Minami, H. Osaka J. Math. 10 (1973), 571-583

EQUIVARIANT K-RING OF G-MANIFOLD (U(n), ad^p) II

HARUO MINAMI

(Received December 4, 1972)

Introduction

Let G be a compact Lie group. Throughout this paper K_c^* will denote the complex equivariant K -theory associated with the group G and $R(G)$ the ring of virtual complex representations of G.

Let *V* be a G-module over the field of the complex numbers and *U(V)* the group of isometries of *V* with the action of *G* defined by conjugation. In [2], Hodgkin has announced the $K_G\text{-ring}$ structure of $U(V)$ without proof. So we have proved a special case of Hodgkin's theorem in [4]. The purpose of this paper is to give a proof of the general case.

1. Statement of the theorems

Let *G* be a compact Lie group and ρ a unitary representation of *G* of dimension *n*. That is, ρ is a continuous homomorphism of G into a unitary group $U(n)$.

We consider $U(n)$ a differentiable G-manifold together with the adjoint operation ad_{ρ} : $G \times U(n) \rightarrow U(n)$, defined by

$$
ad_{\rho}(g, u) = \rho(g)u\rho(g)^{-1} \qquad g \in G, u \in U(n)
$$

and then we denote the *G*-manifold $U(n)$ by $(U(n), ad_{\rho})$.

We denote by V the representation space of ρ over the field of the complex numbers C, by V the product G-vector bundle with a fibre V over $U(n)$ and by $\lambda^k(\underline{V}) = \lambda^k(V)$ the k-th exterior power of \underline{V} for $1 \le k \le n$. Then we can define an automorphism θ_k^G of $\lambda^k(\underline{V})$ by

$$
\theta^G_{\bullet}(u, z) = (u, \lambda^{\mathbf{k}}(u)(z)) \qquad n \in U(n), z \in \lambda^{\mathbf{k}}(V).
$$

Hence θ_k^G determines an element $[\lambda^k(\underline{V}), \theta_k^G]$ of $K_G^1(U(n), ad_p)$. Afterwards we shall use the same symbol θ_k^G in writing this induced element. Our main theorem is:

Theorem 1.1. Let G be a compact Lie group and ρ a unitary representation of *G of dimension n. Then*

$$
K_G^*(U(n),\, ad_{\rho}) = \Lambda_{R(G)}(\theta_1^G,\, \cdots,\, \theta_n^G)
$$

572 H. MINAMI

as an algebra over R(G).

Theorem 1.1 has the following corollaries.

Corollary 1.2. *Let p be as in Theorem* 1.1 *and X a compact locally Gcontractible G-space whose orbit space XjG has a finite covering dimensnion. Then the external tensor product homomorphism*

$$
\mu: K_{G}^{*}(U(n),\, ad_{\rho})\bigotimes_{R(G)} K_{G}^{*}(X) \to K_{G}^{*}((U(n),\, ad_{\rho})\times X)
$$

is an isomorphism.

Proof. Put $U=U(n)$ for the simplicity. $K_G^*(U, ad_p) \underset{\sim}{\otimes} K_G^*(X)$ is an equi variant cohomology theory because *K\$(U, ad?)* is a free module over *R(G)* and also $K_G^*(U, ad_\rho) \times X)$ is an equivariant cohomology theory. As easily checked, we can construct spectral sequences of Segal's type for these equivariant cohomology theories [5].

Let \bar{X} denote the orbit space of X by G . There are two sheaves over \bar{X} , φ_* and τ_* whose stalks are respectively

$$
\varphi_*(\bar x)=K^*_G(U,ad_\rho)\mathop{\otimes}\limits_{R(G)}K^*_G(Gx)
$$

and

$$
\tau_*(x) = K_G^*((U, \, ad_\rho) \times Gx)
$$

where $\bar{x} \in \bar{X}$ and $Gx \subset X$ is the orbit of $x \in X$ lying over \bar{x} .

The external tensor product homomorphism μ induces a map of the spectral sequence

$$
E_2^{\mathbf{p},\mathbf{q}}=H^{\mathbf{p}}(\bar{X},\varphi_{\mathbf{q}})\Rightarrow K_{\mathcal{C}}^{\mathbf{k}}(U,ad_{\mathbf{p}})\underset{R(\mathbf{q})}{\otimes}K_{\mathcal{C}}^{\mathbf{k}}(X)
$$

to the spectral sequence

$$
E_2^{\mathbf{p},\mathbf{q}}=H^{\mathbf{p}}(\bar{X},\tau_q)\Rightarrow K^{\mathbf{p}}_G((U,ad_{\mathbf{p}})\times X)\,.
$$

Let *G^x* denote the isotropy group at *x.* Since *Gx* is homeomorphic to *G/G^x* as a G-space we have

$$
\varphi_*(\mathfrak{X}) \cong K_{\mathcal{C}}^*(U, \, ad_\rho) \underset{R(\mathfrak{G})}{\otimes} K_{\mathcal{C}}^*(G/G_x)
$$

$$
\cong K_{\mathcal{C}}^*(U, \, ad_\rho) \underset{R(\mathfrak{G})}{\otimes} R(G_x)
$$

and

$$
\tau_*(\bar{x}) \cong K_{\mathcal{C}}^*(U, \, ad_\rho) \times G/G_x) \\
 \cong K_{\mathcal{C}}^*(U, \, ad_{\rho'})
$$

where ρ' is the restriction of ρ onto G_x . Therefore, from Theorem 1.1 we see

EQUIVARIANT K-RING OF G-MANIFOLD II 573

$$
\varphi_*(\bar x)\!\simeq\!\Lambda_{R(G_{\bar x})}\!(\theta_1^G, \cdots, \theta_n^G),\ \tau_*(\bar x)\!\simeq\!\Lambda_{R(G_{\bar x})}\!(\theta_1^{G_{\bar x}}, \cdots, \theta_n^{G_{\bar x}})
$$

and so μ induces an isomorphism on the E_z -level. This permits the corollary.

Let X be a G-space as in Corollary 1.2 and E an n -dimensional complex G vector bundle over *X*. Here we consider the unitary bundle π : $U(E) \rightarrow X$ of E (See [2], §3). For $1 \leq k \leq n$ we can define also an automoprhism θ_k^E of the Gvector bundle $\pi^*(\lambda^*(E)) = \lambda^*(\pi^*(E))$ over $U(E)$ by

$$
\theta^E_{\mathbf{k}}(u,\,z)=(u,\,\lambda^{\mathbf{k}}(u)(z))\qquad u\in U(E_x),\,z\in\lambda^{\mathbf{k}}(E_x)
$$

and we write θ_k^E for an element of $K_G^1(U(E))$ determined by θ_k^E . Then we have the following

Corollary 1.3.

$$
K_G^*(U(E)) = \Lambda_{K_G^*(X)}(\theta_1^E, \cdots, \theta_n^E)
$$

as an algebra over $K^*(X)$.

Proof. For the sake of simplicity, put $U=U(n)$ and $ad=ad_{i\pi(x)}$, the adjoint operation of the identity representation of *U(n).*

Let P be the associated principal bundle to E. Then P is a $G \times U$ -space on which U acts freely: $P/U = X$ and

$$
U(E)=P\times(U, ad).
$$

u We can regard (U, uu) as a $G \times U$ -space where G acts on (U, uu) trivially. Then we have

$$
K_{G\times U}^*(U, ad) \cong R(G) \otimes K_U^*(U, ad)
$$

by a parallel proof to that of [5], Proposition (2.2).

From Corollary 1.2 we obtain

$$
K_{G\times U}^*(P)\underset{\mathcal{R}(G\times U)}{\bigotimes}K_{G\times U}^*(U,\,ad)\cong K_{G\times U}^*(P\times (U,\,ad))\ .
$$

Hence we get

$$
K_G^*(X) \underset{R(U)}{\otimes} K_U^*(U, ad) \simeq K_G^*(U(E))
$$

by [5], Proposition (2.1). This shows the corollary from Theorem 1.1. In the following sections we shall give a proof of Theorem 1.1.

2. Proof when *G* **is connected**

The proof consists of two steps. *Step* 1. *Proof when G is a compact abelian Lie group.* For the sake of simplicity we write $U(\rho)$ for the G-manifold $(U(n), ad_{\rho}).$

Since G is abelian, there exist 1-demensional representations of G, *p^k : G* $U(1)$ $1 \leq k \leq n$, such that ρ is equivalent to the sum $\rho_1 \oplus \cdots \oplus \rho_n$. Then

$$
U\!(\rho)\!\!\simeq\! U\!(\rho_{{\scriptscriptstyle 1}}\!\!\oplus\!\cdots\!\oplus\!\rho_{{\scriptscriptstyle n}}\!)
$$

as a *G*-manifiold. So it suffices to show the theorem for $U(\rho)$, $\rho = \rho_1 \oplus \cdots \oplus \rho_n$.

Before beginning the proof of the theorem we prepare an elementary lemma. Let W be the representation space over C of the representation $1 \oplus \rho_1^{-1} \rho_2 \oplus \cdots$ $\bigoplus \rho_1^{-1} \rho_n$. Then the unit sphere $S(W)$ in W is homeomorphic to the homogeneous space $U(\rho) / U(\rho_2\oplus\cdots\oplus\rho_n)$ as a G -space where $U(\rho_2\oplus\cdots\oplus\rho_n)$ $=$ $1\times U(\rho_2\oplus\cdots\oplus\rho_n)$ and also $S(W)$ has a fixed point $p=(1, 0, \dots, 0)$.

Lemma 2.1. For each point $q=(z_1, \dots, z_n)$ of $S(W)$ there exists a continuous *map f*: [0, 1] $\rightarrow U(n)$ such that $f(0)(p)=q$, $f(1)=1$ and $\rho(g)f(t)\rho(g)^{-1}=f(t)$ for $g{\in}G_q$ and $t{\in}[0,1]$ where G_q is the isotropy group at $q.$

Proof. We shall prove Lemma 2.1 by induction on *n*. For the case of $n=1$ we have nothing to do. Assume that the assertion is true for $n < l$. In case of *n=l* we consider two types of *q* as follows.

(i) If $z_2 \cdots z_n \neq 0$, then

$$
\rho_1(g)=\cdots=\rho_n(g)\qquad g\in G_q.
$$

Namely *p(g)* is a diagonal matrix for any *gξΞ G^q .* So it is sufficient to show the existence of a continuous map $f: [0, 1] \rightarrow U(n)$ such that $f(0)(p)=q$ and $f(1)=1$, But this is clear because $U(n)$ acts on S^{2n-1} transitively and $U(n)$ is arcwise con nected.

(ii) If there is an integer $k \ge 2$ such that $z_k = 0$, then we consider a subgroup, $U'(n-1)$, of $U(n)$ consisting of $(n-1)$ -dimensional minors of which the (k, k) -component is 1, i.e.

$$
k\begin{pmatrix} & k \\ * & \vdots & * \\ 0 & \cdots & 0 & 1 & 0 \cdots & 0 \\ * & \vdots & * & * \\ * & \vdots & * & * \end{pmatrix} \in U(n) \, .
$$

Let ρ' be a continuous homomorphism of G into $U'(n-1)$ defined by

$$
\rho' = \rho_1 \oplus \cdots \oplus \rho_{k-1} \oplus 1 \oplus \rho_{k+1} \oplus \cdots \oplus \rho_n.
$$

In virtue of the inductive hypothesis there is a map f' : $[0, 1] {\rightarrow} U' (n{-}1)$ satisfying the assertion mentioned in Lemma 2.1. Then we have

$$
\rho'(g)f'(t)\rho'(g)^{-1} = \rho(g)f'(t)\rho(g)^{-1} \qquad g \in G_q, t \in [0, 1].
$$

Therefore when we put

$$
f = i f'
$$

where *i*: $U'(n-1) \rightarrow U(n)$ is the inclusion of $U'(n-1)$, $f: G \rightarrow U(n)$ is a map which we require, q.e.d.

Now we proceed by induction on *n* to complete the step 1. In case of $n=1$, since *G* acts on $U(\rho_1)$ trivially we have

$$
K_{G}^{*}(U(\rho_{1})) \cong R(G) \otimes K^{*}(U(1))
$$

by [5], Proposition (2,2). $K^*(U(1))$ is an exterior algebra with one generator θ and by the above isomorphism θ_1^G corresponds to $\rho_1\otimes\theta$. Hence $K_G^*(U(\rho_1))=$ $\Lambda_{R(G)}(\theta_1^G)$ is valid for any compact abelian Lie group *G* and any 1-demensional $representation \rho = \rho_1$ of G .

Let $\pi\colon U(\rho) {\rightarrow} S(W) (= U(\rho)/U(\rho_{2} \oplus \cdots \oplus \rho_{n}))$ be the projection. From [4], Lemma 1 we get

Lemma 2.2. There exists an element g in $K_G^1(S(W))$ such that

$$
K_G^*(S(W)) = \Lambda_{R(G)}(g)
$$

as an algebra over R(G) and

$$
\pi^*(g) = \sum_{k=1}^n (-1)^k \rho_1^{-k} \theta_k^G \qquad \theta_k^G \in K_G^1(U(\rho)) \, .
$$

Proof. We observe the exact sequence of the pair $(D(W), S(W))$ where $D(W)$ is the unit disk in *W.* Then we see that

$$
\tilde K_G^0(S(W))=0
$$

and the coboundary homomorphism

$$
\delta\colon K_G^1(S(W))\to K_G^0(W)
$$

is an isomorphism.

When we denote by λ_W the Thom class of the vector bundle $W\rightarrow P(=a \text{ point})$, $K^0_G(W)$ is a free module over $R(G)$ generated by λ_W . So if we put g =δ⁻¹(λ_W), then

$$
K_{G}^{*}(S(W))=\Lambda_{R(G)}(g).
$$

Next we consider the following diagram

576 H. MINAMI

$$
K^*_{\mathcal{I}}(U(n), ad_i) \stackrel{\rho^*}{\rightarrow} K^*_{\mathcal{E}}(U(\rho))
$$

\n
$$
\pi'^* \uparrow \qquad \qquad \uparrow \pi^*
$$

\n
$$
K^*_{\mathcal{I}}(S(W')) \stackrel{\rho^*}{\longrightarrow} K^*_{\mathcal{E}}(S(W))
$$

\n
$$
\uparrow \qquad \qquad \downarrow \uparrow
$$

\n
$$
K^*_{\mathcal{I}}(W') \stackrel{\rho^*}{\longrightarrow} K^*_{\mathcal{E}}(W)
$$

where *i*: $T \rightarrow U(n)$ is the inclusion map of the standard maximal torus T of $U(n)$, ρ^* the homomorphism induced by the continuous homomorphism $\rho {=}\rho_1\oplus\cdots\oplus\rho_p$ *G* \rightarrow *T* and π' : $U(n)$ \rightarrow *S(W')* represents the map π : $U(n)$ \rightarrow *S(C* \oplus *W)* in [4], §2. Then this diagram commutes and $\rho^*(\lambda_{w'}) = \lambda_{w}$. Therefore we get

$$
\pi^*(g) = \sum_{k=1}^n (-1)^k \rho_1^{-k} \theta_k^G
$$

by [4], Lemma 1. q.e.d.

Let \mathfrak{M} be an exterior algebra over $R(G)$ generated by $\theta_1^G, \dots, \theta_{n-1}^G$ where $\theta_k^G \in K_G^1(U(\rho))$ for $1 \leq k \leq n-1$. Then we have a homomorphism

$$
\kappa_{_1}\colon \mathfrak{M}\to K_G^*(U(\rho))
$$

of algebras, defined by $\kappa_1(\theta^G_*)=\theta^G_*$. Because, when we observe the homomor phism $\rho^*: K^*_T(U(n), ad_i) \rightarrow K^*_G(U(\rho))$ mentioned in the proof of Lemma 2.2 we get

$$
(\theta_k^G)^2 = \rho^*((\theta_k^T)^2) = 0 \quad \text{for} \quad 1 \leq k \leq n
$$

since $(\theta_k^T)^2 = 0$ in $K_T^*(U(n), ad_i)$ by [4], Theorem 1 and also we get the relations $\theta_k^G \theta_l^G + \theta_l^G \theta_k^G = 0$ for $1 \le k, l \le n$ obviously since θ_k^G are the elements of $K_G^1(U(\rho))$. Morevoer, for each closed invariant subspace X of $S(W)$ we can define a homomorphism

$$
\lambda\colon K_{G}^{*}(X)\underset{R(G)}{\otimes} \mathfrak{M} \to K_{G}^{*}(\pi^{-1}(X))
$$

by

$$
\lambda(x\otimes y) = \pi^*(x)j^*\kappa_1(y) \qquad x \in K^*(X), y \in \mathfrak{M}
$$

where $j: \pi^{-1}(X) \to U(\rho)$ is the inclusion of $\pi^{-1}(X)$.

Under the assumption that the assertion of Theorem 1.1 in the step 1 is true for $n < l$ the following lemma is proved.

Lemma 2.3. *The homomorphism*

$$
\lambda\colon K_{G}^{*}(S(W))\underset{R\in\mathfrak{O}}{\otimes}\mathfrak{M}\to K_{G}^{*}(U(\rho))
$$

is an isomorphism.

Proof. Let $\overline{S(W)}$ denote the orbit space of $S(W)$ by G. We have two

$$
\varphi_*(\overline{q})=K^*_G(Gq)\bigotimes_{R(G)}\mathfrak{M}
$$

and

$$
\tau_*(\bar{q})=K^*_G(\pi^{-1}(Gq))
$$

where $q \in S(W)$, $\overline{q} \in \overline{S(W)}$ and $Gq = \pi^{-1}(\overline{q})$.

Since
$$
\mathfrak{M}
$$
 is a free module over $R(G)$, $K_{\mathcal{C}}^*(X) \underset{R(G)}{\otimes} \mathfrak{M}$ is an equivariant coho-

mology theory. Then λ induces a map of the spectral sequence [5]

$$
E_{2}^{\bullet,\bullet}=H^{\rho}(\overline{S(W)},\,\varphi_{q})\Rightarrow K_{G}^{\ast}(S(W))\underset{R(\sigma)}{\otimes}\mathfrak{M}
$$

to the spectral sequence

$$
E_2^{p,q}=H^p(\overline{S(W)},\tau_q)\Rightarrow K_G^*(U(\rho))
$$

We shall prove that λ induces an isomorphism on the E_2 -level. Clearly we have

$$
\varphi_*(\overline{q}) = K^*_{\mathcal{E}}(Gq) \underset{R(G)}{\otimes} \mathfrak{M}
$$

\n
$$
\simeq K^*_{\mathcal{E}}(G/G_q) \underset{R(G)}{\otimes} \mathfrak{M}
$$

\n
$$
\simeq \Lambda_{R(G_q)}(\theta_1^c, \cdots, \theta_{n-1}^c).
$$

Next we observe the stalks $\tau_*(\overline{q})$. Let $f: [0, 1] \rightarrow U(n)$ is a continuous map in Lemma 2.1. Then we have

$$
\pi^{-1}(Gq) = \bigcup_{q \in G} (\rho(g)f(0)\rho(g)^{-1})U(n-1)
$$

and so we can define a G-map

$$
\phi\colon G/G_q\times U(\rho_x\oplus\cdots\oplus\rho_n)\to \pi^{-1}(Gq)
$$

by

$$
\phi(gG_q, u) = (\rho(g)f(0)\rho(g)^{-1})u \qquad g \in G, u \in U(\rho_2 \oplus \cdots \oplus \rho_n)
$$

because $\rho(g)f(0)\rho(g)^{-1}=f(0)$ for any $g\in G_g$. Further we can easily check that ϕ is an isomorphism. Therefore

$$
\tau_*(\overline{q}) = K^*_C(\pi^{-1}(Gq))
$$

\n
$$
\simeq K^*_C(G/G_q \times U(\rho_2 \oplus \cdots \oplus \rho_n))
$$

\n
$$
\simeq K^*_{G_q}(U(\rho_2 \oplus \cdots \oplus \rho_n)).
$$

Thus we obtain

$$
\tau_*(\bar{q}) \simeq \Lambda_{R(G_q)}(\theta'_1, \, \cdots, \, \theta'_{n-1})
$$

by the inductive hypothesis where $\theta_k'=\theta_k^G\bullet$ for $1\leq k\leq n-1$.

 \mathbf{L}

Here we consider the homomorphism

$$
\lambda' \colon \Lambda_{R(G_{\mathfrak{q}})}(\theta_1^G, \dots, \theta_{n-1}^G) \to K_{G_{\mathfrak{q}}}^*(U(\rho_2 \oplus \dots \oplus \rho_n))
$$

induced by the homomorphism

$$
\lambda\colon \varphi_*(\bar q)\to \tau_*(\bar q)\ .
$$

From the definition of θ_k^G we obtain easily

$$
\lambda'(\theta_k^G) = [U(n-1) \times \lambda^k(V), \rho_k] \qquad (1 \leq k \leq n-1)
$$

where ξ_k is an automorphism of the product G_q -bundle $U(n-1)\times\lambda^k(V)$ given by

$$
\xi_k(u, z) = (u, \lambda^k(f(0)u)(z)) \qquad u \in U(n-1), z \in \lambda^k(V).
$$

Since f is a homotopy from $f(0)$ to the identity element of $U(n)$ satisfying $\rho(g)f(t)=f(t)\rho(g)$ for any $g\in G_q$ and $t\in [0,1]$, we get

$$
\lambda'(\theta_k^G)=\begin{cases} \theta_1' & (k=1) \\ \theta_k'+\rho_1\theta_{k-1}' & (2\leq k\leq n-1)\end{cases}.
$$

Hence we see that λ' is an isomorphism. This shows that λ induces an isomorphism on the E_z -level. Consequently we obtain Lemma 2.3. q.e.d.

Lemma 2.2 and lemma 2.3 show that the assertion in the case of $n=1$ is also true. This completes the step 1.

Step 2. *Proof when G is connected.*

Let *T* be a maximal torus of *G* and *i*: $T \rightarrow G$ the inclusion of *T*. Then from the step 1 we get

$$
K^*_{T}(U(n),\, ad_{\rho_T})=\Lambda_{R(T)}(\theta_1^T,\, \cdots,\, \theta_n^T)
$$

where ρ_T is the restriction of ρ onto T and therefore, from [5], Proposition (3.8) and [4], Lemma 2 we get

$$
K_{\mathcal{C}}^*(U(n),\, ad_{\rho})\cong K_{T}^*(U(n),\, ad_{\rho_T})^{W(G)}
$$

where $W(G)$ is the Weyl group of G . This shows

$$
K_{G}^{*}(U(n),\, ad_{p})=\Lambda_{R(G)}(\theta_{1}^{G},\, \cdots,\, \theta_{n}^{G}).
$$

3. Proof when *G* **is not connected**

We recall

Theorem 3.1. (Segal [6]) *Let G be a compact Lie group: Then the restric-*

tion $R(G) \rightarrow \sum_{S} R(S)$ is injective where S runs through the representatives of con*iugacy classes of Cartan subgroups of G.*

Then we have

Lemma 3.2. *Let Gbe a compact Lie group and p a continuous homomorphism of G into U(n).* Then $\Lambda_{R(G)}(\theta_1^G, ..., \theta_n^G)$ is a subalgebra of $K_G^*(U(n), ad_p)$.

Proof. We have a homomorphism κ_2 of $\Lambda_{R(G)}(\theta_1^G, \dots, \theta_n^G)$ into $K_G^*(U(n), ad_p)$ as algebras defined by $\kappa_z(\theta^G_k){=}\theta^G_k$, $1{\le}k{\le}n$. This homomorphism is well-defined by the same reason as κ_1 in §2, Step 1 is so.

Let *S* be a Cartan subgroup of *G* and i_S : $S \rightarrow G$ the inclusion of *S*. Then we have

$$
K_{\mathcal{S}}^*(U(n),\, ad_{\rho_s})=\Lambda_{R(S)}(\theta_1^S,\, \cdots,\, \theta_n^S)
$$

from §2, Step 1 where ρ_s is thr restriction of ρ onto *S*. Therefore if

$$
\sum_{1 \leq i_1 < \dots < i_l \leq n} \alpha_{i_1 \dots i_l} \theta_{i_1}^G \dotsm \theta_{i_l}^G = 0
$$

for $\alpha_{i_1\cdots i_l} \in R(G)$ in $K_G^*(U(n), \, ad_\rho)$, then

$$
i_S^*(\alpha_{i_1\cdots i_l})=0
$$

for any Cartan subgroup *S* of G. So we get

$$
\alpha_{i_1\cdots i_l}=0\,,\quad 1\!\leq\! i_1\!<\!\cdots\!<\!i_l\!\leq\! n
$$

from Theorem 3.1. This shows that *κ²* is injective. q.e.d.

Using the Segal's spectral sequence [5] we can easily check the following

Lemma 3.3. ([3], Proposition 2) *Let G be a compact Lie group. Let X and Y be compact locally G-contractible G-spaces such that the orbit spaces X/G and Y*/*G* are of finite covering dimension. If $K^*(X)$ or $K^*(Y)$ is a free abelian group, *then the external tensor product*

$$
K_{G}^{*}(X)\otimes K_{G}^{*}(Y)\to K_{G\times G}^{*}(X\times Y)
$$

is an isomorphism.

The following theorem is basic in proof of the general case.

Theorem 3.4. ([1], Proposition (4.9), [5], Proposition (3.8))

Let Gbe a compact connected Lie group and ί: Γ->G *the inclusion of a maximal torus. Then for each locally compact G-space X there is a natural homomorphism of* $K_G^*(X)$ -modules $i_*: K_f^*(X) \rightarrow K_G^*(X)$ such that $i_*(1)=1$, and hence i_*i^* =identity.

Theorem 3.5. Let G be a compact connected Lie group and $\rho: G \rightarrow U(n)$ a

unitary representation. Then, for each closed subgroup H of G we have

$$
K_H^*(U(n),\, ad_{\rho_H})=\Lambda_{R(H)}(\theta_1^H,\, \cdots,\, \theta_n^H)
$$

as an algebra over $R(H)$ where ρ_H is the restriction of ρ onto $H.$

Proof. As in §2, we denote $(U(n), ad_{\rho})$ by $U(\rho)$. Let $\pi_1: U(\rho) \times G/H \rightarrow$ *U(p)* and π_2 : *U(p)* \times *G/H* \rightarrow *G/H* be the projections. Let *d*: *G* \rightarrow *G* \times *G* be the diagonal map.

We consider the homomorphism

$$
d^*\colon K_{G\times G}^*(U(\rho)\times G/H)\to K_G^*(U(\rho)\times G/H).
$$

From Lemma 3.3 and §2, Step 2 we get

(1)
$$
K_{G\times G}^{*}(U(\rho)\times G/H)\cong K_{G}^{*}(U(\rho))\otimes K_{G}^{*}(G/H)
$$

$$
\cong \Lambda_{R(G)}(\theta_1^G, \cdots, \theta_n^G)\otimes R(H).
$$

From (1) we see that *d** induces a homomorphism

$$
\mu_1: K^*_{G}(U(\rho))\otimes K^*_{G}(G/H)\to K^*_{G}(U(\rho)\times G/H)
$$

and then μ_1 is as follows:

$$
\mu_1(x \otimes y) = \pi_1^*(x) \pi_2^*(y) \quad \text{for } x \in K_G^*(U(\rho)), y \in K_G^*(G/H).
$$

Since $K_{\mathcal{C}}^{*}(U(\rho) \times G/H) \simeq K_{H}^{*}(U(\rho_{H}))$ and $\Lambda_{R(H)}(\theta_{1}^{H}, \cdots, \theta_{n}^{H})$ is a subalgebra of $K_H^*(U(\rho_H))$ by Lemma 3.2, $\Lambda_{R(H)}(\pi_1^*(\theta_1^G), \dots, \pi_1^*(\theta_n^G))$ is a subalgebra of K_G^* $(U(\rho) \times G/H)$ and also

$$
(2) \tIm \mu_1 = \Lambda_{R(H)}(\pi_1^*(\theta_1^G),\cdots,\pi_1^*(\theta_n^G)).
$$

Therefore if we prove that μ_1 is an epimorphism, then we obtain Theorem 3.5.

Let *T* be a maximal torus of *G*. First we consider the restriction ρ_T : $T \rightarrow$ *U(n)* of ρ onto *T*. As the case of $\rho: G \rightarrow U(n)$ we have

$$
K_{T\times T}^{*}(U(\rho_{T})\times G/H)\cong K_{T}^{*}(U(\rho_{T}))\otimes K_{T}^{*}(G/H)
$$

$$
\cong \Lambda_{R\times T}(\theta_{1}^{T},\cdots,\theta_{n}^{T})\otimes K_{T}^{*}(G/H)
$$

and so the homomorphism

$$
\mu_{\mathfrak{s}}\colon K^*_{\mathcal{T}}(U(\rho_T))\otimes K^*_{\mathcal{T}}(G/H)\to K^*_{\mathcal{T}}(U(\rho_T)\times G/H)
$$

induced by d^* . Also we get

$$
K^*_{\mathcal{I}}(U(\rho_T) \times G/H) \cong K^*_{\mathcal{I}}(U(\rho_T)) \underset{R(T)}{\otimes} K^*_{\mathcal{I}}(G/H)
$$

$$
\cong \Lambda_{R(T)}(\theta_1^T, \cdots, \theta_n^T) \underset{R(T)}{\otimes} K^*_{\mathcal{I}}(G/H)
$$

from §2, Step 1 and a parallel argument to Corollary 1.2.

Now we observe the following diagram

$$
\Lambda_{R(G)}(\theta_1^G, \cdots, \theta_n^G) \otimes R(H) \qquad \Lambda_{R(T)}(\theta_1^T, \cdots, \theta_n^T) \otimes K_T^*(G/H)
$$
\n
$$
\cong \begin{vmatrix}\n\vdots \\
K_G^*(U(\rho)) \otimes K_G^*(G/H) & \xrightarrow{i^* \otimes i^* \atop i_{1*} \otimes i_{2*}} & K_T^*(U(\rho_T)) \otimes K_T^*(G/H) \\
\vdots & \vdots & \vdots \\
K_G^*(U(\rho) \times G/H) & \xrightarrow{j^* \atop i_{1*} \otimes i_{2*}} & K_T^*(U(\rho_T) \times G/H) \\
\vdots & \vdots & \vdots \\
K_H^*(U(\rho_H)) & \wedge_{R(T)}(\theta_1^T, \cdots, \theta_n^T) \otimes K_T^*(G/H)\n\end{vmatrix}
$$

where i_1 , i_2 and j are the inclusion of T, and i_{1*} , i_{2*} and j_* denote the natural homomorphisms mentioned in Theorem 3.4.

For any $x \in K^*_{G}(U(\rho) \times G/H)$ we can write

$$
(3) \t j^*(x) = \alpha \pi_2^*(y) + \sum_{1 \leq i_1 < \dots < i_s \leq n} \alpha_{i_1 \dots i_s} \pi_1^*(\theta_{i_1}^T \dots \theta_{i_s}^T) \pi_2^*(y_{i_1 \dots i_s})
$$

for α , $\alpha_{i_1\cdots i_s} \in R(T)$ and y , $y_{i_1\cdots i_s} \in K^*_T(G/H)$. Let put

$$
z = 1 \otimes \alpha y + \sum_{1 \leq i_1 < \cdots < i_s \leq n} \theta_{i_1}^T \cdots \theta_{i_s}^T \otimes \alpha_{i_1 \cdots i_s} y_{i_1 \cdots i_s}
$$

in $K^*_T(U(\rho_T))\otimes K^*_T(G/H)$. Then from (3) we get

(4) $\mu_2(z) = j^*(x)$.

Moreover

$$
(i_{1*}\otimes i_{2*})(z)=1\otimes i_{2*}(\alpha y)+\sum_{1\leq i_1<\cdots
$$

since $i_1^* \theta_k^G = \theta_k^T 1 \le k \le n$ and $i_{1*} i_1^* = 1$, and

$$
(5) \quad \mu_1((i_{1*}\otimes i_{2*})(z)) = \pi_2^* i_{2*}(\alpha y) + \sum_{1 \leq i_1 < \dots < i_s \leq \pi} \pi_1^*(\theta_{i_1}^G \cdots \theta_{i_s}^G) \pi_2^* i_{2*}(\alpha_{i_1 \dots i_s} y_{i_1 \dots i_s})
$$

= $j_* \pi_2^*(\alpha y) + \sum_{1 \leq i_1 < \dots < i_s \leq \pi} \pi_1^*(\theta_{i_1}^G \cdots \theta_{i_s}^G) j_* \pi_2^*(\alpha_{i_1 \dots i_s} y_{i_1 \dots i_s})$

because of $j_*\pi_2^* = \pi_2^*i_{2*}$. By Theorem 3.4, j_* is the homomorphism of K_G^* $(U(\rho)\times G/H)$ -modules. Therefore (5) shows

(6)
$$
\mu_1((i_{1*}\otimes i_{2*})(z)) = j_*(\alpha \pi_2^*(y) + \sum_{1 \leq i_1 < \cdots < i_s \leq n} \alpha_{i_1 \cdots i_s} \pi_1^*(\theta_{i_1}^T \cdots \theta_{i_s}^T) \pi_2^*(y_{i_1 \cdots i_s}))
$$

because of $\pi_1^* i_1^* = j^* \pi_1^*$.

From (3) and (6) we obtain

(7)
$$
\mu_1((i_{1*}\otimes i_{2*})(z)) = j_*j^*(x) = x
$$

and so we see that μ_1 is an epimorphism. Hence (2) and (7) conclude

582 H. MINAMI

$$
K_H^*(U(\rho_H)) = \Lambda_{R(H)}(\theta_1^H, \cdots, \theta_n^H).
$$

q.e.d.

Proof of the general case. Let G be a compact Lie group and $\rho: G \rightarrow U(n)$ a unitary representation of G.

Embed *G* in a unitary group $U(m)$ and consider an embedding

$$
f\colon G\to U(n)\times U(m)
$$

defined by

$$
f(g) = (\rho(g), g) \qquad g \in G.
$$

Let $\pi: U(n) \times U(m) \rightarrow U(n)$ be the projection. If we regard *G* as a closed subgroup of $U(n) \times U(m)$ by f, then ρ is the restriction of π onto G. Therefore, from Theorem 3.5 we get

$$
K_G^*(U(n),\, ad_\rho)=\Lambda_{R(G)}(\theta_1^G,\, \cdots,\, \theta_n^G)\, .
$$

This completes the proof of Theorem 1.1.

4. The special unitary group *SU(n)*

Let G be a compact Lie group and $\rho: G \rightarrow U(n)$ a unitary representation of G. Then $SU(n)$ becomes a G-submanifold of $(U(n), ad_p)$ which we denote by $(SU(n), ad_p).$

Let $j: SU(n) \rightarrow U(n)$ be the inclusion of $SU(n)$. We use the same symbol *θ*^{*G*} for the image of $\theta^G_k \in K_G^1(U(n), ad_\rho)$ by j^* for $1 \leq k \leq n-1$. In particular, $i^*(\theta_n^G)=0.$

Let T be the standard maximal torus of $U(n)$ and $i : T \rightarrow U(n)$ the inclusion of *T.* Then, by a parallel proof to that in [4] we obtain

Proposition 4.1. *Using the notation of* [4], *Lemma* 1 w

(i) $K^*_T(S(C \oplus W)) = K^*_T(SU(n)/SU(n-1))$ is an exterior algebra over $R(T)$ *with one generator g satisfying*

$$
\pi^*(g) = \sum_{k=1}^{n-1} (-1)^k \rho_1^{-k} \theta_k^T
$$

where π : $SU(n) \rightarrow S(C \oplus W) (= SU(n)/SU(n-1))$ *is the projection, and therefore* (ii) $K^*_{\mathcal{I}}(SU(n), \, ad_i) = \Lambda_{R(T)}(\theta_1^T, \, \cdots, \, \theta_{n-1}^T)$

as an algebra over R(T).

From Proposition 4.1 an analogous statement can be made as follows.

Proposition 4.2. Let G be a compact Lie group and $\rho: G \rightarrow U(n)$ a unitary *representation of G. Then*

$$
K_G^*(SU(n),\, ad_\rho)=\Lambda_{R(G)}(\theta_1^G,\, \cdots,\, \theta_{n-1}^G)
$$

as an algenra over R(G).

OSAKA CITY UNIVERSITY

References

- **[1] M.F. Atiyah:** *Bott periodicity and the index of elliptic operators,* **Quart. J. Math.** Oxford Ser. 19 (1968), 113-140.
- **[2] L. Hodgkin:** *An equivariant Kiinneth formula in K-theory,* **1968, University of** Warwick, preprint.
- **[3] H. Minami:** *A Kiinneth formula for equivariant K-theory,* **Osaka J. Math. 6 (1969),** 143-146.
- **[4] :** *Equivariant K-ring of G-manifold (U(n),ad^G)* **I, Osaka J. Math. 9 (1972),** 367-377.
- [5] G.B. Segal: *Equivariant K-theory,* Inst. Hautes Etudes Sci. Publ. Math. 34 (1968), 129-151.
- **[6] :** *The representation ring of a compact Lie group,* **Inst. Hautes Etudes Sci.** Publ. Math. 34 (1968), 113-128.