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1. Introduction. In the study of principal actions of a group G, a
fundamental role is played by the classifying space B;. Thus it is natural
to seek algebraic invariants which describe the geometrical properties of these
spaces. For the purpose of studying their homology and cohomology, Rothenberg
and Steenrod [15] introduced a variation of the Eilenberg-Moore spectral sequence
and gave several applications. Hodgkin [11] and Anderson and Hodgkin [2]
recast the cohomological form of this spectral sequence into K*-theory and used
it to study the K*-theory of Lie groups and Eilenberg-MacLane spaces.

It is our purpose here to extend the homological form of the spectral se-
quence to arbitrary multiplicative generalized homology theories and give
some brief applications. Since the constructions require a Kiinneth isomorphism,
we must introduce cyclic groups of coefficients and investigate the existence of
associated multiplicative structures. This is done in §2 and follows the correspond-
ing constructions of Araki and Toda [3] for cohomology. In §3 the spectral
sequence is described and the E*-stage and edge homomorphism are identified.

The applications are given in §4. These include the computation of the
K-groups of certain Eilenberg-MacLane spaces, using results of Anderson and
Hodgkin [2]. The implications of these computations in complex bordism are
noted briefly. Finally we give the following generalization of a theorem of
Borel [5]: If A4 is a multiplicative homology theory, p is a prime, hx(pt.; Z,)=R
is zero in odd dimensions and G is a group having 44(G; Z,) an exterior algebra
over R on a finite number of odd dimensional generators, then A4(Bg; Z,) is a
modified polynomial algebra over R on corresponding generators of one dimen-
sion higher.

We assume throughout that spaces are in the category A of spaces having
the homotopy type of a CW complex with finite skeleta and that all homology
theories are additive. It is a pleasure to acknowledge recent conversations
with Gary Hamrick on this and related subjects.

2. Multiplicative homology theories. Let 4 be a generalized homology
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theory [18], [9]. A multiplicative structure in hy is an associative bilinear pairing
u: (X, AYQh«(Y, B) — hy((X, Z) %X (Y, B))

for all pairs of spaces (X, A) and (Y, B) subject to the following requirements:
(i) p is natural with respect to maps of pairs;
(i1) there is a two-sided unit 1€k (pt.);
(i) p(ox(*)@y)=0x(u(x®y)) and
Ty n(2Qo (3))=(—1)"ox(n(*® y))

where xeh,(X, A), yeh, (Y, B), o« is the suspension isomorphism and
T: (X, A)x1,0I)x (Y, B)y— (I, 0I) X (X, A) X (Y, B) reverses the first two coor-
dinates. For representable homology theories such products arise naturally from
pairings of the associated spectra [18].

Let ¢ be a positive integer and denote by 7', an homology Moore space of
type (Z4, 1). Then define

h(X, A5 Zg) = hari((X[A)NTy)

where it is understood that if A=¢, then X/A=X"=X U pt. Asis well known,
this defines an homology theory, the 4-homology with Z, coefficients. Follow-
ing techniques of Anderson [1] and Araki and Toda [3] we want to show that
under certain conditions there is an associated multiplicative structure for
hi( 5 Zo)

From the cofibration sequence

xXq

r b
S St > T, > S? > eoe

there follows the corresponding sequence for any pair (X, 4),

XA DX xi s A xiayaT, 408

Its exact homology sequence may be abrieviated to give the universal coefficient
sequence

(2.1) 0—h (X, ARZ;— h(X,A; Z;)—> Tor (h,-(X,A4),Z;)—> 0.
The homomorphism
pe = (Fd A7)s: h(X, A)—> h(X, 4; Z,) is reduction mod ¢

and
Be = (Fd N\b)y:h(X,A;Z;) —> h,_(X, A) is the mod ¢ integral Bockstein.

(2.2) If hy is a multiplicative homology theory and q==2 (mod 4) then there
is a multiplicative structure pq in hy( ; Z,) with the property that p.(pq(x)Qpd(y))
=p(n(xQy)). Furthermore if 1 is a unit for p, py(1) is a unit for p,.
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Proof. Let i: pt.—S" be the inclusion of the base point and consider
the two cofibration sequences

XgAid d bAid Xg/N\id
s AT, 0 g n g, TN g g, SN o g BN g
g id Lf S [id
v iNid id

Vo INAI i H
ATy P AT, s S ATy ——> pt. ATy S* AT,

A result of Barratt [4] states that for ¢==2 (mod 4) the map XgqAid: S'AT,—~
S*A T, is null homotopic. Thus by taking g to be the constant map, the first
rectangle commutes up to homotopy. According to Puppe [14] this implies the
existence of a map f so that the second rectangle is homotopy commutative, i.e.
fo(r A\id) is homotopic to the identity on S* A T,. Note that since the homotopy
class of f is not necessarily uniquely determined, the same may hold true for
the resulting multiplication.
Now define y, to be the composition.

h(X; Z) Qh(Y; Zg) = By XEAT) @bt Y ATY)
: 7

. sl XX V) AT,ATY)
g.qu (Fd A f)x

; Byrsio((X X 3/)+ AS'AT,)
ox!

i R v
hr+s(X>< Y; Zq) = hr+s+1((X>< Y)+/\ T”)

The basic properties of the multiplication follow.

For the case g=2 (mod 4) there are considerable difficulties in defining a mod
g multiplication with the desired properties. Following techniques of Anderson
[1], we now give some partial results for this case. A multiplicative homology
theory hy is said to be pre-associative if the ring A=hy(pt.) is associative and for
all X, h4(X) is both a left and right A-module. We immediately conclude the
following:

(2.3) If hy is a pre-associative multiplicative homology theory, then for
each n there is an isomorphism

p h(S™) @ pha(X) — ha(S™ X X) .

From now on we assume that our multiplicative theory A is pre-associative.
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(2.4) Let

st p ot g

be a cofibration sequence in which o*(1) hy(S*) lies in the kernel of n4. Then
there is a natural short exact sequence for any X

0— h(X) D> s QA X) —2 s (PAX) — 0

such that o~ %"o(j A 1)go] is the identity on h,(X) and pody is the identity on
s (PAX). _
Let Bk, (Q) with ju(B)=0c4*"(1), and define j(*)=u(BRx). Then

ok F( A F(x) = a4~ F G A (u(BRx))
= o~ *(u(ox* 7 (1)®4))

=x.
To see that this is natural, let g: X—Y and x€#£,(X). Then
(1A8)+] () = (IAD(u(BB)) = n(BRgx(x))
= j(gx()) -
Now suppose that P=S" and

Sk 7 Sn ¢ Qn ] Sk+1

is the corresponding cofibration sequence. Suppose further that pA1: S"AT,
—0, ATy stably has order g. Then in the exact sequence

”n 1 ( /\ /\ )* ” 1 1
[S*AT ATq Q,AS /\Tq]——— [S"AS'ATq Q. AS'AT,]

( q)* n 1 1
S IS"AS' AT, O, AS' AT

we have (X ¢)*(¢p A 1)=0, sothere exists stably amap f: S"A T A To—>0O,AS'AT,
such that the following diagram is homotopy commutative

S*AT AT~ QNS AT,

\ IArAL / dAIAL

S"AS'AT,.

We may now define a mod ¢ multiplication in k4 corresponding to the map
7. The product u, is given by the following composition:
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By o X ATY® i Y AT~ Byl (XX Y)Y ATGAT)
: o
: oo (XX ¥) AS*AT,ATY)
i (NS AL
: Trssinsol(XX V)" AQ,AS A TY)

¢
oy D L

D — ﬁr+s+n+z((XX Y)+ AN Sﬁ/\ Sl N Tq)

o
Frrerl (XX Y)* A T,)

Note that this is analogous to the previous construction in that for g==2(mod 4),
every element of [S” A Ty, QA T,] has order g and we may take % to be null homo-
topic. Then ¢ becomes the identity and we have the situation in (2.2)

To check that this has the desired properties of a mod ¢ multiplication, we will

show that uy(p(*)® p())=p(r(*® y)).

pap(x)@p(¥)) = 1d((LAT)x(x)Q(1A7)x(¥))
= 0%  "P(IN f Ao " (A A7) ()R (1 AT)x())
= 0w "GN f Ao (AT ADK(IATADep(x®)
= o " PANA FADKAAIANA D505 A ATAP) (xR Y)
= o " FAAPATA D (I ATAT)1p (xR )
= oy "IN INADp(xQy) = p(p(xRY)) -

The fact that p(1) is a unit for u, follows similarly. Using the notation above, we
have established the result:

(2.5) If ¢g=2 (mod 4) and n: S*—S™ is a map such that n4(cs*(1))=0 and
dNA1: S"ATq—0, AT, stably has order q, then there exists a mod q multiplication
for hy as in (2.2).

As a specific case, let »: S*—>S? be the Hopf map. We will compute the
order of pA1E€[S* ATy, O, A T,] where g=2 (mod 4). From the cofibration
sequence

S NTq— S*NTq— O, AT, —> S'NT,
we obtain the exact sequence

A1 A1
[Sz/\ Tq» S°A Tq]_(n—)*" [SZ/\ Tq’ SN Tq] (d)——l*[sz/\ Tq» Qn/\Tq]

A1
UADS ron,, ST
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According to [3, Theorem 4.1], we have
(i) [S*A Ty, S*AT,)~Z, generated by (1Ar)ob,
(if) [S*A Ty S°AT )~Z,, generated by 1,
(i) [S*A T, S‘AT,]=0.
By using [3, Theorem 1.1] we get the relation

A DK((AAT)ob) = ¢-1€[S* ATy, SPAT,].
Hence we can easily see tilat
PN1€[S* ATy O, A T,]s has order gq.
Combining this result with (2.5) gives a more specific result.

(2.6) If the homology theory hy in (2.2) has nx(o+*(1))=0 where 5: S*—S*
is the Hopf map, then the hypothesis that q=2 (mod 4) may be dropped.

The following weak form of the Kunneth formula may be established by the
technique in [6, §44]:

(2.7) If X and Y have the homotopy type of CW complexes of finite type and
hi(X; Z,) is a free R=hy(pt.; Z,;)-module, then the mod q multiplication defines an
isomorphism

pat h(X; Z)Q@rhs(Y; Zg) — ht( XX Y; Z) .

3. Thespectral sequence. The results of this section are due to Rothen-
berg and Steenrod [15] [16]. Since the details of their proofs have at present
only appeared in the form of mimeographed notes [16], some of their arguments
are reproduced here.

Let G be a group in 4 with identity e. A right action of G on a space X
is a continuous function ¢: XX G—X such that ¢(x, e)=x and ¢(Pp(x, £.), £2)
=d¢(x, g,g.) for all g, g, G, x= X. A space X together with such an action is
a G-space. X is a filtered G-space if there is a sequence X, c X, c---cX,C -

of closed G-invariant subspaces such that X =4 ¢, X= Ux ; and X has the topology
i=0

of the union. A filtered G-space X is acyclic if X, is contractible to a point in
X,41; it is free if for each n there exists a closed subspace D,, X,,<D,cX,,

such that the restriction of the action mapping gives a relative homeomorphism
¢'n: (Dm Xn-l) XG —> (Xm Xn—l) .

A filtered G-space which is both free and acyclic is a G-resolution.
Let € be the Milnor resolution for G [12]. Then € is a universal G-space
and the decomposition space B=¢|G is a classifying space for G. If p: E-B is
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the identification map, then B is filtered by setting B,=p(¢,). Then B,_, isa
deformation retract of a neighborhood in B, and p restricts to a relative homeomor-
phism p: (D, €,-1)—>(By By-,) for n=>0.

Let k4 be a multiplicative homology theory as in (2.5) and ¢ an integer
for which k4(G, Z,) is a free R-module where R=hy(pt.; Z;). Then the Kiinneth
isomorphism of (2.7) gives k«(G; Z,) the structure of an R-algebra and k4(X; Z,)
the structure of a right 44(G; Z,)-module.

The space X=X X € may be filtered by setting (X¢),=XXs€,. Note
that if X is a point, Xo=2B is the corresponding classifying space. This filtra-
tion of X produces a natural filtration of A4(X¢; Z,) which yields a convergent
spectral sequence E*(X) in the usual way. We now want to establish some of
the basic properties of this spectral sequence as in [16]. These results dualize
those of Anderson and Hodgkin [2] [11].

Since &,-, is contractible to a point in €, we have a long exact sequence

d d d
(31) e > h*(8n+11 8": Zq) — h*(em en—l; ZQ) > oo
d d &
e > h*(eu Eo; Zq) I h*(go; Zq) — R—>0

where each d is the boundary operator of the respective triple and € is induced
by the map onto a point.

(3.2) If hi(G; Z,)is a free finitely generated R-module then the sequence given
in (3.1) is a free hy(G; Z,) resolution of R.

To prove this consider the pair (D,, &,-,) where D,= {e} °€,_,~Cé¢,_, and
e=(G is the identity. The map

qsn: (Dm en—l) X G—> (8,,, gn—l)

induced by the action of G is a relative homeomorphism. Using the right action
of G on the second factor of (D,, &,-,)X G, we see that

¢n¢: h*((Dm En—l)x G; Zq) I h*(em En—l; Zﬂ)

is an isomorphism of k4(G; Z;)-modules. The Kiinneth formula (2.7) gives an
isomorphism

trat h(Doy €nes3 Za)R i G Zg) —> ha(Dos En-1) X G Z3)

of hx(G; Z,)-modules, where the action on the left side is given by acting on the
second factor.

Thus to show that hy(E,, &,_,; Z,) is a free hy(G; Z,)-module it is sufficient
to show that hy(D,, €,-,; Z))~h(CE,_,, Eny; Zq)zﬁ*(zjs”_,; Z,) is a free R-
module. Since &,_, is a join of copies G and hy(G; Z,) is a ‘finitely generated
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free R-module, it is sufficient to show that if &4(X; Z,) and %4(Y; Z,) are finitely
generated free R-modules, then so is /(X0 Y; Z,).

Here the argument of Milnor [12, lemma 2.1], together with the mod ¢
Kunneth formula (2.7), establishes an isomorphism

(XY Z)~hy(X; Zo)Qrhs(Y; Z4)

of degree —1. We conclude that hy(E,, E,-,; Z,) is a free hy(G; Zg)-module.

Finally since the boundary operator on a cross product 9(xX y)=0(x)
X y for x a relative class and y an absolute class, the homomorphisms d of (3.1)
are hy(G; Z,;)-module homomorphisms. This completes the proof of (3.2).

It is now possible to determine the E*-stage of the spectral sequence for
Xi. Consider the diagram

hi( X5 Zg)Q ghs(Doy En-y Zg)
h
hi( X5 Z) R ghs(Dyy En-13 Zg) R rhi(G5 Z4)
~ |id Q(P o pq)
hs( X5 Z3)Q ghse(Ens En-15 Za)
~ | g . ’:(X; Z)Rh4(Eny En-15 Za)
I XX 6,y XX s Za) A& 2
P+
ha(X X 6En XX 68013 Za)

where A(x®y)=x®y®1 and » is the natural map onto the quotient. It is a
standard fact that since id @ (¢,*ou,) is an isomorphism, the composition 70(id@
(¢paropg))oh is also an isomorphism. On the other hand, a diagram chasing ar-
gument shows that pyopu,0(id @(¢p,,omq))ok is just the composition

h*(X, Zq)®Rh*(Dm Ep-is Z‘I) _%’ h*(XX(D”’ 8”_1; Zq)
P*l“
h*(XXGgm -XXGGn—I); Z‘I)

where py is an isomorphism since the restriction of p is a relative homeomorphism.
This allows us to conclude:

(3.3) The homomorphism moug'cpy defines a natural isomorphism from
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hi(X X 6Epy XX 6Euzr; Zg) 10 ha( X5 Za)Rhuccs 2,75 Epy En15 Za) -
As an immediate consequence we have:
(3.4) Denoting the R-algebra ho(G; Z,) by A there is a natural isomorphism
E% (Xe)=~ Tor 5(h(X; Zo), R) .

We make the following observation concerning the edge homomorphism in
E*(Xg):

(3.5) The edge homomorphism given by the composition
B, x(Xo) —> Ef1(Xe) —> E5x(Xo)
h*(g(x &G Z,) h*(RX Z)OR  Jos s h(Xa; Za)
h*(gf; Zg)
is induced by the inclusion

X = XXGGZ(XXGE)0—> XXGG.

4. Applications. Our first application is to dualize the results of Anderson
and Hodgkin [2] by applying the spectral sequence of §3 to the problem of
computing the Ky groups of Eilenberg-MacLane spaces. For the moment let
p be an odd prime.

Denote by K the Z,-graded homology theory associated with the unitary
spectrum [10] [1]. Let = be a finite abelian group and denote by B Milnor’s
realization of B,=K(x, 1). The multiplication in the group = defines a product
m: B X B—B so that for any prime power ¢g=p", K«(B; Z,) becomes an algebra
over R=Ky(pt.; Zy)~Z,.

(4.1) The algebra structure in Ky(B; Z,) is dual to the coalgebra structure in
K*(B; Z,).

It appears that this need not be true for H-spaces in general; the proof given
here depends on certain properties of the space B. In view of the determina-
tion in [2] of the coalgebra structure in K*(Bj; Z,), this relationship will enable
us to make the desired computations.

Note that from the results of [17] and the universal coefficient theorem,
K«(Bj; Z,) is additively isomorphic to K*(B; Z,). If we denote by V and A the
product and coproduct respectively, the problem may be stated as follows: if
yeK*B;Z,)and a, B K«(B; Z,) then show that {A(7),a @ B>=<7, V(aRB)>,
where the brackets denote the mod ¢ Kronecker index.

We recall briefly the definition of the coproduct A. First the mod ¢ multipli-
cation in cohomology is defined [1] [3]. This may be done by first finding a map
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J: S*AT—TAT, as in §2, such that the composition (bA 1)of is homotopic to
the identity. Then from the ordinary cohomology multiplication y, the mod
g multiplication p? is defined by the composition

K"(X; Z)@K™(Y; Z) —> R**(X* AT)QK™HY*AT)

)%
i R*m(X X Yy ATAT)
: J((id N)*

K™™(XXY; Zg) e R™™H(X X V) ATAS?).

Now since K*(Bj; Z,) is a finitely generated free Z,-module [2] we have A defined
by the composition
*

m
K¥(B; Z) —— K*(Bx B; Z)~K*(B; Z)@K*(B; ZJ)
where the second homomorphism is the inverse of the Kunneth isomorphism.
The product Vv is given by the composition

m*
Ky(B; Z)RK4(B; Zo) 5 Ky(BX B; Zg) ——> Ko(B; Z4) .

So in order to prove (4.1) it will be sufficient to show that if a € K,(B; Z,),
BeK|(B; Z,), yeK’"(B; Z;) and 8 K°(B; Z,) then

(4.2) r®3, a®B> = {p(7R3), pla®B).

First note that since K'(B)=0 and K°(B) is torsin free, the mod ¢ reduction
homomorphism

(INb)*: K*(B)——> K*(B; Z,) is an epimorphism.

So we choose elements v’ and 8’ with (1 Ab)*(v")=1v and (1 Ab)*(8")=8.
Following the notation for the unitary spectrum used in [10], we assume that
the elements a, 3, v’ and &’ are represented by the maps

h: S™"*—— BATAU,
g: S —S BATAU,
k: B—> U,
l: B—> U,

respectively.
The Kronecker index {(1 Ab)*(7’), &) is represented by the composition



ROTHENBERG-STEENROD SPECTRAL SEQUENCE 97

1A
@3) sasm Mg rparan, YN AT AT AL,

(LABALAL
EATIAL
SEANTAU, ., «— SPANUATAU, ——> BAS:ATAU,

Note that the composition of the second and third maps is homotopic to the
identity. Similarly the Kronecker index <{(1 Ab)*(8’), 8> may be represented by
the composition

Ng

1A IAIA
(44) S:AS™+ S SEABATAU,, AN e TAUAT,

S*ATAUsspm

On the other hand, the Kronecker index {u?((1Ab)*(v")Q(1Ab)*(')),
nda®B)) is represented by the composition

AN ST A Gmts
INEA g
S‘ABATAU,ABATAU,
(4.5) ll/\f/\l
Sz/\Sz/\B/\B/\T/\S‘/\U,,+m ij—)B/\B/\SZ/\T/\T/\Sl/\U,,J,m
Eldentlty IAFAL
B/\BU\S’/\S"’/\ TAS'A U,,Jr,,,(l/\b)/\(l/\b)/\1
1(k/\ DAIADAL
UNUAS*ANSPATAS'NU iy

BABATATAS'AUpim

Un+m+r+s+5 /\ T .

It can be checked that the rectangle commutes up to homotopy where the dotted
map is the identity. However, this shorter composition represents the pro-
duct in K(pt.; Z,) of the previously defined Kronecker indices (4.3) and (4.4).
This establishes (4.2), and (4.1) follows.

Denote by 7 , the p-component of z. Then Anderson and Hodgkin [2] have
shown that K*(B,; Zo)~K*(B,,; Zs)~Z,[r}] for any g=p". Here Z,[z}] is
the group ring of the character group z¥ of z,. So assume that = is a p-group
and let 1=u,, u,, :*+, u; be the the characters in z*. The coproduct [2] is given
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by

Au;) = u;Qu;

for each 1.

Define elements w,, w,, +-, w, in Ky(B; Z,) by requiring that <{u;, w;>
=d8;;€Z,. 'Thus Ky(B;Z,) is the free Z,-module with basis w,, w,, -**, W;.
From (4.1) it is then a simple matter to determine the product in Ky(B; Z,).

<um V(w;®wl)> - <Aum wi®wi>
= <um wi>'<um 70_,‘> = {

lifi=j=mn

0 otherwise .

Thus V(Eniwi®2mjwj)=i§:-_o} (n;m))-w; for any n;,,m;=Z, 'The unit &: Z,
—K(B; Z,) is the dual of the augmentation of the coalgebra and is given by
&(1)=w,+w,++-++w,. The augmentation n: K«(B; Z,)—Z, given by
1ifi=0

0 otherwise

() = {

gives Z, the structure of a Ky(B; Z,)-algebra and it is a simple exercise to verify
that

(4.6) For q a power of the prime p, Z, is a projective K (B; Z4)-module.
As an immediate corollary we have

(4.7) For any Ky(B; Z;)-module M and integer n>0,
TorXx520(M, Z,) = 0.

This fact may now be applied to the spectral sequence in §3 to make the
desired computations as in [2, §4]. As the group G in §3 we take the CW group
B. Its classifying space will then be a K(=, 2). So in the spectral sequence we
take X to be a point so that X, is a K(=, 2).

The spectral sequence of §3 collapses since by (3.4) and (4.7)

E% (X6} = Tor £5570(Ka(pt.; Za), Za)
~ Ky(pt.; Z,,)®K (ZB,, ~Z,.

)

Hence the edge homomorphism (3.5)
Ki(pt., Zy) —> Ky(K(r, 2); Z,)
is an isomorphism. This completes the proof that

(4.8) For any finite abelian group = and any prime power g,
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Ry(K(m,2);Zg)=0.

Note that this result and the following one are stated for all primes.
Special arguments for the case p=2 may be made using the universal coefficient
theorem and results of Anderson and Hodgkin [2]; however, the preceding
approach cannot be employed due to the absence of the maps f and f.

The same result for K(z, n) may be proved inductively, for if G=K(=,n—1)
has Ky(G; Z,)=0 then K(G; Z,)~Z, is a finitely generated free Z,-module and
trivial as a Z,-algebra. Thus by the same argument

Ki(pt.; Zq)®K @ )Zq —> Ky(K(z, n); Z,)

“q

is an isomorphism. Thus

(4.9) For any finite abelian group =, integer n>>2 and prime power q, Ky
(K(w, n); Z4)=0.

As in [2] we may extend (4.9) to the case of = a countable torsion group.

Note that it is an immediate consequence of the universal coefficient theorem
that K(K(,n);Z,)=0 for all prime powers g implies Kx(K(=,n)) is both torsion
free and divisible. If 7 is a finite abelian group, H;(K(z, n)) is finite for all 7, so
that from the Atiyah-Dold-Hirzebruch spectral sequence for Ky(K(z,n)) we
have K (K(r, n)) is a direct limit of finite groups. Thus every element must be
a torsion element and we conclude

(4.10) For = a countable torsion group, n>2, K(K(r, n))=0.
These results may be extended following [2] to show that if 7 is a countable
torsion group and #>3, then

Ky(K(r, n))~Ky(K(z R0, n)) .

We now briefly interpret these results in terms of the complex bordism of
Eilenberg-MacLane spaces. Let Uy(X) denote the weakly complex bordism
of the space X [8]. There is a natural transformation

T Us( )— Ki( )

which when restricted to the coefficient groups becomes the Todd genus 7T: Uy
—Z. Giving a Ug-module structure to Z via T, we state the theorem of Conner
and Floyd (see [8] for a proof):

(4.11) 7 induces a natural isomorphism for each X
Un(X)@0.Z —> K«(X)

Denote by I < Uy the kernel of the homomorphism 7 and note that I con-
tains no non-zero homogeneous elements of degree zero. As an immediate
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corollary of (4.10) we have

(4.12) If = is a countable torsion group, n>2, then every element ac Uy
(K(z, n)) may be written in the form a=pR-v where B and v Uy(K(x, n)).
Hence I™- Uy(K(r, n))= U(K(r, n)) for all positive integers m.

It would be natural to ask if this spectral sequence could not be used to
determine the homology of K(w,1). Indeed, if 7 is a finite group, then Ay(7;Z,)
is isomorphic to R[x] the group ring of =, a finitely generated free R-module,
where R=hy(pt.; Z,). In this case the E? stage becomes the homology of the
group 7 with coefficients in R. If the spectral sequence collapses, this gives the
standard relationship between the homology of the group = with coefficients
in the z-module R and the singular homology with coefficients in R of the clas-
sifying space B,. However for the interesting cases the spectral sequence does
not collapse and the desired results require a deeper analysis.

For the final application we require the following definition. Let R be
a graded commutative ring with unit. A modified polynomial algebra A over
R on generators x,, X, +*+, x, of degrees m,, m,, -+, m, is the free R-module
generated by elements x{"v’x{"2’.--x"», for all collections of non-negative integers
7y, ***, 1, of degree r.m,+r,m,+ --+r,m,, in which the multiplication is given by

(XX Do) o (KPP0, 0)

<r1+51) (Tz+52) ( n—l‘Sn) <& +sl)x;'2+sz)---x,("+s") .

Let 44 be a multiplicative theory, p a prime and G a groupin A. If p=2
assume Ay isasin (2.5). 'We may now prove a generalization of a theorem of Borel

(5], [13]-

(4.13) If h(G; Z ,)=E is an exterior algebra over R=hy(pt.; Z,) on a finite
number of odd dimensional generators and R is zero in odd dimensions, then
h«(Bg; Z,) is a modified polynomial algebra over R on corresponding generators of
one dimension higher.

Aside from complications of notation; the proof in general is the same as the
proof for two generators. So suppose that E is an exterior algebra over R
on generators x and y of dimension 2n—1 and 2m—1, respectively.

Define a free E resolution of R as follows

3 2 1 8
(4.14) - al E, i E, g E, a E, R 0.

Let E,, be the free E-module on (m-1) generators denoted by a5, a®™~p®,
-, a®b.  Define the homomorphism

Bw: E,—> E,,_,
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by setting
Bm(a(k)b(m_k)) = X a(k"l)b(m‘k)_l_y . a(k)b(m—k'l)

where a“’b*? is understood to be zero if either j or / is less than zero. Using
the fact that xy=—yx it is not difficult to check that this is a free E-resolution of
R. Note that the bidegree of a®b™~* is (m, k(2n—1)-(m—k)(2m—1)), so that
the total degree is always even.

Tensoring the resolution (4.14) throughout with R over E results in a
complex having each differential identically zero. It follows immediately that
Tor% «(R, R) is a free R-module of rank (k+1) whose basis we identify with a%®
B, ve, gOB®,

We now determine the multiplicative structure inductively. Consider the
product complex

0, 0
—> N E,QE;,—> X E;QE,—> E,QzE,— R®R
ll‘z lﬂq ll‘*o lm

8. IoA
— E, ——> E, ——> E, —— R

The multiplication 7 can be lifted to a sequence of homomorphisms {x;}, unique
up to chain homotopy, so that each rectangle commutes.
It is apparent then that

0\/0
OO Q) gOPO) — gOhO — 0350
266 R ab®) = ab <0)<0)a b .

Now let >0 and suppose that for any 2<r and any integers 1</<k and j<k—/,

pa(@PbE DR a P I=) = (i + ]) <k— z —]) QG+ Ppk=i=5>

1 I—3
Consider then 2=a®b%"?>®a>b" !~ where i<I<rand j<r—I. We have
8,(.2) — x,(a(i—l)b(l—i)®a(j)b(f—I—j)+a(i)b(l-i)®a(j—l)b(r—-l—-j))
+ Y(aPbF =R DB 14 g DB DR @15
So by the inductive hypothesis,

ﬂr-lar(z)

— e i+]"‘1> ’_i_f) GH+j-DHTr=i= i‘|‘j_1) r—i—j (:‘+j—1)b('-n‘-i)]
=[( L e (TN i)

Sy ey R o e
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S (0 ey P I (00 e M
(S|

Hence it is natural to choose inductively
i = () (57 a0,
i l—1q

This establishes the multiplication in Tor ¥, (R, R).

Note that since all non-zero elements have even total degree the spectral
sequence must collapse. Finally it may be checked that this product corre-
sponds to the product in h«(Bg; Z,) so that hy(Bg; Z,) is the desired modified
polynomial algebra on generators corresponding to a*°6“ and @b of dimension
2n and 2m respectively.

THE UNIVERSITY OF TEXAS
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