Miyanishi, M.
Osaka J. Math.
10 (1973), 617-624

SOME REMARKS ON POLYNOMIAL RINGS

Masavosur MIYANISHI

(Received December 21, 1972)

0. Introduction. Our main result of this paper is the following

Theorem. Let A be a noetherian unique factorization domain and let R be
an A-algebra of finite type such that with (n—1)-indeterminates t,, ---,t,_,,
RQ})A[tI, ooy t,_ == Alx,, -+, x,]=an n-dimensional polynomial ring over A. Then

R is a one-dimensional polynomial ring over A.
When A is a field, this is a special case of

Problem of Zariski. Let k be a field of arbitrary characteristic, let A™ and

A™ be the affine spaces over k of dimensions n and m respectively and let V be an

affine variety over k such that VX A™=A". Then V is isomorphic to the affine
k

space A™™™ of dimension n—m.

The theorem was proved independently by S. Abhyankar, P. Eakin and
W. Heinzer in [1]. However the author publishes this paper because he believes
that his view point is different from theirs and because he hopes that the method
employed in this paper would have a contribution to further investigations of
higher dimensional case.

Our method is as follows: Since Spec(R[¢,, :**, t,-,]) is isomorphic to
Spec(R)>§Spec(A[t,, -+, t,,]), the (n—1)-product G537} of the additive group
scheme G, , defined over A4 acts canonically on Spec(R[¢,, -+, t,-,]), hence on
the n-dimensional affine space A” over 4 and the ring R is recovered as the
ring of invariants with respect to the action of G5 .

The crucial results are:

1° R is a unique factorization domain with units contained in 4.

2° Let K be the quotient field of 4. Then R(?K is a polynomial ring of

dimension 1 over K.
These results 1° and 2° combined will yield a proof of the above theorem.
Moreover we shall make one remark on relationship among the problem
of Zariski, the conjecture of Serre and the Jacobian conjecture. (The last two
conjectures will be given later.)
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Throughout this paper, all rings are noetherian commutative rings with iden-
tity element and all homomorphisms of rings send the identity element to the iden-
tity element.

1. Let A bearing and let G, 4, be the n-direct product over A of the addi-
tive group scheme G, , defined over 4. Let R be an A-algebra and let
o: Gj 4% Spec(R)—>Spec(R) be an action of G5, on Spec(R). Let A: R—
R@A[t,, .-+, t,] be the coaction associated with o. Define a set of endomor-
phisms of the abelian group R, {D,|a=(a,, **, a,,), ;€ Z*={0, 1, --:}}, by

Alr) = GEN D, (r)t* forany reR

where a=(a,, -, a,) with a;>0 and t*=¢{1-.-t3». Then D,’s satisfy the
following properties:

1) D, is an A-linear endomorphism of R.

2) D,=the identity endomorphism, where 0=(0, ---, 0).

3) D,(rr )=p§]wD5(r) Dy(7") for »,7=R.

4) DuDg(r)=(cts, B,) (s Br)Dausp(r) where a=(ay, -, a,), B=(Bs
-+, B,) and (a;, B;) is the binary coefficient (a,—+,3,~)
a; .
5) For any element r&R, there exists ¢, such that D,(r)=0 whenever
az=a,.
From these relations, we can derive easily the following: Let Di=D,y,

where &;=(0, --+, 0, n, 0, -+, 0) with a positive integer n placed on the z-th place
and O elsewhere. Then 9,={D,=id., Di, ---, D}, ---} is an A-trivial iterative
infinite higher derivation in R and we have 9,9 ,=9,9; forall iandj. More-
over, we have D, ... 5,=D7---Dyr.

Conversely, suppose that we are given a set of A-trivial iterative infinite
higher derivations {9;|(7=1, 2, ---,n)} in R which satisfies the following
properties:

1) 9:9,=9,9; for all i and j.

2) Let D,=D%--Dy» for (at, ***, @¢,). 'Then for any element 7 of R, there
exists a, such that D,(r)=0 whenever a>«,.

Then the A-linear homomorphism A: R—»R(%)A[tl, -+, t,] defined by

A(r)= E} D,(r)t® for any r& R gives rise to an action of G}, , on Spec (R). For

more details, we refer to [3].
With this description of an action of G}, ,, we have

Lemma 1. Let A be a ring and let R be an A-algebra of finite type which
is a umique factorization domain. Suppose that an action of G5, , on Spec(R) is
given. Then the ring of invariants S in R with respect to the action of GG, 4 is a
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unique factorization domain too.

Proof. Let s be an element of S. It suffices to show that if s=r,r, with
ry, 7,ER, then r,, 7,&S. Let A be the coaction of G2, on R. Let A(r,)=
23D,(r,)t* i=1,2. Then A(s)=A(r,)A(r,). Put a lexicographic order in the
a0

set {a=(a,, '+, a,)|a;.€Z*, (=1, 2, -, n)} and let @, (or a,) be the maximum
of & such that D, (r)#0 (or D,,(r,)%0). Then a,+a, is the maximum of &
such that D,(s)3=0. On the other hand, D,(s)=0 for all «>0. Then
D, 1 a,(5)%0 implies @;=0 and «,=0. Hence 7, and r,& S. g-e.d.

Lemma 2. Let k be an algebraically closed field of arbitrary characteristic
and let A’; be the n-dimensional affine space over k. Assume that the (n—1)-product
G347t of the additive group scheme G, , acts on A% so that general orbits of G373 are of
dimensionn—1. Then the ring of invariants in k[x,, -+, x,] (=the affine ring of A})
by G373t is a one-dimensional polynomial ring over k.

Proof. Let R be the ring of invariants in k[x,, -*-, x,] by Ga'. Then R
is a unique factorization domain in virtue of Lemma 1. Let f be a non-zero
element of R, which is not a constant and has a minimal total degree in x,, -+, x,,.
Then, f—a is an irreducible element for any ack. If R=Ek[f], our proof is
done. Otherwise, take an element g in R—E[f] with minimal total degree.
Then, g—@ is an irreducible element in R, for any B of k. Take any k-rational
point x, of A% such that the dimension of the orbit of x, is n—1. Let a=f(x,)
and let B=g(x,). Let V(f—a) and V(g—pB) be the G3;'-stable irreducible
subvarieties in A} defined by f—« and g—g respectively. V(f—a)and V(g—28)
have non-empty intersection since they contain x,. V(f—a) and V(g— ) have
dimension z—1. Hence, V(f—a)=V(g—B)=the orbitof x,, Then f—« must
divide g—@B. This is absurd since g— 3 is irreducible. Therefore, R=FE[f].

g-e.d.

Lemma 3. Let k be a field of characteristic p>0, let k' be a purely insepar-
able extension of k with [R': K]=p and let R be a finitely generated k-algebra such
that R"=RQKk'=F'[x] is a one-dimensional polynomial ring over k’, that R is a

k

unique factorization domain and that R has a maximal ideal m with Rjm==k, i.e.,
Spec(R) has a k-rational point. Then R is a one-dimensional polynomial ring
over k.

Proof. 'The proof consists of several steps.
(I) There exists an element a of &’ such that #’=Fk(a) and ack. Then &’
has a k-trivial derivation D such that D(a)=1 and D?=0. £ is then the ring of
D-invariants in k' (we denote it by k?). Extend D onto R’ =R®k’ by

D(r@\)=rQD(\) for re R and A k’. Then D is an R-trivial derivation of R’
such that R’”>=R and D?=0.
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(II) Let C(R) and C(R’) be the divisor class groups of R and R’ respectively.
Let L be the abelian group in R’ consisting of logarithmic derivatives D(z)/z R’
for elements 2 in the quotient field of R’ and let L, be the sub-abelian group of
L consisting of logarithmic derivatives D(u)/u for units #in R’. 'Then, by virtue
of P. Samuel [5], we have an exact sequence of abelian groups,

0— L/L, - C(R) J C(R')

where j is the canonical homomorphism defined by - @R’. Since R and R’ are
unique factorization domains, C(R)=C(R’)=0. Therefore L=L,.

(III) Since R’ is a free R-module of rank p, R’ is a faithfully flat R-module.
Hence mR'NR=m. Then R/m==k<>R’'/mR’and k’>R’/mR’. Since [R'/mR’:
R/m]=p, we have R//mR’=~Fk’. Thus n=mR’ is a maximal ideal in R’ such
that R'/n=k’ and n N R=m.

(IV) Since [R’: R]=p and [R’: k[x?]]=p", we bave R2k[x?]. Let f be an
element of R—k[x?] which is minimal in the degree with respect to x. Write
f=a/+a/x+ - +a,/x" with a/k’. We may assume that x=0 (modulo 1)
for the maximal ideal 1t of R’ fixed in (III). For otherwise, x=a’ (modulo 1) for
some element a’ of . Then we have only to replace x by x—a’. Then f
(modulo m)=a,’€k. Replacing f by f—a,, we may assume that f=0
(modulo m).

Write f=«"g where g=a,’+--+a,/x" " witha,’40and r>1. Thenxtg.
Now applying D to f, we have D(f)=x"D(g)+rx"'gD(x)=0. Hence xD(g)=
—7gD(x). Therefore we have either D(x)/x€ R’ or r=0 (modulo p). In the
first case, there exists a unit  in R/, i.e., u€ k’ such that D(x)/x=D(u)[u (cf. (IT)).
Then D(x/u)=0. Hencex'=x/ucR. Therefore R’=Fk’[x]=F[x"] and R=FK[x']
because the derivation D on R’=F'[x’] acts just on the coefficient field &’ with
the variable x’ left invariant. In this case, we are done. In the second case,
D(g)=0. Hence g R. Taking account of the choice of f and of the fact that
deg(g)<deg(f), we have g k[x?]. Since r=pr/, we have f=g-x"=g-(x*)"' €
k[x?]. This is a contradiction. Therefore, only the first case takes place.
Thus we have shown that R=k[x']. q.e.d.

Now we can prove the result 2° mentioned in the introduction.

Lemma 4. Let k be a field of arbitrary characteristic and let R be a finitely
generated k-algebra such that with (n—1)-indeterminates t,, -+, t,_,, RQR[t,, -+,
k

- J=R[x,, -++, x,] (=an n-dimensional polynomial ring over k). Then R is a one-
dimensional polynomial ring over k.

- Proof. 'The proof consists of several steps. _
(I) Let & be an algebraic closure of kand let R=R®k. Then R[t,, *+, ¢, ,]=
k

E[x,, -+, x,]. Let G473 be the (n—1)-product of the additive group G, 3 over k.
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Define an action of G4 on Spec(R[t,,+, ,-,]) defining its coaction by A(¢,)=
t:Q141®7; for i=1,2, -+, n—1 and A(F)=7R1 for 7ER, where 7, -+, Tp_,
are parameters of Gi;. Thus we get an action of Gy ; on the affine n-space
A? over k by which the ring of invariants is R. By virtue of Lemma 2, we
know that RzR?EzE[t] is a one-dimensional polynomial ring over k. Once

we know that R=E[t], there exists an algebraic extension #’ of k such that
R'=RQFKk=F[t].
k

(IT) Let k, be the separable closure of £ in 2. Then there exists an extension
k" of k, and an element a of &” such that #’=~k"/(a), acck” and a?k”. On the

other hand, R”=RQ#k" is a unique factorization domain since R"[¢t,, -+, ¢,_,]=
k

k’[%,, +++, %,] (cf. Lemma 1). Moreover Spec(R’’) has a k”-rational point, since
R has a maximal ideal m=(x,, -+, x,) N R such that R/m==k. Therefore apply-
ing Lemma 3, we get R”=Fk"[t]. Proceeding by induction on [k’: k], we know
that RS=R@ks=ks[t].

(III) Taking a normal extension of & containing &, we may assume that &, is a
finite Galois extension of £ with group G. Note that for any o =G, R;=R,
since Ri[t, -+, t,-.]=Ri[t, -, t,-,]. Since any k-automorphism of k¢] is
written in the form: t—at+b with ack¥ and bek,, let o(t)=a(c)t+b(c) with
a(c)ek¥ and b(c)Ek, for c=G. Then we have a(oT)="a(7)a(s) and b(cT)=
*a(7)b(a)+°b(7) for o, T€G. Hence a( ) is a 1-cocycle of G with values in k¥.
Since H'(G, k¥)=0 (Theorem 90 of Hilbert), there exists an element ¢ of k¥ such
that a(s)=°c.c”'. Then b() satisfies (°"¢)'b(a7)=("c)"'b(c)+(("c) 'b(T)).
Hence {(°c)"'b(c)|}o=G} is a l-cocycle of G with values in k. Since
HY(G, k,)=0, there exists an element d of &, such that (°c)"'b(c)=°d—d. Then
a(t)="c(c"'t+°d—d). Let t’=c™'t—d. Then o(t’)=¢t’. Therefore t’=R. This
implies that R=Ek[t']. Consequently, we have proved that R is a one-dimensional
polynomial ring over k. q.e.d.

We are now ready to prove the theorem. But before going to the proof of the
theorem, we shall give a result which can be easily derived from Lemma 4.

Corollary 5. Let k be a field of arbitrary characteristic p and let A} be the
affine plane over k. Assume that the additive group scheme G, , acts freely on A3,
ie., (o, p2): G, X Ai—> AL X A} is a closed immersion, where o is the action of
G,ron Ai.  Then the ring of G, p-invariants in the affine ring of A} is a one-
dimensional polynomial ring over k. Moreover, the action of G, ,is given as follows:
There exists a pair of elements (x, y) in the affine ring of A} such that (1) k[x, y]=
the affine ring of A%, (2) x is left fixed by G, , and (3) 'y=2y+ ct (when the charac-
teristic p=0) or *y=y-+fy(x)t-+fi(x)t?+ - +f,(x)t*" (when the characteristic
p>0), where tEG, 4, cEk*, f|(x),:+-, fu(x)E k[x] and where f(x), -+, f,(x) have no
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common roots in an algebraic closure of k.

Proof. Let Q be the (fpgc)-quotient sheaf of A% by the action o of G, 4.
Let & be an algebraic closure of .. Then Q=Q®# is the (fpgc)-quotient sheaf
k

of A% by the action 6=c®% of G,z By virtue of [4], Example 4.24, O is
k
representable by an affine k-scheme and (s, p,): G, ;X A2—>A%X A% is an iso-
k Q

morphism. Then the (fpgc)-descent theory for affine schemes shows that Q is
representable by an affine k-scheme and that (o, p,): G, X Ai—>AIX A} is
5 )

an isomorphism. This implies that A} is a G, s-principal homogeneous space
over Q. Hence 43=G, ;X Q. Let R be the affine ring of Q and let y be a
k

parameter of G, ;. Then R[y] is a two-dimensional polynomial ring over &.
Applying Lemma 4, R is a one-dimensional polynomial ring over k&, k[x], and
the affine ring of A% is isomorphic to k[x, y]. The remaining of Corollary 5 is
now easy to prove (cf. [3], [4]). q.e.d.

2. The proofofthe theorem. First of all, note that R is a unique factori-
zation domiain (cf. lemma 2). Let K be the quotient field of 4 and let
RK=R§)K. Then we have Rgl[t, -, %,.,]=K[», -+, x,]. By virtue of

Lemma 4, Rxy=K]?] for some element ¢ of R which is algebraically independent
over K. We may assume that ¢ is not divisible by any irreducible element of 4.
Moreover, since R[t,, -+, ¢, ,]=A[x,, -+, x,], Spec(R) has an A-rational point.
Namely R has a prime ideal p such that R/p=A4. In fact, p=RN(x,, -+, x,)
Alx,, +++, x,]. 'Then t=a (modulo p) for some element a of A. Replacing ¢ by
t—a, we may assume that =0 (modulo p). With this situation, we shall prove
that R=A[t]. Assume that R22A4[t]. Note here that since Rx=XK]t], for any
element u of R, there exists an element v of 4 such that vuc A[f]. For any
element # of R, we define: degu=deg,(vu), where v is an element of 4 such
that vuc A[t]. Among elements # of R— A[¢] with minimal degree in #, take an
element u, satisfying the following property: There exists an element v of A4
such that vu,& A[¢] and that in a decomposition v=co31-*-v57(a,, *-+, e, >1) with
a unit ¢ of 4 and with mutually distinct irreducible elements v,, -+, v,, the
number 7 is minimal.

Let vu,—a,+a,t+ - +a,t’ with a,, a, -+, a,=A. Consider this relation
modulo 271 A[x,, «+-, x,]4(%,, -+, %,) A[%,, +, x,,]. Since vu, and ¢ belong to
o1 A%y, ooy X, )+ (2, o0y x,) A[%y, -+, %,], We have a,€AN (71 A[x,, -+, x,]+
(%, ++ x,) A[ 2, -+, x,])=v1 4. Thus a,=v71a,’ with a,/E€A. Let w'=—a/+
cvg2e--vyru,. 'Then we have vw/'=t(a,+a,t+---+a,t*""). Since ¢ and v, have
no common divisors in R other than units, £ must divide /. Let #/=u""t with
uw”’€R. 'Then we have v =a,+a,t+----+a,t'*. From the choice of u,, v’
A[t]. Hence we have (cv52---v77)u,c A[t]. Again from the choice of v, u,€
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A[t]. Thisisa contradiction. Therefore we have shown that R=A4[t]. q.e.d.

3. In this section, we shall show

Proposition. Let k be a field of characteristic zero, let V be an affine variety
over k such that VX A™=A" and let R=R[x,, -+, x,]] be an n-dimensional poly-
nomial ring over k which is the affine algebra of A*. Then V is k-isomorphic to
A""™ if one assumes the following two conjectures:

Conjecture of Serre: Let P be a finitely generated projective module over R
with rank n—m. Then P is R-free.

Jacobian conjecture: Let (f,, +++, f,) be a set of elements of R such that the
Jacobian J(f, +++, ful%1s -+, %,) is @ non-zero constant. Then R=K[f,, -+, f,].

Proof. Denote by R a free R-module of rank a. With the affine algebra
B of V, we have an exact sequence of R-modules,

0— Q3QR—> R™ — R™ — 0
B

which follows from the well known exact sequence of modules of Kihler 1-
differentials applied to the projection g: V' X A™—V,
k

0= ¢*Qy) — Q47— Qi — 0.
Then (23, QR)PR™=R™. Since Qz,QR is a finitely generated projective
B B
R-module of rank #n—m, the assumed conjecture of Serre implies that Q3,QR
B

is a free R-module. On the other hand, since R is an m-dimensional polynomial

ring BJt,, +++, t,,] over B, we can conclude easily that Q3 is a free B-module of

rank n—m. {In fact,lete, -+, e,_,, be a R-free basis of Q%,,QR and write e;=
B

>3 aiif; with a;;€B[t,, -+, t,,] and f,EQp.  Let aij be the constant term of
a;j. Then /=23, ai;f; (=1, -++, n—m) form a B-free basis of O3}.

Let db,, -+, db,_,, be a B-free basis of Q},,. Then db,, -+, db,_,., dt,, -,
dt,, form a R-free basis of R™=Q.~,. Hence b, ---,b,_,, and ¢,, ---, t,, are
polynomials in x,, :--, x, with coefficients in % such that the Jacobian j(b,, ---,
Byy_ms L1y **y L[y +++, %,) 18 a2 NON-Zero constant. Apply here the assumed Jaco-
bian conjecture which asserts k[b,, :-*, b, _pm, £, ***, Em]=R[%,, +*, %,]. On the
other hand, B[t -, t,,]=R[x,, -, x,]. Thence we conclude easily that
B=k[b,, ---, b,_,,]- This shows that V== 4""", q-e.d.
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