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0. Introduction. Our main result of this paper is the following

Theorem. Let Abe a noetherian unique factorization domain and let R be
an A-algebra of finite type such that with (n—l)-indeterminates tly •••, tn_ly

R®A[tly •••, tn_^\^A\xly "->xn]^an n-dimensionalpolynomial ring over A. Then

R is a one-dimensional polynomial ring over A.

When A is a field, this is a special case of

Problem of Zariski. Let k be a field of arbitrary characteristic, let An and
Am be the affine spaces over k of dimensions n and m respectively and let V be an
affine variety over k such that VxAm=An. Then V is isomorphic to the affine

space An~m of dimension n — m.

The theorem was proved independently by S. Abhyankar, P. Eakin and

W. Heinzer in [1]. However the author publishes this paper because he believes

that his view point is different from theirs and because he hopes that the method

employed in this paper would have a contribution to further investigations of

higher dimensional case.

Our method is as follows: Since Spec(i?[ij, •••, ίrt_J) is isomorphic to

SpQc(R)χSpec(A[tly •••, ίΛ_J), the (n— l)-ρroduct G"72 of the additive group

scheme GaA defined over A acts canonically on Spec(i?[ij, •••, ίn_J), hence on

the n-dimensional affine space An over A and the ring R is recovered as the

ring of invariants with respect to the action of GS~2

The crucial results are:

1° R is a unique factorization domain with units contained in A.

2° Let K be the quotient field of A. Then R®K is a polynomial ring of

dimension 1 over K.

These results 1° and 2° combined will yield a proof of the above theorem.
Moreover we shall make one remark on relationship among the problem

of Zariski, the conjecture of Serre and the Jacobian conjecture. (The last two
conjectures will be given later.)
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Throughout this paper, all rings are noetherian commutative rings with iden-
tity element and all homomorphisms of rings send the identity element to the iden-
tity element.

1. Let A be a ring and let GZΛ be the w-direct product over A of the addi-
tive group scheme Ga A defined over A. Let R be an ^4-algebra and let
o". GZΛχSpec(R)->Spec(R) be an action of G«,A on Spec(R). Let Δ: Λ->
R®A[tlf •••, tn] be the coaction associated with σ. Define a set of endomor-

phisms of the abelian group R, {D06\a=(a1, •••, αn), α, G Z + = { 0 , 1, •••}}, by

Δ(r) = Σ Z ) » ί Λ for any rGfi

where a=(a1} •••, an) with αz > 0 and t*=tΐ1 --t%tt. Then ZVs satisfy the
following properties:

1) Z>Λ is an ^4-linear endomorphism of R.
2) Z)0=the identity endomorphism, where 0=(0, •••, 0).
3) D Λ (r/)= Σ % ) ΰ γ ( O for r , / G f i .

4) Z)ΛDβ(r)=(α1> A)-(a«, βn)Da+β{r) where « = ( « „ - , αΛ), /3 = (A,
•••, /?rt) and (αt , /3t ) is the binary coefficient (

5) For any element rGΛ, there exists <χ0 such that Z>rt(r)=0 whenever

From these relations, we can derive easily the following: Let Z)J=Z)εj»,

where £<=(0, •••, 0, n, 0, •••, 0) with a positive integer n placed on the i-th. place
and 0 elsewhere. Then <Di={D0=id., D], •••, Όn

u •••} is an A -trivial iterative
infinite higher derivation in R and we have 3)iS).—3) .3)ι for all i and/. More-
over, we have DCait..., Λn)=D«^"D«n».

Conversely, suppose that we are given a set of ^4-trivial iterative infinite
higher derivations {^)t | ( / = l , 2, •••, n)} in i? which satisfies the following
properties:

1) WtΦ^W^i for all i and/.
2) Let Da=Dιi-~D*n for («„ •••, αΛ). Then for any element r of i?, there

exists a0 such that DJr)=Q whenever a>a0.
Then the ^4-linear homomorphism Δ: R-+R(g)A[t19 •••, £„] defined by

Δ(r)= 2 DJ/)t* for any rGi? gives rise to an action of G™,A on Spec (R). For
Λ>0

more details, we refer to [3].
With this description of an action of G%,Λ, we have

Lemma 1. Let A be a ring and let R be an A-algebra of finite type which
is a unique factorization domain. Suppose that an action of G",A on Spec(R) is
given. Then the ring of invariants S in R with respect to the action of G".A *S a
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unique factorization domain too.

Proof. Let s be an element of S. It suffices to show that if s=r1r2 with
r19 r 2 eΛ, then rly r 2 e S . Let Δ be the coaction of Gn

a,A on JR. Let Δ(r, ) =
2 D»{ri)t*> i = l , 2. Then Δ(ί)=Δ(r1)Δ(r2). Put a lexicographic order in the

set {#=(«„ •• , α Λ ) | « ί G Z + , ( ι = l , 2, •••,?*)} and letα^ (or a2) be the maximum
of a such that 2)^(^)4=0 (or Da2(r2) Φθ). Then α x + α 2 is the maximum of α
such that Z)Λ(ί)φ0. On the other hand, £>„(*)=0 for all α > 0 . Then
DMl+a2(s)Φθ implies at=0 and a2=0. Hence rλ and r 2 e S . q.e.d.

L e m m a 2. Lei & be an algebraically closed field of arbitrary characteristic

and let A" be the n-dimensional affine space over k. Assume that the (n— l)-product

GaTk1 of the additive group scheme Gak acts on An

k so that general orbits ofG^Tk are of

dimensionn—1. Then thering of invariants in k[x19 •••, xn] (=the affine ring of AS)

by G^Γ*1 is a one-dimensional polynomial ring over k.

Proof. Let R be the ring of invariants in k[x19 •••,#„] by G%Tk- Then R
is a unique factorization domain in virtue of Lemma 1. Let / be a non-zero
element of R, which is not a constant and has a minimal total degree in xly •••, xn.
Then,/— a is an irreducible element for any a^k. If R=k[f], our proof is
done. Otherwise, take an element g in R—k[f] with minimal total degree.
Then, g—β is an irreducible element in R, for any β of k. Take any ^-rational
point x0 of Aΐ such that the dimension of the orbit of x0 is n— 1. Let a=f(x0)
and let β=g(x0). Let V(f—a) and V{g—β) be the G^-stable irreducible
subvarieties in Aί defined by/— a andg—β respectively. V(f—a) and V(g—β)
have non-empty intersection since they contain x0. V(f—a) and V(g—β) have
dimension n— 1. Hence, V(f— cί)=V{g—β)=the orbit of xQ. Then/— a must
divide £—/3. This is absurd since g—β is irreducible. Therefore, R=k[f].

q.e.d.

Lemma 3. Let k be a field of characteristic p>0> let kf be a purely insepar-
able extension of k with \k'\ k]=p and let R be a finitely generated k-algebra such
that R'=R®k'=k'[x] is a one-dimensional polynomial ring over k', that R is a

unique factorization domain and that R has a maximal ideal m with R/m^k, i.e.,
Spec(i?) has a k-rational point. Then R is a one-dimensional polynomial ring
over k.

Proof. The proof consists of several steps.
(I) There exists an element a of k' such that k'—k(a) and a<ζk. Then k'
has a ^-trivial derivation D such that D(α)=l and Dp=0. k is then the ring of
D-invariants in k' (we denote it by k'D). Extend D onto i?'=JR(g)&' by

k

D(r®\)=r®D(\) for r(=R and λ<Ξ&'. Then D is an i?-trivial derivation of R'
such that R/D=R and Dp=0.
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(II) Let C(R) and C{R') be the divisor class groups of R and R' respectively.
Let L be the abelian group in R' consisting of logarithmic derivatives D(z)/z^R/

for elements z in the quotient field of R' and let Lo be the sub-abelian group of
L consisting of logarithmic derivatives Ό(u)\u for units u in R'. Then, by virtue
of P. Samuel [5], we have an exact sequence of abelian groups,

0 -> L/Lo -* C(R) - i C(R')

where / is the canonical homomorphism defined by ®R\ Since R and R' are
unique factorization domains, C(R)=C(R')=0. Therefore L=L0.
(III) Since R' is a free i?-module of rank p, R/ is a faithfully flat 2?-module.
Hence mR' Π R=m. Then R/m^k^R'/mR' and k'c-tR'/mR'. Since [R'/mR':
R/m]=p, we have R'/mR'^k\ Thus xx=mR/ is a maximal ideal in i?' such
that R'/n^k' and n Π R=m.
(IV) Since [#' : R]=p and [#' : *[**]] =/>2, we have R^k[xp]. Let / be an
element of R—k[xp] which is minimal in the degree with respect to x. Write
f=ao' + aiX-\ \-an'x

n with a/^k'. We may assume that x=0 (modulo tt)
for the maximal ideal n of R' fixed in (III). For otherwise, x=a' (modulo π) for
some element af of k'. Then we have only to replace x by x— a'. T h e n /
(modulo tn)=ao'^k. Replacing / by f—a0' we may assume that / = 0
(modulo m).

Write f=xrg where£=α/H \-an

/xtt~r with α/φO and r > 1. Then xX g.
Now applying D to/, we have D(f)=xrD(g)+rxr~1gD(x)=0. Hence xD(g)=
—rgD(x). Therefore we have either D(x)/x^R/ or r = 0 (modulo p). In the
first case, there exists a unit u in R', i.e., M G ^ such that D{x)jx=D{u)ju (cf. (II)).
Then D(x/u)=0. Hencex'=x/u(ER. ThereforeR'=k'{x\ = k'[x'\zndR=k[x']
because the derivation D on R'=k'[x'] acts just on the coefficient field k' with
the variable xf left invariant. In this case, we are done. In the second case,
D(g)=0. Hence g&R. Taking account of the choice of/ and of the fact that
deg(#)<deg(/), we have g^ k[xp]. Since r=pr\ wehavef=g xr=g*(xp)r'^
k[xp]. This is a contradiction. Therefore, only the first case takes place.
Thus we have shown that R=k[x']. q.e.d.

Now we can prove the result 2° mentioned in the introduction.

L e m m a 4. Let k be afield of arbitrary characteristic and let Rbe a finitely
generated k-algebra such that with (n-l)-indeterminates tly •••, tM-19 R®k[tly •••,

tM^=k[xly •••, xn] (—an n-dimensionalpolynomial ring over k). Then R is a one-
dimensional polynomial ring over k.

Proof. The proof consists of several steps.
(I) Let k be an algebraic closure of k and let R=R®k. Then R[tly •••, £Λ_i]=

k[xly •••, xn]. Let Gi~i be the (n— l)-product of the additive group Ga & over k.
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Define an action of G"~l on Spec^l/^ , ίn_J) defining its coaction by Δ(ί, ) =
ti®l + l®τi for ί = l , 2 , •••, n— 1 and Δ(F)=f®l for r<=R, where T,, •• ,T M _ 1

are parameters of Gl~%. Thus we get an action of G"."*1 on the affine /z-space
A-k over k by which the ring of invariants is R. By virtue of Lemma 2, we
know that R=R®k=k[t\ is a one-dimensional polynomial ring over k. Once

k

we know that R=k\t\y there exists an algebraic extension k' of /: such that
R'=R®k'=k'[t].

k

(II) Let ks be the separable closure of k in A7. Then there exists an extension
k" of ks and an element a of A' such that k'=k"(a)y a^k" and ap^k". On the
other hand, R"=R®k" is a unique factorization domain since R"[tiy •••, ί M -J=

Λ"[#i> "•> xn] (cf Lemma 1). Moreover Spec(i?") has a ^''-rational point, since
R has a maximal ideal m=(xly •••, xn) ΓiR such that R/m^k. Therefore apply-
ing Lemma 3, we get R"=k"[t\. Proceeding by induction on [kf: ks]9 we know
that Rs=R®ks=ks[t].

(III) Taking a normal extension of k containing ksy we may assume that ks is a
finite Galois extension of k with group G. Note that for any σ e G , Rσ

s=Rs

since Ri[t19 "t

ytn^1]=Rs[t19'",tM^1]. Since any A-automorphism of ks[ΐ] is
written in the form: t->at-{-b with aG^* and b^ksy let σ-(£)=tf(σ)£+£(σ) with
a(σ)E^* and b(σ)^ks for σGG, Then we have α(στ)=σΛ(τ)β(σ) and b(στ)=
σa(τ)b(σ)-{-σb(τ) for σ, τ^G. Hence a( ) is a 1-cocycle of G with values in kf.
Since Hι(Gy k*)=ΰ (Theorem 90 of Hubert), there exists an element c oίkf such
that a(σ)=σc-c-\ Then b( ) satisfies (σrc)-1b(στ)=(σc)-1b(σ)+σ((τc)'1b(τ)).
Hence {((Γc)~1b(σ)\}σ^:G} is a 1-cocycle of G with values in ks. Since
H\G, ks)=0, there exists an element d of &, such that (<τc)~1b(σ)=<τd—d. Then

σ ( ί ) = M c " l ί + σ r f — r f ) L e t t'=c-H-d. Then σ(ί /)=ί / Therefore ^Gi?. This
implies that i?=Λ[ί/]. Consequently, we have proved that R is a one-dimensional
polynomial ring over k. q.e.d.

We are now ready to prove the theorem. But before going to the proof of the
theorem, we shall give a result which can be easily derived from Lemma 4.

Corollary 5. Let k be afield of arbitrary characteristic p and let A2

k be the
affine plane over k. Assume that the additive group scheme Gak acts freely on A2

k,
i.e., (cτyp2): GakX A2

k-^A2

kX A2

k is a closed immersion, where σ is the action of
Ga k on A2. Then the ring of Ga k-invariants in the affine ring of A2 is a one-
dimensional polynomial ring over k. Moreover, the action of Ga k is given as follows:
There exists a pair of elements (x, y) in the affine ring of A2

ksuch that (1) k[xyy]=
the affine ring of A2

y (2) x is left fixed by Gak and (3) ty=y-\-ct (when the charac-
teristic p=0) or ty=y+f0(x)t+f1(x)tp-\ yfn{

χ)tpn (when the characteristic
p>0)y where t^GOtky <:<=&*, fo(x)y ~yfn(x)<=k[x] and where fo(x)y ••-,/„(*) have no
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common roots in an algebraic closure of k.

Proof. Let Q be the (fpqc)-quoύent sheaf of A\ by the action σ of Gak.
Let k be an algebraic closure of k. Then Q=Q®k is the (fpqc)-quoύent sheaf

of Ark by the action σ=σ®k of Ga ^ By virtue of [4], Example 4.24, Q is

representable by an affine ^-scheme and (σ, p2): Ga-k X A\->A\ X A\ is an iso-

morphism. Then the (j(p#c)-descent theory for affine schemes shows that Q is
representable by an affine A-scheme and that (σ, p2): Ga kX A2

k-*Ά2

kX A\ is

an isomorphism. This implies that Al is a G^-principal homogeneous space
over Q. Hence A2=GakxQ. Let R be the affine ring of Q and let y be a

parameter of Ga k. Then R[y] is a two-dimensional polynomial ring over k.
Applying Lemma 4, R is a one-dimensional polynomial ring over &, A[#], and
the affine ring of A\ is isomorphic to k[x, y\. The remaining of Corollary 5 is
now easy to prove (cf. [3], [4]). q.e.d.

2. The proof of the theorem. First of all, note that R is a unique factori-
zation domiain (cf. lemma 2). Let K be the quotient field of A and let
RK=R®K. Then we have Rκ[tλ, ••-, tn^]=K[xly •••, Λ?J. By virtue of

Lemma 4, i?^=i^[ί] for some element t oϊ R which is algebraically independent
over K. We may assume that / is not divisible by any irreducible element of A.
Moreover, since R[tly •••, tn_1]=A[x1, •••, xn], Spec(R) has an ^4-rational point.
Namely R has a prime ideal p such that R/p^A. In fact, p=Rf)(xlf ••-,#„)
A[xly •••, ΛJJ. Then £ = α (modulo p) for some element a of A. Replacing t by
ΐ—a, we may assume that £ Ξ O (modulo p). With this situation, we shall prove
that R=A[t]. Assume that R^A[t\. Note here that since Rκ=K[t], for any
element u of R, there exists an element v of A such that vu€ΞA[t]. For any
element w of i?, we define: deg,z/—dtgt(vu), where v is an element of A such
that vu^A[t], Among elements u of R — A[t] with minimal degree in t, take an
element u0 satisfying the following property: There exists an element v of A
such that vuQ^A\t\ and that in a decomposition v=cvΊ}"*vtr{aly •••, α r > 1) with
a unit c oί A and with mutually distinct irreducible elements^, * ,^ r, the
number r is minimal.

Let vuo=ao+a1t-\ \-att
ι with α0, a1 •••, a^A. Consider this relation

modulo ^ ^ [ Λ ? ! , •••, Λ J J + ^ J •• ,Λ?JI)^4[Λ1, •••, Λ J . Since Ϊ;W0 and t belong to
O%A[X19 —, ΛfJ+ίΛ?!, —, ^)^4[^, —, Xnl we have α 0 G i n ( ^ h , —> * J +
(Λ?!, •• ,^M)^[Λ: 1, •••,xrt])=^?iyl. Thus an=v^a0

/ with aJ^A. Let w 7=— tfo'+
^2 2 ^rr^0 Then we have ^ V = ί ( α 1 + α 2 ί + +β /ί

/~ 1). Since ί and ^ have
no common divisors in R other than units, t must divide u'. Let u'=u"t with
u"^R. Then we have ?;t1M//=α1+β2ίH f-α/ί7"1. From the choice of z/0, ^ " e
A\t\, Hence we have {cvtf"-v*r

r)u^A\t\ Again from the choice of vy z/0G
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A[i]. This is a contradiction. Therefore we have shown that R=A[f\. q.e.d.

3. In this section, we shall show

Proposition. Let k be a field of characteristic zero, let V be an affine variety

over k such that Vx Am=An and let R=k[xly •••, xn] be an n-dimensional poly-

nomial ring over k which is the affine algebra of An. Then V is k-ίsomorphic to

An~m if one assumes the following two conjectures:

Conjecture of Serre: Let P be a finitely generated protective module over R

with rank n—m. Then P is R-free.

Jacobian conjecture: Let (fly •••,/«) be a set of elements of R such that the

Jacobian J(fly '~,fjχi> '"> xn) w a non-zero constant. Then R=k[fly ••-,/„].

Proof. Denote by RQa:> a free i?-module of rank a. With the affine algebra

B of Vy we have an exact sequence of i?-modules,

0 -* nl/^R -> R™ -> R™ -> 0

which follows from the well known exact sequence of modules of Kahler 1-

differentials applied to the projection q: VxAm->V,

0 - * q*£l]r,k -» Ωi-/* - * Ω i v -^ 0 .

Then {nl/k®R)®Rim^RQn\ Since £ll/k®R is a finitely generated projective

i?-module of rank n — m, the assumed conjecture of Serre implies that Ωi/Λ®/?
B

is a free i?-module. On the other hand, since R is an tfz-dimensional polynomial

ring B[tly •••, tm] over B, we can conclude easily that fίβ/k is a free 2?-module of

rank n—m. {In fact, let e19 •••, en_m be a i?-free basis of Ω^/k®R and write e{=
B

j aij^B[tly •••, tm] a n d / G Ω ^ / i . L e t α, y b e t h e constant t e r m of

aij. T h e n £ / = Σ y aaί$ (^—1> " ,n—tri) form a fi-free basis of Ωi/*}.

L e t έ/ήj, •••, J6 M _ W be a β-free basis of Ω\/k. T h e n rf^, •••, dbn_my dtly •••,

ώ , , form a i?-free basis of R«t:>=a)i«/k. H e n c e b19 ~,bn-m and tly -~ytm are

polynomials in xly •••, xM wi th coefficients in & such t h a t t h e Jacobian J(bly •••,

^M-m> î) ••*> W^i> •••> ^M) is a non-zero constant . Apply here t h e assumed Jaco-

bian conjecture which asserts k[bly - %

ybn_my tly •••, tm]=k[xly •• ,Λ?rt]. O n t h e

other h a n d , B[tly ••-, tm]=k[xly -•-, xn]. T h e n c e we conclude easily that

B=k[bly ..., bn_m]. This shows that V^An'm. q.e.d.

OSAKA UNIVERSITY



624 M. MIYANISHI

References

[1] S. Abhyankar, P. Eakin and W. Heinzer: On the uniqueness of the coefficient ring in
a ring of polynomials, J. Algebra 23 (1972), 310-342.

[2] P. Eakin and K.K. Kubota: A note on the uniqueness of rings of coefficients in polynomial
rings, Proc. Amer. Math. Soc. 32 (1972), 333-341.

[3] M. Miyanishi: Ga-action of the affine plane, Nagoya Math. J. 41 (1971), 97-100.
[4] M. Miyanishi: Introduction a la Theorie des Sites et son Application a la Construc-

tion des Preschemas Quotients, Publications du Seminaire de Mathematiques Super-
ieures, 47, Universite de Montreal, 1971.

[5] P. Samuel: On Unique Factorization Domain, Lectures on Math, and Physics 28,
Tata Inst. of Fundamental Research, Bombay, 1967.




