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Let A be an arbitrary commutaive ring with the identity element. This
note will give an elementary property on the orthogonal group of a non-degenerate
quadartic ^4-module of rank two. Throughout this paper, we will assume that
(V, q) is a non-degenerate quadratic ^4-module such that V is a finitely generated
projective ^4-module and [Vm: Am]=2 for all maximal ideal m of A. The Clifford
algebra C(Vy q) is a quadratic extension of C0(Vy q)y the set of homogeneous ele-
ments of degree 0 in C(V, q)y and C0(Vy q) is a commutative and separable qu-
adratic extension of A (cf. [3], [4]). Set B=C0(Vy q). B is a Galois extension of
A with a Galois group G= {/, T} , and T is the unique ^4-algrbra automorphism
of B such that the fixed subring of B is A ([4], [5]). By [3], V is an invertible
5-bilmodule, and (V, φ)y φ: Vx V-^B\ φ(xyy)=xy in C(Vy q) for xy y<= Vy is
a non-degenerate hermitian JB-module ((2.4) in [3]). We denote by 1(̂ 4) the
set of idempotents in Ay which is an abelian group with respect to the product
* ; e*e'=e+e'-2ee' for ey e'<Ξl(A). Then, by [1], the group Aut (B/A) of all
A -algebra automorphisms of B is {eτ-\-( l—e)I; e^I(A)}y and is isomorphic to
I(A) by the isomorphism μ: 1(^4)^Aut (B/A); e W^> μ =eτ+(\ — e)I. Let
O(Vy q) be the orthogonal group of (F, q)y i.e. O(Vy q)= {p(=KomA(Vy F); q(pv))
=q(v) and p ( F ) = F } . For any p€Ξθ(Vy q)y p is extended to an ̂ 4-algebra auto-
morphism p of C(Vy q) which induces an automorphism of B. Accordingly, there
exists a group homorphism η: O(Vyq)->l(A); p AΛΛ-> μ~\p\B). We put O+(Vyq)
= {ptΞθ(Vyq);p\B=I} and O"(F, q)= {p^O(Vy q);

REMARK 1. Let V be a free ^4-module with the basis {uy v}, V=Au@Av.

For ρ G θ ( F , q)y let ρ=(a Λ denote the matrix of p with respect to the basis

{uy v}. Then (det p) 2 =l. If p is in O+(F, q) then det p = l . If ρ\B=τ then
det ρ= — 1.

Proof. Since C(F, q)=A®Auv®Au®Av and B=A®Auvy we have ρ(uv)
= (au-{-bv)(cu-\-dv)=Bg(cuy bv)-\-acq(u) + bdq(v)-\- (det ρ)uv. Since (uv)2=Bg

(uy v)uv—q(u)q(v)y we have B=C+(Vy q)=(Ay Bg(uy v)y — 1) and τ(wz;)=Bί(w, z;)
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—uv (cf. Proposition 3 in [2]). If ρ\B=I then det ρ=\ and Bg(cu, bv)-\-acq{u)
+bdq(v)=0. If p\B=r then det p= — 1 and (cb— ί)Bq(uy v)+acq(u)+bdq(v)
= 0 .

Let N: XJ(B)->U(A) be a group homomorphism of the unit group of B to
the unit group of A defined by N(b)=bτ(b).

Proposition 1. O+(V9 q) is an abelian group, and is isomorphic to Ker N.

Proof. Since C(F, q)=BφV and V is an invertible i?-bimodule, if p is in
O+(F, q), then ρ\B=I, and ρ\V=ρ induces an isometry of the hermitian B-
module (F, φ) onto itself, hence there exists an element b in V(B) such that p(v)
=bv for all v^ V. Accordingly, φ(x, y)=φ(p(x), p(y))=Φ(bx, by)—bτ(b)φ(x,y)
=N(b)φ(x,y), and we have N(b)=l, since B is generated by φ(V, V). The
correspondence p >Wv-» b is a group monomorphism of O+(V. q) to KerΛ/". Con-
versely, for any b in Ker N, it is easily obtained that b induces an isometry of
(F, q) onto itself. Therefore, O+(V> q)^Ker N.

Corollary 1. O(V9 q)= U pe°O
+(V9 q) and the following sequence is exact;

pe\B=jueeίAut(BIA)

(1) • KeriV O(V,q)-^-+I(A).

Proposition 2. Let p0 be an element in O~(V, q) such that ρo\B=τ. Then,
there extst a in A such that ρo

2=a I and a2=l. For every p G θ ' ( Γ , q) such that
ρ\B=ry we have p2=ρo

2=al.

Proof. Let ρ0 be an element in 0~{Vy q) such that ρ0 \ JS=τ, p0

2 is in O+(V, q)y

hence there is a in Ker N such that ρo

2(v)=av for all v^ V. Since ccpo(v)=ρo

3(v)
= Po(ctv)=τ(a)ρo(v) for all Ϊ G V and V is faithful over B9 we have that τ(a)=a
is in BT=A and ct2=N(a)=l. For any p e θ " ( 7 , q) such that ρ\B=τ9 pop^1

is in O+(V> q)y and so there exists b in Ker N such that p(v)—bpo(v) for all Ϊ>G V.
Accordingly, we have p2=bρ0bp0=bτ(b)p0

2=p0\

Corollary 2. If A has no idempotents other than 0 and 1, and if O(V,
O+(Vy q), then there exists a in U(A)f)Ker N suvh that ρ2=al for every p in
O~(V, q). Furthermore, if 2 is invertible in A, then a=l.

Proof. We assume that A has no idempotents other than 0 and 1, ~^~ is in

A, and O"(F, q)Φ φ. Since Aut (B/A)= G= {/, T} , there exists a in A such that

α 2 = l and p2=al for every peO~(F, 9). ~ "̂α becomes an idepotent in A.

Therefore, ——— is 1 or 0, that is, a is 1 or — 1. We will show α = l . Assume

α = — 1. For any maximal ideal m of A, we consider the localization (F m , qm)
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—Amu@Amv, and the induced isometry p on (Vm, qm) for pG O~(V, q). Let p=

\ a ή) denote t ' i e m a t r i χ of p with respect to the basis w, v. For the fact that

det ρ=ad—bc=—ί and (Λ J =\r\ _ _ Λ \ we obtain that a(a+d)= — 2 and

b=c=O, and so ρ(u)=au and α 2 = — 1. Accordingly, #m(w)=(7m(p(w))=<7m(#w)—
α 2 ?m( z / ) = —?m(M) Since we can chose « such that ^m(w)φfl, this is a contradiction.
Consequently, cu=l .

Proposition 3. Let A be a commutative ring such that A has no idempotents
other than 0 and 1,2 is invertible in A, If O(V, })φO+(F, q\ then for every
p^O~(V,q), there exists an invertible A-submodule U of V such that p\U=
-IyP\UJ-=I and V=U®(U)\

Proof. If p is in O"(F, q)> by Corollary 2, p 2 = I , hence we have that ^

and —t-P- are idempotents and / = ~~^+ . Since ρ\B=τy we have p=t=/,

hence ~"^ is neither 0 nor /. This mention is held for the localization with
2

respect to every maximal ideal of A. Therefore, U=^:i^ (V) and C / / = ^ i £

(V) are finitely generated projective A -modules of rank one, and we can check
that U and V are mutually orthogonal, V=U(BU' and U/=U-L. Since

a n d poϊ±P=l±£, we have p\U=-I, p\Ui=p\UΛ-=I
Δ

p

and V=U®UM.

REMARK 2. Let A be as Proposition 3. If we call such an isometry in
Proposition 3 a symmetry of (V, q), then O(V, q) is an abelian group having no
symmetries, or every element of O(V, q) is a product of one or two symmetries.
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