A NOTE ON THE ORTHOGONAL GROUP OF A QUADRATIC MODULE OF RANK TWO OVER A COMMUTATIVE RING

TERUO KANZAKI

(Received April 24, 1973)

Let A be an arbitrary commutative ring with the identity element. This note will give an elementary property on the orthogonal group of a non-degenerate quadartic A-module of rank two. Throughout this paper, we will assume that (V, q) is a non-degenerate quadratic A-module such that V is a finitely generated projective A-module and $[V_m: A_m] = 2$ for all maximal ideal m of A. The Cilfford algebra C(V, q) is a quadratic extension of $C_0(V, q)$, the set of homogeneous elements of degree 0 in C(V, q), and $C_0(V, q)$ is a commutative and separable quadratic extension of A (cf. [3], [4]). Set $B = C_0(V, q)$. B is a Galois extension of A with a Galois group $G = \{I, \tau\}$, and τ is the unique A-algebra automorphism of B such that the fixed subring of B is A([4], [5]). By [3], V is an invertible B-bilmodule, and (V, ϕ) , $\phi: V \times V \rightarrow B$; $\phi(x, y) = xy$ in C(V, q) for $x, y \in V$, is a non-degenerate hermitian B-module ((2.4) in [3]). We denote by I(A) the set of idempotents in A, which is an abelian group with respect to the product *; e * e' = e + e' - 2ee' for $e, e' \in I(A)$. Then, by [1], the group Aut (B/A) of all A-algebra automorphisms of B is $\{e\tau + (1-e)I; e \in I(A)\}$, and is isomorphic to I(A) by the isomorphism μ : I(A) \rightarrow Aut (B/A); $e \iff \mu = e\tau + (1-e)I$. Let O(V, q) be the orthogonal group of (V, q), i.e. $O(V, q) = \{\rho \in \text{Hom}_A(V, V); q(\rho v)\}$ =q(v) and $\rho(V)=V$. For any $\rho \in O(V,q)$, ρ is extended to an A-algebra automorphism $\tilde{\rho}$ of C(V, q) which induces an automorphism of B. Accordingly, there exists a group homorphism $\eta: O(V,q) \rightarrow I(A); \rho \iff \mu^{-1}(\rho \mid B)$. We put $O^+(V,q)$ $= \{ \rho \in O(V, q); \rho \mid B = I \}$ and $O^{-}(V, q) = \{ \rho \in O(V, q); \rho \mid B \neq I \}.$

REMARK 1. Let V be a free A-module with the basis $\{u, v\}$, $V = Au \oplus Av$. For $\rho \in O(V, q)$, let $\rho = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ denote the matrix of ρ with respect to the basis $\{u, v\}$. Then $(\det \rho)^2 = 1$. If ρ is in $O^+(V, q)$ then det $\rho = 1$. If $\tilde{\rho} | B = \tau$ then det $\rho = -1$.

Proof. Since $C(V, q) = A \oplus Auv \oplus Au \oplus Av$ and $B = A \oplus Auv$, we have $\tilde{\rho}(uv) = (au+bv)(cu+dv) = B_q(cu, bv) + acq(u) + bdq(v) + (det <math>\rho)uv$. Since $(uv)^2 = B_q(u, v)uv - q(u)q(v)$, we have $B = C^+(V, q) = (A, B_q(u, v), -1)$ and $\tau(uv) = B_q(u, v)$

T. KANZAKI

-uv (cf. Proposition 3 in [2]). If $\tilde{\rho} | B = I$ then det $\rho = 1$ and $B_q(cu, bv) + acq(u) + bdq(v) = 0$. If $\tilde{\rho} | B = \tau$ then det $\rho = -1$ and $(cb-1)B_q(u, v) + acq(u) + bdq(v) = 0$.

Let N: $U(B) \rightarrow U(A)$ be a group homomorphism of the unit group of B to the unit group of A defined by $N(b)=b\tau(b)$.

Proposition 1. $O^+(V, q)$ is an abelian group, and is isomorphic to Ker N.

Proof. Since $C(V, q) = B \oplus V$ and V is an invertible B-bimodule, if ρ is in $O^+(V, q)$, then $\tilde{\rho} | B = I$, and $\tilde{\rho} | V = \rho$ induces an isometry of the hermitian B-module (V, ϕ) onto itself, hence there exists an element b in U(B) such that $\rho(v) = bv$ for all $v \in V$. Accordingly, $\phi(x, y) = \phi(\rho(x), \rho(y)) = \phi(bx, by) = b\tau(b)\phi(x, y) = N(b)\phi(x, y)$, and we have N(b) = 1, since B is generated by $\phi(V, V)$. The correspondence $\rho \rightsquigarrow \to b$ is a group monomorphism of $O^+(V, q)$ to Ker N. Conversely, for any b in Ker N, it is easily obtained that b induces an isometry of (V, q) onto itself. Therefore, $O^+(V, q) \approx \text{Ker } N$.

Corollary 1.
$$O(V, q) = \bigcup_{\widetilde{\rho}_e \mid B = \mu_e \in \operatorname{Aut}(B|A)} \rho_e \circ O^+(V, q)$$
 and the following sequence is exact;
(1) $\longrightarrow \operatorname{Ker} N \longrightarrow O(V, q) \xrightarrow{\eta} I(A).$

Proposition 2. Let ρ_0 be an element in $O^-(V, q)$ such that $\tilde{\rho}_0 | B = \tau$. Then, there extst α in A such that $\rho_0^2 = \alpha I$ and $\alpha^2 = 1$. For every $\rho \in O^-(V, q)$ such that $\tilde{\rho} | B = \tau$, we have $\rho^2 = \rho_0^2 = \alpha I$.

Proof. Let ρ_0 be an element in $O^-(V, q)$ such that $\tilde{\rho}_0 | B = \tau$, ρ_0^2 is in $O^+(V, q)$, hence there is α in Ker N such that $\rho_0^2(v) = \alpha v$ for all $v \in V$. Since $\alpha \rho_0(v) = \rho_0^3(v)$ $= \rho_0(\alpha v) = \tau(\alpha)\rho_0(v)$ for all $v \in V$ and V is faithful over B, we have that $\tau(\alpha) = \alpha$ is in $B^{\tau} = A$ and $\alpha^2 = N(\alpha) = 1$. For any $\rho \in O^-(V, q)$ such that $\tilde{\rho} | B = \tau$, $\rho \circ \rho_0^{-1}$ is in $O^+(V, q)$, and so there exists b in Ker N such that $\rho(v) = b\rho_0(v)$ for all $v \in V$. Accordingly, we have $\rho^2 = b\rho_0 b\rho_0 = b\tau(b)\rho_0^2 = \rho_0^2$.

Corollary 2. If A has no idempotents other than 0 and 1, and if $O(V,q) \neq O^+(V,q)$, then there exists α in $U(A) \cap Ker N$ such that $\rho^2 = \alpha I$ for every ρ in $O^-(V,q)$. Furthermore, if 2 is invertible in A, then $\alpha = 1$.

Proof. We assume that A has no idempotents other than 0 and 1, $\frac{1}{2}$ is in A, and $O^-(V, q) \neq \phi$. Since Aut $(B/A) = G = \{I, \tau\}$, there exists α in A such that $\alpha^2 = 1$ and $\rho^2 = \alpha I$ for every $\rho \in O^-(V, q)$. $\frac{1+\alpha}{2}$ becomes an idepotent in A. Therefore, $\frac{1+\alpha}{2}$ is 1 or 0, that is, α is 1 or -1. We will show $\alpha = 1$. Assume $\alpha = -1$. For any maximal ideal m of A, we consider the localization (V_m, q_m)

608

= $A_{\rm m}u \oplus A_{\rm m}v$, and the induced isometry ρ on $(V_{\rm m}, q_{\rm m})$ for $\rho \in O^-(V, q)$. Let $\rho = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ denote the matrix of ρ with respect to the basis u, v. For the fact that det $\rho = ad - bc = -1$ and $\begin{pmatrix} a & b \\ d & c \end{pmatrix}^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, we obtain that a(a+d) = -2 and b = c = 0, and so $\rho(u) = au$ and $a^2 = -1$. Accordingly, $q_{\rm m}(u) = q_{\rm m}(\rho(u)) = q_{\rm m}(au) = a^2 q_{\rm m}(u) = -q_{\rm m}(u)$. Since we can chose u such that $q_{\rm m}(u) \neq 0$, this is a contradiction. Consequently, $\alpha = 1$.

Proposition 3. Let A be a commutative ring such that A has no idempotents other than 0 and 1, 2 is invertible in A. If $O(V, q) \neq O^+(V, q)$, then for every $\rho \in O^-(V, q)$, there exists an invertible A-submodule U of V such that $\rho | U = -I$, $\rho | U^{\perp} = I$ and $V = U \oplus (U)^{\perp}$.

Proof. If ρ is in $O^-(V, q)$, by Corollary 2, $\rho^2 = I$, hence we have that $\frac{I-\rho}{2}$ and $\frac{I+\rho}{2}$ are idempotents and $I = \frac{I-\rho}{2} + \frac{I+\rho}{2}$. Since $\beta | B = \tau$, we have $\rho \neq I$, hence $\frac{I-\rho}{2}$ is neither 0 nor *I*. This mention is held for the localization with respect to every maximal ideal of *A*. Therefore, $U = \frac{I-\rho}{2}$ (*V*) and $U' = \frac{I+\rho}{2}$ (*V*) are finitely generated projective *A*-modules of rank one, and we can check that *U* and *U'* are mutually orthogonal, $V = U \oplus U'$ and $U' = U^+$. Since $\rho \circ \frac{I-\rho}{2} = -\left(\frac{I-\rho}{2}\right)$ and $\rho \circ \frac{I+\rho}{2} = \frac{I+\rho}{2}$, we have $\rho | U = -I$, $\rho | U' = \rho | U^+ = I$ and $V = U \oplus U^+$.

REMARK 2. Let A be as Proposition 3. If we call such an isometry in Proposition 3 a symmetry of (V, q), then O(V, q) is an abelian group having no symmetries, or every element of O(V, q) is a product of one or two symmetries.

OSAKA CITY UNIVERSITY

References

- [1] S.U. Chase, D.K. Harrison and A. Rosenberg: Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965), 15-33.
- [2] T. Kanzaki: On the quadratic extensions and the extended Witt ring of a commutative ring, Nagoya Math. J. 49 (1973), 127-141.
- [3] T. Kanzaki: On non-commutative quadratic extensions of a commutative ring, Osaka J. Math. 10 (1973), 597-605.
- [4] A. Micali and O.E. Villamayor: Sur les algebres de Clifford. II, J. Reine Angew. Math. 242 (1970), 61-90.
- [5] C. Small: The group of quadratic extensions, J. Pure Appl. Algebra 2 (1972), 83-105.