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Introduction

Let R=kK[X, ---, X,] be a polynomial ring over a field £ and G be a finite
subgroup of GL(n, k). We assume that |G|, the order of G, is not zero in k.
Then G acts on 1-forms of R and thus G can be considered as an automorphism
group of R. We want to investigate the invariant subring RS. We have two
theorems concerning R already.

Theorem ([4], Théoréme 1) RC is again a polynomial ring if and only it G
is generated by pseudo-reflections. (We call g&G a pseudo-reflection if rank
(g-I)=1, where I is the unit matrix).

Theorem ([2], Proposition 13) R€ is a Macaulay ring.
After these theorems, we ask:

“When is R® a Gorenstein ring?”

We prove in this paper the following theorems.

Theorem 1. If GCSL(n, k), then RC is a Gorenstein ring.

We apply this theorem to the case of regular local rings. If (R,m)is a
regular local ring and if G is a finite subgroup of Aut (R), then G acts linearly
on m/m®. Thus we have the canonical homorphism A : G—GL(m/m*). We also
assume that |G| isaunitin R. Then applying Theorem 1, we get the following
theorem.

Theorem 3. If \(G)C SL(m[m’), then RC is Gorenstein.
To reduce the case of regular local rings to the case of polynomial rings,
we use the following theorem.

Theorem 4. Let (4, m) be a local ring. (We assume always the Noetherian
property.) We suppose that A has a filtration F=(F;);>, satisfying the following
conditions.

(i) F,=A4 and F,=m.

(i1) (F;);z, defines the same topology as the m-adic topology on A. We put
R=Gr(A4)= %F i/Fi. the associated graded algebra and M =R+=‘€£F,~/F,-+1 the
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canonical maximal ideal of R. Then,
(1) If Ry is Macaulay, then A is Macaulay.
(2) If Rum is Gorenstein, then A is Gorenstein.

1. Preliminaries

The contents of this section can be found elsewhere. But for the conveni-
ence of the readers, I put the proofs. As for the definition and the fundamental
properties of Gorenstein rings, see [1].

In this section, R is a Noetherian ring and G is a finite group acting on R.
We assume that | G|, the order of G, is a unitin R. We denote by RC the invariant
subring of R by G and by p the Reynolds operator R—RC¢ defined by p(r)=
Hﬁgezg g(r) for reR.

Lemma 1. Iff, -, f, are elementsin R® which form an R-regular sequence,
then they form also an RC-regular sequence and

RE[(fos -+ f)=(R[(fis =+, f))°.

Proof. It suffices to show the latter part. Let’s put a=(f,, -, f,)R. If
heR and h-g(h)=a for all g=G, h—(h)=a and p(h)= RC obtaining that R¢/
(fis s [RC—(R/(fyy ++*, f5))C is surjective. Since injectivity is clear, we are
done.

Lemma 2. If R is Macaulay, then RC is Macaulay.

Proof. If (f,, -**,f,) is a parameter system of RC, it is also a parameter
system for R. Since R is Macaulay, (f,, :*-, f,) forms an R-regular sequence and
by Lemma 1, it forms an RC-regular sequence. So R® is Macaulay.

Lemma 3. If (4,m) is an Artinian local ring, the following conditions
are equivalent.

(a) A is Gorenstein.

(b) length(0: m)=1.

(c) There exists an element =z in A, 2+0, such that for every x=+0 in A
there exists an element y in A satisfying xy=z.

Proof. (a)=(b) is almost the definition itself. (b)<(c) is straightforward.

Lemma 4. Let (A, m) be an Artinian local Gorenstein ring, G a finite
group acting on A. We assume that |G| is a unit in A and we denote by = an
element in A satisfying the condition (c) of Lemma 3. If z is invariant under G,
then AS is Gorenstein.

Proof. We check the condition (c) of Lemma 3 for 4¢. Take x=0 in A4°.
By assumption, there exists y in 4 satisfying xy=2. Then xp(y)==2 and p(y)
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isin A°C.
Lemma 5. Let A be a ring which contains a field k and let k' be an extension
field of k. If a group G acts on A and G acts trivially on k, we can extend the

action of G to A'=AQ k' naturally. Then (A")\C=A°Qk’. Thus (A" is faith-
fully flat over AS and if (A’)° is Gorenstein, A€ is Gorenstein.

Proof. We write elements of 4’ in the form x’ =Z”x,-c,« where x;€ 4, ¢,k
i=1
and ¢;’s are linearly independent over k. For any gG, g(x")=> g(x;)®c¢; and
=1

if x is G-invariant, all x,’s are G-invariant. Thus we have (4')°=A4°Q®.k’ and
so (A’)° is faithfully flat over 4. The latter part holds by [5], Theorem 1".

2. The case when G is cyclic

In this section, we use the following notations.
R=k[X,, ---, X,]. the polynomial ring over a field k.
G is finite cyclic subgroup of GL(n, k). We asume that (ch(k), |G|)=1.
g is a generator of G. We put |G|=m and we denote by & a primitive m-th
root of unit.
n=R°N(X,, -+, X,) and O=(R),.
By Lemma 5, we may assume that £ is algebraically closed and that g is in

e
a diagonal form, g=[ 1‘-. ], where e;’s are m-th roots of unity. We write
e’l
e;=E&%,
Lemma 6. If det(g)=1, then O is Gorenstein.

Proof. X7, .-+, X7 are in RC and by Lemma 1, we have O/(X7, -+, X7)O
=(R/(XT, ---, XR)R)®. A=R/(X?, -+, X?)R is an Artinian local ring. As A4
is a complete intersection, 4 is Gorenstein. In A4, 2=(X,--+-+X,)""" satisfies
the condition of Lemma 3 (c). If det (g)=1, 2 A4° and by Lemma 4, A€ is
Gorenstein. Thus @ is Gorenstein.

Before proving the converse of Lemma 6, we need to fix some terminology.

DErFINITION 1. m and q; are as in the beginning of this section. We put
I={(r,, -+, r,)|7r/’s are integers and 0=<r;<m for i=1, ---, n}
J=A(ry =, 7)€ 3} 7:,=0 (mod m)}.
i=1
We define an order in I and /. Namely, (7, -+, 7,)=(s,, ***, 5,,) if 7,=; for
i=1,---,n. We call an element of J minimal if it is minimal among the ele-
ments of J which are not (0, -+, 0).

Recall that, if (4, m) is an n-dimensional local Macaulay ring, the ‘type’ of
A is defined by the number [Ext%(A/m, A): A/m]. To say that 4 is Gorenstein
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is equivalemtn to say that 4 is Macaulay and type(4)=1. We denote by emb(4)
the embedding dimension of 4. emb(4)=[m/m*: A|m)].

Lemma 7. If the number of minimal element of J is E and the number of
of maximal element of ] is r, then emb(O/(XT, ---, X7))=E and type (O)=r.

Proof. Xfi---Xir=£0 mod(XP, «--, XP)=(ry, -, 1) €1, and X751 X ERC
&(ry, -, r5)E ], and type (O)=type (O/(XT, ---, X%)). From these facts, the
conclusion is immediate.

DEerINITION 2. We call an element g of GL(n, k) a pseudo-reflection if the
order of g is finite and rank (g-7,)<1. (Where I, denotes the unit matrix).

Proposition 1. If RC is Gorenstein and if G does not contain any pseudo-
reflections other than the unity, then G C SL(n, k).

Proof. It is clear that (m, a,, ---, a,)=1. Since type (0)=1, J must have

unique maximal element (7, ---,7,). It is sufficient to prove that (7, -+, 7,)
=(m—1, .--,m—1). If this is not the case, we may assume that r,<m—1.
Since (r,, -+, 7,,) is the unique maximal element of J, for any s;, 0=s5,< m—1

(i=2, -+, n), (m—1, s,, -+, s, )& J. If (a,, -+, a,, m)=1, this can not happen and
s0 d=(a,, +++, ay, m)>1. Then if we put m’=m/d, g™’ &1 and g™ is a pseudo-
reflection. 'This contradicts the hypothesis that G does not contain any pseudo-
reflections other than the unity.

&
ExampLE 1. If € is a primitive 6-th root of unity and if we put gz[ & ],
-1 &
RC is Gorenstein but det(g)==1. This is due to the fact that g3=[ 1 ] is a
1

pseudo-reflection. If we put H= {1, g°}, R6=(R¥)¢/H RH=Fk[X*? Y, Z]. The
2
action of =g mod H on k[X? Y, Z] is represented by [ & ] and det (g)=1.
82

More generally (we don’t suppose that G is cyclic), let H be the subgroup of G
generated by all its pserdo-reflections. Then H is a normal subgroup of G and
R is again a polynomial ring over k (Serre [4], Théoréme 1). Thus the hypo-
thesis “G does not contain any pseudo-reflections” is quite natural.

3. RC¢ is Gorenstein at the origin

Theorem la. Ifa finite group G C SL(n, k) acts on R=Fk[ X, -++, X,,] naturally
and if (|G|, ch(k))=1, then RC is Gorenstein ‘at the origin’. Namely, if we put
n=R°N(X,, -+, X,) and O=(RC),, then O is Gorenstein.

Proof. We take a parameter system (f,, -+, f,,) of O as follows;
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1. Each f; is homogenous of the same degree m.

2. mis a multiple of |G|.
We put A=R/(f,, ***, f«)R and we want to apply Lemma 4. For this purpose we
notice the following fact.

Lemma 8. Let A=@A; be a graded ring. We assme that A,=Fk is a filed
i=0

and that each A; is a finite dimensional vector space over k. If f is a homogenous
element of A which is not a zero-divisor of A, then dimy(A4[fA), depends only
on A, n and deg(f).

Proof. If deg(f)=d, dimy(4/f4),—=dim,4,—dim,A4,_,.

We return to the proof of our theorem. By Lemma 8, for any d, dim,4,
=dim,(R/(XT, +++, X7))a- If we take 2= 4 satisfying the condition of Lemma
3 (c) (4 is Gorenstein), deg(z)=n(m—1). Then we take an element g€ G and
assume that g is in a diagonal form. We put H the cyclic subgroup of G gene-
rated by g. Applying Lemma 8 to R¥, dimy(R¥/(XT, -+, X®)RH),=dim,(4H),
=dimy(R¥/(f,, ***, fa)R¥)y. As we have (X,, -+, X,)" '€R¥ (g is in a diagonal
form and det(g)=1), dimy(4A*)m-p=1. As dimpA,m_ =1, 2 is invariant
under H. As g is arbitrary, 2 4¢. By Lemma 4, A°=0/(f, +,f») O is
Gorenstein. Thus © is Gorenstein.

4. RF€ is globally Gorenstein

Theorem 1. If a finite subgroup G of SL(n, k) acts nturally on R=Fk[X,,
o+, X,] and if (|G|, ch(k))=1, then RC is Gorenstein.

Proof. By Lemma 5, we may assume that k is algebraically closed. If
we take a maximal ideal n’ of R®, we can write n'=(X,—a,, ---, X,—a,) RN R®
(ay, +++, a,€k). We put H={gesG|g(a,, -, a,)=(a,, ***, a,)}. We consider
the diagram R6—>RH¥ R. Then it is known that R6—R¥ is étale in a neigh-
bourhood of #’ (Raynaud [3], P. 103, Th. 1). Thus (R®),/—(R*¥), is flat (where
9=(X,—a, -+, X,—a,) N R¥). If (RH), is Gorenstein, then (R®),/ is Gorenstein
([5], Theorem 1). But by the coordinate transformation (X,, -+, X, )—>(X,—a,
-+, X,—a,), H can be regarded as a subgroup of SL(n, k) and ¢g=(X,, -+, X,)
NRH. By therorem la, (R¥), is Gorenstein and we are done.

Question 1.” Is the converse of Theorem 1 true? Let G be a finite
subgroupof GL(n, k) and let us assume that (|G|, ch(k))=1 and that G con-
tains no pseudo-reflections other than the unity. If R¢ is Gorenstein, then
GcSL(n, k)?

1) Added in proof. The statement in Question 1 has been proved by the author. The
proof will appear in [6].
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Question 2. Is the following statement true? Let A= A, be a Northerian
i20
graded ring with 4, a field. We put M=4,=@A4;. If Ay is Gorenstein, is 4
i1
globally Gorenstein ?

5. Base extensions

Theorem 2. Let A be a Noetherian ring and G be a finite subgroup of
SL(n, A). We assume that |G| is a unit in A. Then G acts naturally on R=
A[X,, ++, X, Then RC is Gorenstein if and only if A is Gorenstein.

Lemma 9. Under the assumptions of Theorem 2, RC is faithfully flat over A.

Proof of Lemma 9. (i) If a is an ideal of 4, then a(R®)=(aR)®. (If Xa;f;
€(aR)¢ with a;€a and f,EeR, 3, f;=p(a;f;)=2a;0(f;) and we have (aR)®
CaR€. The converse inclusion is clear).

(ii) As R is A-flat, (aR)°==(a® 4R)°.

(iii) (a® 4R)®=a® 4R® (The isomorphisms is given by >';® f;—>'a;®
p(f:).) By (i), (ii), (iii), aR®~a® 4R® and R¢/aR®=(R/aR)®. Thus RC is
faithfully flat over 4.

Proof of Theorem 2. The fiber of the map f: Spec (R¢)—Spec(4) at
pESpec (4) is the Spec of RER 4k(p)=(k(p)[X,, -**, X,])¢ which is Gorenstein by
Theorem 1. Thus f is a Gorenstein morphism in the sense of [5], Definition
(1.7). 'The conclusion follows from [5], Theorem 1.

ReMARK. In Lemma 9, the assumption “|G| is a unit in 4 is essential.
For example, let A=k[e], £ be a field of characteristic 2, =0, G={g>, g=

[(1) (i] If we put a=e4, then eX, € R°and eeX,+0in a&) ,R°, while e.e X, =0.

Thus a@® 4R°—aRC is not injective and R is not flat over A.

6. A theorem on the associated graded algebra of a local ring

Theorem 3. If (4, m) is a Noetherian local ring and (F,),=, be a filtration
on A satisfying the two conditions.

1. F,= A and F,=m.

2. (F,)uz, defines the same topology as the m-adic topology on A.
We put R=Gr(A)= I_EBF i|Fi., the associated graded algebra and M=R,=@

i>1
F;|F; ., the canonical maximal ideal of R. Then,
(1) if Ry s Macaulay, then A is Macaulay.
(i1) if Ry is Gorenstein, then A is Gorenstein.

Proof. The proof follows immediately from the two lemmas below.
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Lemma 10. Let f,, -+, f, be homogenous elements of R which make an R-
sequence. If x,, -+, x, are elements of A with In(x;)=f,(i=1, ---,s), then (x,, -+, x,)
form an A-regular sequence and Gr(A|(x, -+, x))=R/(f,, ***,f,). (If x€A, x<F,
and x&EF,,,, then In(x)=x mod F,,,=Gr"(A). The filtration of A(x,, -+, x,) s
the one induced from (F,).)

Proof. We note the fact that if x, y= 4 and In(x)In(y)=+0, then In(xy)=
In(x)In(y).

Case 1. s=1 (we omit the subscript 1).

If ye A and In(y)=+0, by assumption In(x)In(y)=0. Thus In(xy)=In(x)
In(y)#0and xy=+=0. On the other hand, Gr'(4/xA)=R|Gr'(xA4) where Gr'(xA4)
is the homogenous ideal of R generated by In(z), zex4. But if 2=xycx4,
then In(2)=In(x)In(y) and so In(2)e fR. Thus we have Gr'(4/xA4)=R|fR.

Case 2. General case.
We assume that the assumption is true for s=7 and prove for s=i+41. As
fi+1 18 not a zero-divisor on Gr'(4/(x,, *++, x;))=R/(f,, -, f;), Case 1 applies.

Lemma 11. If (4, m) is an Artinian local ring, (F,) is a filtration on A
whcih satisfies the conditions of Theorem 3 and if R=Gr'(A) is Gorenstein, then
A is Gorenstein.

Proof. We use Lemma 3. Let 2 be a homogenous element of R which
satisfies the condition of Lemma 3(c) for R(O: M is a homogenous ideal of R).
Then if 2= 4 be such that In(2)=h, then for any x4, x=£0, there exists an
element fER such that In(x).f=h. If we take ye A4 such as In(y)=f and if
deg(h)=m, In(y)In(x)=h and xy=2 mod F,,,,. Butas F,,,=0, xy==z and 2
satisfies the condition (c) of Lemma 3 for 4.

7. The case of regular local rings

The statement of Theorem 4 was indicated to me by Professor M. Miya-
nishi with an outline of a proof. I wish to express my deep gratitude to him.

Theorem 4. Let (R, m) be a regular local ring of dimension n and G be
a finite subgroup of Aut(R) satisfying the following conditions.

1. |G| is a unit in R.

2. The automorphisms of k—=R|m inducted by the elements of G are identities.

3. If we denote N: G—GL(m|m’) the canonical homomorphism, then N\(G)C
SL(m|m?).
Then S=RE is Gorenstein.

The proof is divided into several steps. First we need a lemma.
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Lemma 12. ([2], Proposition 10) Let R be a commutative ring and G be a
finite group acting on R. We assume that |G| is a unit in R and we put S=RC.
Then if a is an ideal of S, then aRN S=a.

Proof. If Dla,7,€S, a,=a, r,=R, then
Dar;=p(la;r)=>a;p(r;)Ea. Thus we get the inclsuion C and the converse
is trivial.

We return to the proof of Theorem 4. From Lemma 12, we get

(1) S is a Noetherian local ring.

Proof. Since R is integral over S, S is local and by Lemma 12, .S is Noe-
therian.

We put,

A=Gr, (R)=k[X,, --+, X,].
G acts naturally on 4. We denote by n the maximal ideal of .S and we put
F,=8SNm". (F,).s, defines a filtration on S. We denote by B the graded ring
associated to this filtration. Then we have;

(2) B=A4°.

Proof. If f=In(x)e A, is invariant under G, then x—p(x)Em™** and p(x)
€F,. Thus A°cB. The converse implication is trivial.
(3) 'The filtration (F,) defines on .S the same topology as n-adic topology.

Proof. If suffices to say that for any integer t=0, there exists an integer ¢/
such that SNm* C#'. But as nR is m-primary, for some s, m*CnR. Then, by
Lemma 12, m** NS c(nR) N S=n’.

By (2), (3), Theorem 1 and Theorem 3, Theorem 4 is proved.
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Added in proof; Question 2 in section 4 was solved affirmatively by Y.
Aoyama, S. Goto, J. Matijevic and R.C. Cowsik independently and in more
general forms.





