r)/T (r)}=e. Thus Theorem 7.2 has been
proved. q.e.d.

8. Some remarks. We first remark that e in Theorem 7.1 and
Theorem 7.2 is not necessarily equal to zero. Consider a holomorphic mapping
G: C—C? —{0} defined by

G() = (&, & e¥¥)

where g(¢) is a transcendental entire function. Put F(£)=p,(G(¢)). Let V bea
subspace of C°*=T'(P’, L) spanned by (1, 0, 0) and (0, 1, 0). Then F is non-
degenerate with respect to V and transcendental. It is easy to see

e=liminf =ML 1 o ipplog (M) 7
r>o0 Tf(r) 2 1o r | Tf(r)

Since f is transcendental, we have e=1.

Finally we would like to comment on the proof of (6.4) in Theorem 6.1.
For a meromorphic function g(¢) we define m*(g; r) by

m(g;r) = z_i So log*| g7 ,

where log* is defined by
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10g+x={logac if x>1
0 if x<1.

Now let the notation be as in the section 6. What H. Cartan proved in [3] is
the following (c.f., p. 14):

<

|

F.>(k)
G @ DT <D NHOn KK 2w Ty |

sSjsq
1<k=m

where F; is as in [3]. Then Theorem 2.2 in [6] and Theorem 3.1 in [6] as well
as its proof imply our assertion (6.4) out of (8.1).
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