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We will study the problem: Let G be a finite group which acts freely
(and topologically) on the sphere S*-!. Can G act freely and orthogonally
on S#-1?

The result of T. Petrie [5] shows that the answer is no for ¢ odd prime. As
is easily seen, the answer is yes for t=1. The problem for =2 is unsolved at
present (see [2], [3], [4]). In this note it will be shown that the answer is yes for
t=4, and also for t=2" (v=3) if G is solvable.

1. Preliminary theorems

By J. Milnor [3] we have

(1.1) If G is a group which acts freely on S”, then G satisfies the following
properties:

i) Any element of order 2 in G belongs to the center of G.

il) G has at most one element of order 2.

The following (1.2) and (1.3) are shown in [1].

(1.2) If G acts freely on S™, the cohomology of G has period n-1.

(1.3) For a finite group G, the following two conditions are equivalent :

1) G has periodic cohomology.

ii) Every abelian subgroup of G is cyclic.
A complete classification of finite groups satisfying the condition ii) of (1.3) is
known by H. Zassenhaus [11] and M. Suzuki [6]. For future reference we
reproduce it below after J. Wolf [10] and C.B. Thomas-C.T.C. Wall [8].

(1.4) Let G be a finite group satisfying the condition ii) of (1.3). If G is
solvable, it is one of the following groups:
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Type Generators Relations Conditions Order
1 A, B A"=B"=1, m=1, n=1, mn
BAB '=4" (n(r—1), m)=1,
r*=1 (m)
11 A, B, R As in I; also As in I; also 2 mn
R2=B"/2, 12=rt~1=1 (m),
RAR '=A!, n=2%, u=2,
RBR™'=B* =—1(2%),
k=1 (n)
I11 A, B, P, QO As in I; also As in I; also 8 mn
Pi=1, PP=Q?=(PQy, | n=1(2),
AP=PA, AQ=0QA, n=0 (3)
BPB 1=,
BOB™'=PQ
v A, B, P, O, R| Asin III; also As in III; also 16 mn
R2=P2? RPR™'=QP k=1 (n),
ROR™'=071, k=—1(3),
RAR =4, e 1=12=1 (m)
RBR '=B*

If G is non-solvable, it is one of the following groups.
V. G=KXSL(2, p), where p is a prime =5, and K is a group of type 1 and
order prime to | SL(2, p)| =p(p*—1).
VI. G is generated by a group of type V and an element S such that

S* = —1€SL(2,p), SAS*'= A",
SBS~*= B, SLS™'=6(L) (LeSL(2, p)).

Here, SL(2, p) denotes the multiplicative group of 2x 2 matrices of determi-
nant 1 with entries in the field Z,, and 6 is an automorphism of SL(2, p) given by

o o)~ (o) (o o)=(e %)

w being a generator of the multiplicative group in Z,.

Let G be any finite group, and p a prime. Then the p-period of G is
defined to be the least positive integer g such that the Tate cohomology groups
Hi(G; A) and Hi*%(G; A) have isomorphic p-primary components for all ¢ and
all 4. The period of G is the least common multiple of all the p-periods.
R.G. Swan [7] gave a method to calculate the p-period as follows:

(1.5) (1) If a 2-Sylow subgroup of a finite group G is cyclic, the 2-period of G
s 2. If a 2-Sylow subgroup of G is a generalized quaternion group, the 2-peirod of
Gis4.
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(i) Suppose p is odd and a p-Sylow subgroup G, of G is cyclic. Let @,
denote the group of automorphisms of G, induced by inner automorphisms of G.
Then the p-period of G is 2| D ,|.

If N(G,), C(G,) denote the normalizer and centralizer of G,, it holds
®,=N(G,)/C(G,). From this we have the following (see [8]).

(1.6) If a 3-Sylow subgroup of G is cyclic, the 3-period of G divides 4.

We shall next consider free orthogonal actions on S”. A representation p
of a group G is said to be fixed point free if 1=+ g= G implies that p(g) does not
have +1 for an eigenvalue.

With the notations of (1.4), let d denote the order of 7 in the multiplicative
group of residues modulo 7 of integers prime to m. Modifying the work of
G. Vincent [9], J. Wolf proves the following (1.7), (1.8) in [10].

(1.7) For a finite group G, the following two conditions are equivalent:

1) G has a fixed point free complex representation.

il) Gisoftypel, 11, 111, IV, V for p=>5, or VI for p=>5, with the additional
condition: n|d is divisible by every prime divisor of d.

(1.8) Let G be a finite group satisfying the conditions in (1.7). Then each
fixed point free, irreducible complex representation of G has the degree §(G) which
is given as follows:

Type[ I { 11 ]111{ v V[VI}

0G) | 4 | dor2a | 2 | 2dor4d 2 | 4 ’

If |G|>2, G acts freely and orthogonally on S**~' if and only if q is divisible by
8(G).

RemARk. Wolf states in 7.2.18 of [10] that §(G)=2d for G of type II. This
mistake is revised in the errata sheet of [10].

2. Finite groups acting freely on S*'~!

We shall consider the following conditions for a finite group G:

(4,) G can act freely and orthogonally on S* .

(B,) G can act freely on S*".

(Cy) G has the cohomology of period 2° and has at most one element of order 2.

(4,)=(B,) is trivial, and (B,)=(C,) holds by (1.2) and (1.3). We shall
study whether (C,)=(4,) holds.

Let G be a finite group satisfying (C,). Then, by (1.3) and (1.4), G is of
type I, 11, III, IV, V or VI. We shall retain the notations in §1.

Case 1: m=1.
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It follows from the conditions of type I that m is odd. Put m=II p;%,
where {p;} are distinct odd primes and ¢;=1. Then the subgroup generated
by 4;=A™": (m,=p,%) is a p; Sylow-subgroup of G. Let d; denote the order
of 7 in the multiplicative group of residues modulo m; of integers prime to m,.
It follows that

BAB 7 =47 (j=0,1,-,d;—1)

are distinct. Therefore, by (1.5) the p;-period of G is a multiple of 2d;. Let
d’ denote the least common multiple of {d;}. Then it follows that d divides d’,
and that 2d” divides the period of G. Thus 2" is a multiple of 2d, and so d is
a divisor of 2", Since m=1 is equivalent to d=1, we have

d=2" with a=1,2,--,v—1.

Since # is a multiple of d, # is even. Therefore G can not be of type III, IV,
Vor VI. If Gis of type II and d=2°% with ¢ =2, the conditions on & yield a
contradiction. Thus G is of type I with d=2° (a=1, 2, -+, v—1), or of type
IT with d=2.

Since the order of B"* is 2, by (1.1) we have

B"*AB"* = A4 .
Since BAB~'=A", we have also
B"PAB-"? = A"

Hence r"?=1(m), and 7/2 is a multiple of d=2% This shows that n/d is
divisible by every prime divisor of d. Therefore it follows from (1.7) and (1.8)
that G has a fixed point free complex representation whose degree is 2% if G is
of type I withd=2%andis2 or 4 if G is of type Il withd=2. Thusif »=3, G
acts freely and orthogonally on S#*~*. If v=2, so does G of type I with d=2.
However (1.8) shows that some groups G of type II with d=2 can not act freely
and orthogonally on S°.

Case 2: m=1, G is solvable.

In this case we have d=1. 'Therefore it follows from (1.7) and (1.8) that G
has a fixed point free complex representation whose degree is 1, 2 or 4. Thus
if v>3, G acts freely and orthogonally on S?*~*. If v=2, so does G of type I,
II, or III. However (1.8) shows that some groups G of type IV can not act
freely and orthogonally on S°.

Case 3: m=1, G is non-solvable.
For

X= ((1) i)ESL(Z, )
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we have

X"—(l ‘ =0, 1 1
- 0 1) (t_ y Ly e p— )

Therefore X generates a cyclic group of order p. If we observe the order of G,
it follows that this cyclic group is a p-Sylow subgroup of G. For

(w" 0 ) (0 —w‘)
Y,' - . Z,' = .
0 w/, w™* 0

Y,-XY,‘lz(l a)Zi)
0o 1/

Z,.SXS_IZ;I _ (1 m2i+1)
o 1 J.

we have

Therefore it follows from (1.5) that 2" is a multiple of p—1 if G is of type V,
and that 2" is a multiple of 2(p—1) if G is of type VI. Thus G is of the
following type V¥(2=a=v) or VI}2=<a=<v—1).

V¥ G=2Z,xSL(2, p), where p is a prime of the form 2%+ 1, and
(n, p(p"—1))—1.

VIX. G is generated by a group of type V¥ and an element S satisfying
the conditions in VI.

In particular, if v=2, G is of type V¥ and it acts freely and orthogonally on
S® by (1.7) and (1.8). If »=3, G is of type V& or VI¥, and it acts freely and
orthogonally on S by (1.7) and (1.8). If v=4, G is of type V¥, V¥ or VI}.
The groups of type V§ or VI¥ act freely and orthogonally on S*, but (1.7)
shows that the groups of type V¥ can not do so.

ReMARK. A prime of the form 2”41 is called the Fermat number, and ¢ is
known to be of a power 2°. But the converse is not true; for example 2*4-1
is divisible by 641.

Summing up the above arguments, we have proved the following two
theorems.

(2.1) Theorem. The conditions (4,), (B;), (C;) are mutually equivalent for
any finite group G, and the following is a list of all finite groups satisfying these
conditions:

1)  The groups of types I, 11, I11, IV with d=1.

2) The groups of type 1 with d=2" and n=0 mod 2*** (a=1, 2).

3) The groups of type 11 with d=2.

4) The groups of types V, VI with d=1 and p=>5.
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(2.2) Theorem. If v=3, the conditions (4,), (B,), (C,) are mutually equi-
valent for any finite solvable group G, and the following is a list of all finite solvable
groups satisfying these conditions:

1)  The groups of types I, 11, 111, IV with d=1.

2) The groups of type 1 with d=2* and n=0 mod 2*** (a=1, 2, -+, v—1).

3) The groups of type 11 with d=2.

For v=4 we have also

(2.3) Theorem. The following two conditions for a finite group G are
equivalent :
1) G satisfies the condition (C,) but does not satisfy (4,).
i) G=2Z,xSL(2, 17) with (n, 2-3-17)=1.

Proof. It has been proved in the arguments above that i) implies ii) and
the groups of type V¥ do not satisfy (4,). It is easily seen that the groups of
type V¥ has only one element of order 2. We shall prove that each group G of
type V¥ has period 16.

If UXU'=X' for some U&SL(2, p), then it is easily seen that 7 is an
even power of o. Therefore it follows that the p-period of SL(2, p) is p—1.
This shows that the 17-period of G is 16. By (1.5) and (1.6), the 2-period and
the 3-period of G divide 4. If ¢ is a prime dividing #, the g-period of G is 2.
Since |G| =2°%:3%-17.m, it holds that the period of G is 16.

Here is a problem: Can SL(2, 17) act freely on the sphere S*%~?

In his study on finite groups acting freely on S°, Milnor [3] introduces the
finite groups presented as follows:

(1) D'(2{(2s+1))={4, B; A*"=B"=1, BAB'=A"}, where s>1, t>1.

(2) OB, s, s,)={4, B, R; A°°>=1, R°=B*, BAB'=A""', RAR'=A4’,
RBR'=B™'}, where 84, s,, s, are pairwise relatively prime positive integers, and

=—1mod s, /=41 mod s,.

(3) T/(8-3)={B,P,Q;B" =1, P’=Q’=(PQY, BPB'=0Q, BOB~'=PQ},
where t=>1.

(4) O'48t)={B, P, O, R; B*=1, P’=Q°=R’=(PQ)’, BPB'=Q, BOB™!
=PQ, RPR'=0QP, ROR"'=0Q"', RBR'=B"'}, where ¢ is a positive odd
integer.

These groups are generalizations of the binary polyhedral groups. In fact,
the binary dihedral group Q(4n) is D’(4(2s+1)) if n=2s+1 and is Q(8¢, 1, 1) if
n=2t; the binary tetrahedral group 7* and the binary octahedral group O* are
T’(24), O’(48) respectively.

We shall generalize the group D’(2(2s-1)) as follows:

(1) D®(2Y(2s+1))={4, B; A*"'=B*=1, BAB'=A4"},
where s, ¢, a are positive integers, a<t¢, and 7 '= 1 mod 2s+1. Note

that D®(24(2s+1)) =D'(2(2s+1)).
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(2.4) Theorem. The following is a list of all finite solvable groups which act
freely (and orthogonally) on S**~* (v=3).

(1) The groups 1, O(8t, s,, s,), T'(8-3%), O’(48¢).

(2) The groups D (2!(2s+1)) with t =z a+1, where a=1, 2, -+, v—1.

(3) The direct product of any of these groups with a cyclic group of relatively
prime order.

Proof. If G is of type I with d=1, we have G=2Z,,.
Let G be of type II with d=1. It follows that there are B; of order n;
(=1, 2) such that

{B} = {BI}X{BZ} y n=mnmn,, (2”1, nz) =1,
RBR-' — Bf', RB,R" — B,

(see p. 203 of [10]). Then n,=4t, and G is the product of Z,,={B,} and
0(8)—{B,, R}.

Let G be of type III with d=1. Put n=3’, (n/, 3)=1. Then G is the
product of Z,={B*} and 7"(8-3)={B", P, Q}.

Let G be of type IV with d=1. Then n,=3¢ with ¢ odd, and G is the
product of Z,,—{B,} and O’(48t)={B,, P, O, R}.

Let G be of type I with d=2% and #=0 mod 2**(a=1). Put n=2'%/,
(2, w)=1, m=2s5+1. Then t=a-+1 and G is the product of Z,={B*} and
D™(2¢(2s+1)={A4, B"'}.

Let G be of type II with d=2. Then n=4¢, m>1, and there exist positive
integers s,, §, such that m=ss,, [=—1mods,, /I=+1mod s,. G is the product
of Z,,—{B,} and O(8¢, s,, 5,)={4, B,, R}.

Consequently the desired result is only a restatement of Theorem (2.2).

From (2.1) and (2.4), we have

(2.5) Theorem. The following is a list of all finite groups which act freely
(and orthogonally) on S'.

(1) The groups 1, O(8t, s,, s,), T'(8-3%), O’(48t¢).

(2) The groups D(24(2s+1)) with t = a+1, where a=1, 2.

(3) The binary icosahedral group I*=SL(2, 5).

(4) The group generated by SL(2, 5) and S, where S’=—1SL(2, 5) and
SLS~'=0(L) (LeSL(2, 5)).

(5) The direct product of any of these groups with a cyclic group of relatively
prime order.

REMARK. A necessary and sufficient condition for G of type II (or IV) to
have §(G)=2d (or 4d) is given in [10] (see the errata sheet of [10]). If we use
these results, the above arguments for »=2 yield theorems 2 and 3 of [3].



330 M. NAKAOKA

3. Finite groups acting freely on S**~'! (n: odd prime)

Let Z,, , be a group of type I with m odd, #» odd prime and d=n.
By the arguments similar to §2 but simpler, we have

(3.1) Theorem. Letn be an odd prime. Then the following two conditions
for a finite group G are equivalent:

1) G has cohomology of period 2n, has at most one element of degree 2, and
can not act freely and orthogonally on S* .

i) Gisof type Z,X Z,, ,with (h, mn)=1 and h=1.

RemMARK. It is known by T. Petrie [5] that the group Z,, , can act freely
on S§**7*, Here is a problem: If A>1, can the group Z,XZ,, , act freely on
S#-17 (R. Lee states in a letter to the author that if 4, m are odd primes the
problem has an affirmative answer.)

ReEMARK. Consideration of groups satisfying the condition i) of (3.1) for
n=~6 yields the following problem: Can the group SL(2, 7) act freely on S"?
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