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Introduction

This note is a continuation of [1]. The purpose of the present note is
to prove the following theorem.

Main Theorem. Let p be an odd prime. Let G be a 2p-ply transitive
permutation group on a set Ω = { 1 , 2 , ••-,//}. If the order of G12...>2p is not
divisible by p, then G must be one of Sn(2p^n^3p—ί) and An(2p+2<,n<,
Zp—1) on their natural action.

Some parts of the main theorem were already proved in Miyamoto [4]
and Bannai [1]. Namely, Miyamoto proved in [4] that if G satisfies the assump-
tion of Main Theorem and if the order of Glf2t...tP is divisible by p only to the
first power, then G must be one of the groups listed in the conclusion of Main
Theorem. On the other hand, Theorem 1 in [1] asserts that if G satisfies the
assumption of Main Theorem and if the order of G x 2 ... p is divisible by p2,
then WΞO or 1 (mod p). Therefore, in order to complete the proof of Main
Theorem, we have only to prove the following theorem.

Theorem 1. Let p be an odd prime. Then there exists no permutation group
G on a set Ω which satisfies the following three conditions:
( i ) G is 2p-ply transitive on Ω, and G^iAΩ,
(ii) the order of G12...2p is n°t divisible by p, and
(iii) τz = O or 1 (mod p).

The idea of the proof of Theorem 1 is due to Livingston and Wagner [3]
and Oyama [5, 6].

1. Proof of Theorem 1

Let us assume that G satisfies the assumptions of Theorem 1. Let R be
a Sylow 2 subgroup of G12...y2pj and let Δ be one of the orbits of R on Ω—I(R)
of minimal length, where I(R) denotes the set of the elements of Ω which are
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fixed by any element of R. (From the assumption of G2ξiAύ and from the
2p-p\γ (>6-ply) transitivity of G, we obtain Ωφ/(JR) by applying a result of
Hall [2].) Let t be an element of Δ.

(1) NG(Rt)
IcR^ satisfies the following condition: let i19 i2, '"yi2p be any

(distinct) 2p elements in I(Rt). Let S be a Sylow 2 subgroup of NG{Rt)
I

i{%...ti2p,
Then S fixes \I(R)\ (set=2p+r) elements on I(Rt)y and is semiregular on the
remaining elements of I(Rt).

This is essentially proved in Oyama [5, Lemma 1].
(2) r=0 or 1. If r=0, then \I(Rt)\=2p+2 or 2p+4. If r = l , then

|/( i? 2 ) |=2^+3 or 2^>+5.
Since G is 2/>(>6)-ρly transitive, we obtain that r=0 or 1, by applying a

result of Hall [2] (since M12 has no transitive extension). If r=0, then 11(Rt) \ =
2p+2, 2p+4 or 2ρ+8, and if r = l , then |/(/?,)! = 2 p + 3 , 2p+5 or 2^)+9, by
Theorem 1 in Oyama [6]. (Notice that NG(Rt)ίfβ;2^L2r2p~^ satisfies the as-
sumptions of Theorem 1 in Oyama [6].) But the two cases \I(Rt)\ =2pJ

r8 and
2p+9 are impossible, because otherwise NG(Rt)l^.t?.;2p^i'"'2p~5y is one of S{X
M12. S1xS1χM12 and S2xM12 (since M12 has no transitive extension), and this
contradicts (1). That is, take ί1==l, •••, *2/,_5=2p—5 and i2p_4, i2p.3) i2p^2, i2p_x

and i2p among the orbit corresponding to M12.

(3) NG(Rt)
IcR^ contains an element of order p which fixes more than

p-\-\ points in I(Rt).

Proof. If r=0, then NG(Rt)
HR^ is 2 )̂-ρly transitive by Livingston and

Wagner [3, Lemma 6]. Therefore, NG(Rt)
HRt^=S2p+2 or A2p+4y and so we

obtain the assertion. Now, let r= 1. If NG(Rt)
IcRt:> is primitive, then it contains

AIίRn and we obtain the assertion. Otherwise, since NG(Rt) contains an element
of degree at most 4, we obtain | I(Rt) I ̂  8, by a well known and easily verified
result about primitive groups of class (=minimal degree) 4 which was proved
first by C. Jordan, and this is impossible. NG(Rt)

nRt^ is not imprimitive.
Otherwise, there exists a system of imprimitivity Π^ Π2, •• ,ΠM(z/>3, since
\I(Rt)\ =ub is odd, where | Π, | =b.) Now, if we take 2p elements ily i2, •••, i2p

in such a way that just (b— 1) elements of Πj and IΊ2 are contained in the set
respectively, we have a contradiction to (1). Now, let us assume that NG(Rt)

IcR^
is intransitive on I(Rt). Let 2 be an orbit of NG(Rt)

I<:Rt>> of the minimal length
(including 1). Then the setwise stabilizer of Σ in NG(Rt)

I(R^ contains A1**^-*
(when restricted to I(Rt)~Σ) because of Livingston and Wagner [3, Lemma 4].
Therefore, since | 21 < \I(Rt)—Σ| (because | I(Rt)\ is odd), we obtain that the
pointwise stabilizer of 2 in NG(Rt) also contains AIiR^~^. Thus we immedi-
ately obtain the assertion.

(4) NG(Rt) (hence G) contains an element of order a power of p which
fixes more thanp+1 points in Ω.
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This is obvious from (3).
But, the assertion (4) clearly contradicts the assumption of Theorem 1.

Thus we have completed the proof of Theorem 1.
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Appendix (Added in January 1974)
As an application of the method which is used in the proof of Theorem 1,

we prove the following result about 4-ply transitive permutation groups.

Theorem 2 υ . Let G be a 4-ply transitive permutation group on a set
Ω={1, 2, , n}. Let us assume that
(i) n ΐ 0 (mod 6),' and
(ii) the order of Gλ 2, s, 4 w not divisible by 3.

Then G must be one of the groups S4y S5 and Mn.

Proof of Theorem 2. (a) First let us assume that Gx 3 2 4 is of odd order.
Then by Hall [2], G must be one of the groups S4, S5, A6y AΊ and M n . Among
them only S4, S5 and Mn satisfy the assumptions of Theorem 2.

(b) Next we assume that Gλ 2> 3> 4 is of even order. Let R be a Sylow
2 subgroup of G1>2,3,4, and let Δ be a minimal orbit of R on Ω—I(R). More-
over, let t be a point in Δ. By Oyama [5,5'] | I(R) | is one of 4, 5 and 7. We
treat these three cases separately

(b-1) Let us assume that | I(R) \ =4. Then, by a result of Oyama ([6, Theorem
ί]),NG(Rt)

HRί^ must be isomorphic to one of *S6, A8 and Mi2. From the as-
sumption (i) that wίO (mod 6) (only here we use this assumption), we have
\I(x)\ < 2 for any element x of G whose order is a power of 3. While, 56, A8

and M12 contain an element y of order 3 such that the number of the fixed
points of y on I(Rt) is > 3 . But, this is a contradiction.

1) The author heard from Professor N. Ito that he had also proved some part of Theorem 2(i.e.,
under the assumption n = 0 (mod 3)) by a different method.
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(b-2) Let us assume that \I(R)\ = 5 . In this case we have \I(x)\ < 3 for any
element x of G whose order is a power of 3. Thus, in order to derive a con-
tradiction, we have only to show that NG(Rt)

I<:R^ contains an element y of order
3 such that y fixes more than 3 points on I(Rt). By Oyama [6, Theorem 1(11)],
\I(Rt)\ is one of 7,9 and 13. (b-2-1) If |/(i?,)|=13, then NG(Rt)

IcRn is
StxMl2 by the result of Oyama, and so we clearly have the assertion, (b-2-2)
Next let us assume that \I(Rt)\ = 9 . Then NG(Rt)

I(R^ contains an element of
degree 4. Therefore, if it is primitive then it contains AIcR*\ and we have the
assertion. If NG(Rt)

IcR^ is transitive and imprimitive, then Πj, Π2 and Π3 is a
system of imprimitivity, where | Π, | = 3 ( i = l , 2, 3). If we take two points i and
/ from Πi and two points k and / from Π2, then NG(Rt)

I

i

(;f^tι fixes Γ^ and Π2

pointwisely, hence fixes at least 6 points. This is a contradiction. Let us as-
sume that NG(Rt)

I(Rn is intransitive. Let Ωx be an orbit of NG(Rt) on I(Rt) of
minimal (including 1) length. If | ΩJ = 1 , then NG(Rt)

IcR^~Ωi is 4-ply transitive
(by Livingston and Wagner [3, Lemma 6]), and it contains A8. Thus we have
the assertion immediately. If | Ω J = 2 , then NG(Rt)

HR^~Ωi is 3-ply transitive,
and so it contains A7. Thus we have the assertion immediately. Next let
[ iΩx I = 3. We may assume without loss of generality that Ω1={1,2, 3} and

7(l?/)--Ω1={4, 5, 6, 7, 8, 9}. Moreover, we may assume that NG(Rt)
IcR^ con-

tains an element a of order 2 such that

If we take an element b in NG(Rt)
HR^ of order 2 which fixes 2, 7, 8 and 9, then

{abf is of order 3 and fixes 6 points. Thus we have the assertion. Let
|ΩJ = 4 . Also, we may assume that Ω,1={1J 2, 3, 4} and I{Rt)—Ωt={5, 6, 7,
8, 9}, and that NG{Rt)

IcR^ contains an element a such that

a = (1,2) (3) (4) (5) (6) (7) (8, 9).

If we take an element b of order 2 of NG(Rt)
KR^ which fixes 1, 4, 8 and 9, then

{abf is of order 3 and fixes 6 points. Thus we have the assertion, and we have
completed the proof of the case (b-2-2). (b-2-3) Let | I(Rt) | = 7 . If NG(Rt)

KR^
is transitive, then we immediately have that it is isomorphic to S7 and we have
the assertion. On the other hand, when it is transitive, we obtain the assertion
by using the similar (but more elementary) argument as in the proof in the
case (b-2-2).

(b-3) Finally let us assume that | I(R) \ =7. Then NG(R)IcR^=A7 contains an
element of order 3 which fixes 4 points in I(R). This is a contradiction.

Thus, we have completed the proof of Theorem 2.
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