A NOTE ON THE ORTHOGONAL GROUP OF A QUADRATIC MODULE OF RANK TWO OVER A COMMUTATIVE RING

TERUO KANZAKI

(Received April 24, 1973)

Let *A* be an arbitrary commutaive ring with the identity element. This note will give an elementary property on the orthogonal group of a non-degenerate quadartic A -module of rank two. Throughout this paper, we will assume that (V, q) is a non-degenerate quadratic A -module such that V is a finitely generated projective A -module and $[V_\mathfrak{m}\colon A_\mathfrak{m}]{=}2$ for all maximal ideal \mathfrak{m} of A . The Cilfford algebra $C(V, q)$ is a quadratic extension of $C_0(V, q)$, the set of homogeneous ele ments of degree 0 in $C(V, q)$, and $C_0(V, q)$ is a commutative and separable qu adratic extension of A (cf. [3], [4]). Set $B = C₀(V, q)$. B is a Galois extension of *A* with a Galois group $G = \{I, \tau\}$, and τ is the unique *A*-algrbra automorphism of *B* such that the fixed subring of *B* is *A* ([4], [5]). By [3], *V* is an invertible B-bilmodule, and (V, ϕ) , $\phi: V \times V \rightarrow B$; $\phi(x, y) = xy$ in $C(V, q)$ for $x, y \in V$, is a non-degenerate hermitian B-module ((2.4) in [3]). We denote by $I(A)$ the set of idempotents in A, which is an abelian group with respect to the product *; $e*e' = e+e' - 2ee'$ for $e, e' \in I(A)$. Then, by [1], the group Aut (B/A) of all *A*-algebra automorphisms of *B* is $\{e^{\tau}+(1-e)I; e\in I(A)\}$, and is isomorphic to *I(A)* by the isomorphism $\mu: I(A) \to \text{Aut } (B/A); e \wedge \rightarrow \mu = e\tau + (1-e)I$. Let $O(V, q)$ be the orthogonal group of (V, q) , i.e. $O(V, q) = {\rho \in Hom_A(V, V); q(\rho v)}$ $=$ *q*(*v*) and ρ (*V*)=*V*}. For any ρ \in *O*(*V, q*), ρ is extended to an *A*-algebra auto morphism $\tilde{\rho}$ of $C(V, q)$ which induces an automorphism of *B*. Accordingly, there exists a group homorphism $\eta \colon O(V,q) {\rightarrow} {\rm I}(A);$ $\rho \leftrightsquigarrow \mu^{-1}(\rho \, | \, B).$ We put $O^+(V,q)$ $= {\rho \in O(V, q); \rho | B = I}$ and $O^{-}(V, q) = {\rho \in O(V, q)}$;

REMARK 1. Let *V* be a free *A*-module with the basis $\{u, v\}$, $V = Au \oplus Av$. For $\rho \in O(V, q)$, let $\rho = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ denote the matrix of ρ with respect to the basis $\{u, v\}$. Then $(\det \rho)^2 = 1$. If ρ is in $O^+(V, q)$ then det $\rho = 1$. If $\tilde{\rho} | B = \tau$ then det $\rho = -1$.

Proof. Since C(F, *q)=A®Auv®Au®Av* and *B=A®Auv^y* we have *ρ(uv)* $=(au+bv)(cu+dv)=B_q(cu,bv)+acq(u)+bdq(v)+(det \rho)uv.$ Since $(uv)^2=B_q$ $(u, v)uv - q(u)q(v)$, we have $B=C^+(V, q)=(A, B_q(u, v), -1)$ and $\tau(uv)=B_q(u, v)$

608 T. KANZAKI

 $-uv$ (cf. Proposition 3 in [2]). If $\tilde{\rho} | B = I$ then det $\rho = 1$ and $B_q(cu, bv) + acq(u)$ $+$ *bdq*(v)=0. If $\tilde{\rho}$ |*B*= τ then det ρ =-1 and $(cb-1)B_q(u,v)+acq(u)+bdq(v)$ $= 0.$

Let *N*: $U(B) \rightarrow U(A)$ be a group homomorphism of the unit group of *B* to the unit group of A defined by $N(b)=b\tau(b)$.

Proposition 1. $O^+(V, q)$ is an abelian group, and is isomorphic to Ker N.

Proof. Since $C(V, q) = B \oplus V$ and V is an invertible B-bimodule, if ρ is in $O^+(V, q)$, then $\tilde{\rho} | B = I$, and $\tilde{\rho} | V = \rho$ induces an isometry of the hermitian *B*module (V, ϕ) onto itself, hence there exists an element *b* in $U(B)$ such that $\rho(v)$ *=bv* for all $v \in V$. Accordingly, $\phi(x, y) = \phi(\rho(x), \rho(y)) = \phi(bx, by) = b\tau(b)\phi(x, y)$ $=N(b)\phi(x, y)$, and we have $N(b)=1$, since *B* is generated by $\phi(V, V)$. The correspondence $\rho \nleftrightarrow b$ is a group monomorphism of $O^+(V, q)$ to Ker N. Con versely, for any *b* in Ker *N,* it is easily obtained that *b* induces an isometry of (V, q) onto itself. Therefore, $O^+(V, q) \approx$ Ker N.

Corollary 1.
$$
O(V, q) = \bigcup_{\widetilde{\rho}_e \in \mathcal{O}^+(V, q)} \rho_e \circ O^+(V, q)
$$
 and the following sequence is exact;
\n
$$
(1) \longrightarrow \text{Ker } N \longrightarrow O(V, q) \xrightarrow{\eta} I(A).
$$

Proposition 2. Let ρ_0 be an element in $O^{-}(V, q)$ such that $\tilde{\rho}_0 | B = \tau$. Then, *there extst* α *in* A *such that* $\rho_{\text{o}}^2{=}\alpha\ I$ and $\alpha^2{=}1$. For every $\rho{\in}O^-(V,q)$ such that $\rho | B = \tau$ *, we have* $\rho^2 = \rho_0^2 = \alpha I$.

Proof. Let ρ_0 be an element in $O^-(V, q)$ such that $\tilde{\rho}_0 | B = \tau$, ρ_0^2 is in $O^+(V, q)$, hence there is α in Ker *N* such that $\rho_o^2(v) = \alpha v$ for all $v \in V$. Since $\alpha \rho_o(v) = \rho_o^3(v)$ $=\rho_o(\alpha v)=\tau(\alpha)\rho_o(v)$ for all $v\in V$ and V is faithful over B , we have that $\tau(\alpha){=}\alpha$ is in $B^{\tau}=A$ and $\alpha^2=N(\alpha)=1$. For any $\rho \in O^{-}(V, q)$ such that $\tilde{\rho} | B=\tau, \rho \circ \rho_0^{-1}$ is in $O^+(V, q)$, and so there exists *b* in Ker *N* such that $\rho(v) = b\rho_o(v)$ for all $v \in V$. Accordingly, we have $\rho^2 = b \rho_0 b \rho_0 = b \tau(b) \rho_0^2 = \rho_0^2$.

Corollary 2. If A has no idempotents other than 0 and 1, and if $O(V, q)$ \neq $O^{+}(V, q)$, then there exists α in $U(A) \cap Ker N$ suvh that $\rho^2 = \alpha I$ for every ρ in $O^{-}(V, q)$. Furthermore, if 2 is invertible in A, then $\alpha = 1$.

Proof. We assume that *A* has no idempotents other than 0 and $1, \frac{1}{2}$ is in *A*, and $O^{-1}(V, q) \neq \phi$. Since Aut $(B|A) = G = \{I, \tau\}$, there exists α in A such that $e^2=1$ and $\rho^2=\alpha I$ for every $\rho\in O^{-1}(V, q)$. $\frac{1+\alpha}{2}$ becomes an idepotent in A. Therefore, $\frac{1+\alpha}{2}$ is 1 or 0, that is, α is 1 or -1 . We will show $\alpha=1$. Assume $= -1$. For any maximal ideal m of A, we consider the localization (V_m, q_m)

 $=$ *A*_m $u \oplus A$ _m v , and the induced isometry ρ on (V_m, q_m) for $\rho \in O^-(V, q)$. Let $\rho =$ $\binom{a}{c}$ denote the matrix of ρ with respect to the basis u, v. For the fact that det $\rho = ad-bc = -1$ and $\begin{pmatrix} a & b \\ d & c \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, we obtain that $a(a+d) = -2$ and $b=c=0$, and so $\rho(u)=au$ and $a^2=-1$. Accordingly, $q_m(u)=q_m(\rho(u))=q_m(au)=$ $a^2 q_{\rm m}(u) = -q_{\rm m}(u)$. Since we can chose u such that $q_{\rm m}(u) \neq 0$, this is a contradiction. Consequently, $\alpha=1$.

Proposition 3. *Let A be a commutative ring such that A has no idempotents other than* 0 *and* 1, 2 *is invertible in A.* If $O(V, q) \neq O^+(V, q)$, then for every $\rho \in O^{-}(V, q)$, there exists an invertible A-submodule U of V such that $\rho \mid U=$ $-I, \rho \, | \, U^{\perp} = I \,$ and $V = U \bigoplus (U)^{\perp}$.

Proof. If ρ is in $O^{-}(V, q)$, by Corollary 2, $\rho^2 = I$, hence we have that $\frac{I - \rho}{\rho}$ and $\frac{1+p}{2}$ are idempotents and $I = \frac{1-p}{2} + \frac{1+p}{2}$. Since $\tilde{\rho} | B = \tau$, we have $\rho \neq I$, hence $\frac{I-\rho}{2}$ is neither 0 nor *I*. This mention is held for the localization with $\overline{}$ respect to every maximal ideal of *A*. Therefore, $U=\frac{r}{2}$ (V) and $U'=\frac{r}{2}$ *(V)* are finitely generated projective *A* -modules of rank one, and we can check that *U* and *U'* are mutually orthogonal, $V = U \oplus U'$ and $U' = U^{\perp}$ *.* Since $\rho \circ \frac{I-\rho}{2} = -\left(\frac{I-\rho}{2}\right)$ and $\rho \circ \frac{I+\rho}{2} = \frac{I+\rho}{2}$, we have $\rho | U=-I$, $\rho | U'= \rho | U^{\perp}=I$ and $V=U\oplus U^{\perp}$.

REMARK 2. Let *A* be as Proposition 3. If we call such an isometry in Proposition 3 a symmetry of *(V, q),* then *O(V, q)* is an abelian group having no symmetries, or every element of $O(V, q)$ is a product of one or two symmetries.

OSAKA CITY UNIVERSITY

References

- [1] S.U. Chase, D.K. Harrison and A. Rosenberg: *Galois theory and Galois cohomology of commutative rings,* Mem. Amer. Math. Soc. No. 52 (1965), 15-33.
- **[2] T. Kanzaki:** *On the quadratic extensions and the extended Witt ring of a commutative ring,* Nagoya Math. J. 49 (1973), 127-141.
- **[3] T. Kanzaki:** *On non-commutative quadratic extensions of a commutative ring,* **Osaka** J. Math. 10 (1973), 597-605.
- [4] A. Micali and O.E. Villamayor: *Sur les algebres de Clifford.* II, J. Reine Angew. Math. **242** (1970), 61-90.
- [5] C. Small: *The group of quadratic extensions,* J. Pure Appl. Algebra 2 (1972), 83-105.