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Introduction

Let G be a compact Lie group. Throughout this paper K% will denote the
complex equivariant i£-theory associated with the group G and R(G) the ring of
virtual complex representations of G.

Let V be a G-module over the field of the complex numbers and U(V) the
group of isometries of V with the action of G defined by conjugation. In [2],
Hodgkin has announced the KG-ήng structure of U(V) without proof. So we
have proved a special case of Hodgkin's theorem in [4]. The purpose of this paper
is to give a proof of the general case.

1. Statement of the theorems

Let G be a compact Lie group and p a unitary representation of G of dimen-
sion n. That is, p is a continuous homomorphism of G into a unitary group U(ri).

We consider U(n) a differentiable G-manifold together with the adjoint opera-
tion adp: GxU(n)->U(ή)y defined by

adp{g, u) = p{g)up{g)-1 gtΞCutΞ U{n)

and then we denote the G-manifold U(ή) by (U(ή), adp).
We denote by V the representation space of p over the field of the complex

numbers C> by E the product G-vector bundle with a fibre V over U(n) and by
\k(K) =\k(V) the &-th exterior power of Z for 1 <k<n. Then we can define
an automorphism 0? of Xfc(E) by

θ<ϊ(u, z) = (uy \»(u)(z)) «G U(n)y s e \ * ( F ) .

Hence θ^ determines an element [\k(K), #?] of K};(U{ri), adp). Afterwards we
shall use the same symbol 0? in writing this induced element. Our main theorem
is:

Theorem 1.1. Let Gbea compact Lie group and p a unitary representation of
G of dimension n. Then

K%(U{n), ad,) =
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as an algebra over R(G).

Theorem 1.1 has the following corollaries.

Corollary 1.2. Let p be as in Theorem 1.1 and X a compact locally G-

contractible G-space whose orbit space XjG has a finite covering dimensnion. Then

the external tensor product homomorphism

μ: K%{U{n\ adp) ® K%{X) -> K%{{U(n\ adp)xX)

is an isomorphism.

Proof. Put U= U(n) for the simplicity. K%{Uy ad?) <g) K%{X) is an equi-

variant cohomology theory because K$(U, ad?) is a free module over R(G) and
also K%((U, adp)xX) is an equivariant cohomology theory. As easily checked,
we can construct spectral sequences of SegaΓs type for these equivariant coho-
mology theories [5].

Let X denote the orbit space of X by G. There are two sheaves over X,
φ* and τ* whose stalks are respectively

and

where X^X and GxczX is the orbit of #GX lying over x.
The external tensor product homomorphism μ induces a map of the spectral

sequence

, φq) ^ K%{U, adp) ® K%{X)
RC&")

to the spectral sequence

Ef" = H\X, τ#) ̂  K%{{U, ad?)xX).

Let Gx denote the isotropy group at x. Since Gx is homeomorphic to G/Gx

as a G-space we have

)®

and

τ*{x)^K%{{Uy ad,)xGlGx)

txKSAU, ad,')

where ρf is the restriction of p onto Gx. Therefore, from Theorem 1.1 we see
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and so μ, induces an isomorphism on the £"2-level. This permits the corollary.
Let X be a G-space as in Corollary 1.2 and 2? an ^-dimensional complex G-

vector bundle over X. Here we consider the unitary bundle π: U{E)->X of E
(See [2], §3). For \<k<n we can define also an automoprhism θf of the G-
vector bundle π*(\k(E))=\*(π*(E)) over U(E) by

0f(n, *) = («, λ*(«) W) " ^ *TO, *e λ*(£*)

and we write θf for an element of Kc(U(E)) determined by θf. Then we have
the following

Corollary 1.3.

K%{U{E)) = Aglaoiθf, •», βf)

βί ΛW algebra over K%(X).

Proof. For the sake of simplicity, put U= U(ή) and ad=adljτ , the adjoint
operation of the identity representation of U(n).

Let P be the associated principal bundle to E. Then P is a G X [/-space on
which E7 acts freely: P/U=X and

= Pχ(U, ad).
u

We can regard (Z7, #rf) as a Gx [/-space where G acts on ([/, #έ/) trivially.
Then we have

, ad)

by a parallel proof to that of [5], Proposition (2.2).
From Corollary 1.2 we obtain

•RCerxZO

Hence we get

κ%(X)®κuu,

by [5], Proposition (2.1). This shows the corollary from Theorem 1.1.
In the following sections we shall give a proof of Theorem 1.1.

2. Proof when G is connected

The proof consists of two steps.
Step 1. Proof when G is a compact abelian Lie group.

For the sake of simplicity we write U(ρ) for the G-manifold (U(n)> ad?).
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Since G is abelian, there exist 1-demensional representations of G, pk: G

£7(1) \<k<nf such that p is equivalent to the sum p ^ θp*- Then

as a G-manifiold. So it suffices to show the theorem for U(ρ), p = p 1 θ θp«.

Before beginning the proof of the theorem we prepare an elementary lemma.

Let W be the representation space over C of the representation lφpΓ1/^®*"

ΘPΓVΛ Then the unit sphere S(W) in W is homeomorphic to the homogeneous

space C/(p)/C/(p2θ θprt)asaG-spacewhere £/(p2θ θp,,)=lX ^ ( Λ Θ —θ/>«)

and also S(W) has a fixed point £=(1, 0, •••, 0).

Lemma 2.1. For £#cλ point q=(zly « , #rt) of S(W) there exists a continuous

map f: [0, l]-*E7(n) si«Λ ^αί f(0)(p)=q, /(1)=1 α/zrf pigWtMgy^fiή for

g&i Gq and t^ [0, 1] &?/?£?•£ G^ ώ ίAe isotropy group at q.

Proof. We shall prove Lemma 2.1 by induction on n. For the case of n= 1

we have nothing to do. Assume that the assertion is true for «</. In case of

n=l we consider two types of q as follows.

(i) If z2—znφ0, then

Pι(g)= - = Pn(g) g^Gq.

Namely p(g) is a diagonal matrix for any gξΞ Gq. So it is sufficient to show the

existence of a continuous map/: [0, 1]—>£/(n) such that/(0)(/>)=<7 and /(1)=1,

But this is clear because U(ή) acts on S2"'1 transitively and U(ή) is arcwise con-

nected.

(ii) If there is an integer k>2 such that ^ = 0 , then we consider a sub-

group, U\n— 1), of U(n) consisting of (n— l)-dimensional minors of which the

(k, &)-component is 1, i.e.

k
0

* *
0

... 0 1 0 .. 0 e U(ή).
0

* *
0

Let pf be a continuous homomorphism of G into U'(n— 1) defined by

P' = P i θ - θ f t k - i θ l θ P * + i θ

In virtue of the inductive hypothesis there is a map / ' : [0,

the assertion mentioned in Lemma 2.1. Then we have

U'(n— 1) satisfying
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= pω/'W/Ό?)"1 *e G€, i s [0, l ] .

Therefore when we put

f=if

where i: U'(n—1)-» J7(Λ) is the inclusion of U'(n— 1), /: G-> t/(fl) is a map which
we require, q.e.d.

Now we proceed by induction on n to complete the step 1. In case of w=l,
since G acts on £/(pi) trivially we have

by [5], Proposition (2,2). K*(U(l)) is an exterior algebra with one generator θ
and by the above isomorphism θξ corresponds to p&θ. Hence K%(U(p1))=
ARcG)(θι) is valid for any compact abelian Lie group G and any 1-demensional
representation ρ=ρ1oί G.

LetTr: U(p)-*S(W)(=U(p)IU(p2® — ®pM)) be the projection. From [4],
Lemma 1 we get

Lemma 2.2. There exists an element g in KG(S(W)) such that

K%{S{W)) = ΛRCG)(£)

as an algebra over R(G) and

**(g) = Σ*-i(-l)*PΓ*0? θ<ί£ΞKG(U(p)).

Proof. We observe the exact sequence of the pair (D( W)y S( W)) where D{ W)
is the unit disk in W. Then we see that

K°G(S(W)) = 0

and the coboundary homomorphism

8:Kh(S(W))-»K%(W)

is an isomorphism.
When we denote by λ ^ the Thorn class of the vector bundle ϊF->P(=a point),

KG(W) is a free module over R(G) generated by \ w . So if we put^r=δ~1(λWr),
then

Next we consider the following diagram
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K$(S(W')) -?-> K%(S(W))8 1 * J δ

where i: T-* U(n) is the inclusion map of the standard maximal torus T of U(ή),
p* the homomorphism induced by the continuous homomorphism ρ=p1φ 'φpn'
G-*T and π': U(n)^S(W) represents the map π: U(n)^S(C®W) in [4], §2.
Then this diagram commutes and p*(λpr')=λ,Wr. Therefore we get

by [4], Lemma 1. q.e.d.
Let JJΪ be an exterior algebra over R(G) generated by θξ, •• ,0^_1 where

for \<k<n— 1. Then we have a homomorphism

of algebras, defined by κ1{θ<ζ)=θ(ζ. Because, when we observe the homomor-
phism p*: Kf(U(ή), adi)-*K%{U{p)) mentioned in the proof of Lemma 2.2 we
get

= P*((θϊ)*) = 0 for \<k<n

since (ΘJ)2—0 in K$(U(ri), adi) by [4], Theorem 1 and also we get the relations
0?0?+0?0?=O for 1<&, l<n obviously since (9? are the elements of Kh(U(p)).
Morevoer, for each closed invariant subspace X of S{W) we can define a homo-
morphism

λ: K%(X) ® Sΰl ->

by

where^: π~1(X)-^U(ρ) is the inclusion of π~\X).
Under the assumption that the assertion of Theorem 1.1 in the step 1 is true

for n<Cl the following lemma is proved.

Lemma 2.3. The homomorphism

λ: K%{S(W))®JSl -* K%(U(p))

is an isomorphism.

Proof. Let 5(IF) denote the orbit space of S(W) by G. We have two
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sheaves over S(W), φ* and r* whose stalks are respectively

and

where q(=S(W), $<=S(W) and Gq=π-\q).
Since TO is a free module over R(G), K$(X) ® s$fl is an equivariant coho-

•RCίO

mology theory. Then λ induces a map of the spectral sequence [5]

JBI = H*(S(W), <pq) =Φ K%{S{W))®

to the spectral sequence

EV = H*{S(W), τ f ) ^ Λ

We shall prove that λ induces an isomorphism on the E2-level. Clearly we have

RCG)

BCβi

Next we observe the stalks T * ^ ) . Let / : [0, 1]-* [/(«) is a continuous map
in Lemma 2.1. Then we have

= U
4GG

and so we can define a G-map

φ: G/GqX

by

because p(g)f(O)p(g)"1=f(O) for any ^ e G .̂ Further we can easily check that
φ is an isomorphism. Therefore

Thus we obtain

by the inductive hypothesis where 0/=0?« for !<;&<#— 1.
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Here we consider the homomorphism

λ': ΛRCGg,(θ?, " . , ΘU) -> K

induced by the homomorphism

From the definition of θ^ we obtain easily

= [U(n-ί)x\"(V), Pk] {\<.k<,n-\)

where ξk is an automorphism of the product G^-bundle U(n— l )xλ*(F) given
by

ξk(u, z) = («, X"(f(0)u)(z)) «<= U(n-ί), 2 e λ*(F).

Since / is a homotopy from /(0) to the identity element of U(n) satisfying

p{g)f{t)=f{t)(>{g) f o r a n y g^ Gq and ί e [0,1], we get

Hence we see that λ r is an isomorphism. This shows that λ induces an
isomorphism on the 2?2-level. Consequently we obtain Lemma 2.3. q.e.d.

Lemma 2.2 and lemma 2.3 show that the assertion in the case of n=l is
also true. This completes the step 1.

Step 2. Proof when G is connected.
Let T be a maximal torus of G and i: T-+G the inclusion of T. Then from

the step 1 we get

K*{U{n), adPτ) = AscniβL - , θϊ)

where pτ is the restriction of p onto T and therefore, from [5], Proposition (3.8)
and [4], Lemma 2 we get

K%{U(n),

where W(G) is the Weyl group of G. This shows

3. Proof when G is not connected

We recall

Theorem 3.1. (Segal [6]) Let G be a compact Lie group: Then the restric-
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tion R(G)-^^2SR(S) is injective where S runs through the representatives of con-
iugacy classes of Cartan subgroups of G.

Then we have

Lemma 3.2. Let Gbe a compact Lie group and p a continuous homomorphism
ofG into U(n). Then ARCG,{θγy ••, ΘS) is a subalgebra of K%{U(n)% ad9).

Proof. We have a homomorphism tc2 of AR(iG^(θιy •••, θ%) into K%(U(ri)y adp)
as algebras defined by κ2(θ^)=θfy \<k<n. This homomorphism is well-defined
by the same reason as κλ in §2, Step 1 is so.

Let S be a Cartan subgroup of G and is: S-+G the inclusion of S. Then
we have

from §2, Step 1 where ps is thr restriction of p onto S. Therefore if

for ail...iιSΞR{G) in K%(U{n)y adp)y then

for any Cartan subgroup S of G. So we get

from Theorem 3.1. This shows that κ2 is injective. q.e.d.

Using the SegaΓs spectral sequence [5] we can easily check the following

Lemma 3.3. ([3], Proposition 2) Let G be a compact Lie group. Let X
and Y be compact locally G-contractible G-spaces such that the orbit spaces X/G and
YjG are of finite covering dimension. If K$(X) or K^(Y) is a free abelian group,
then the external tensor product

K%{X)®K%{Y)

is an isomorphism.

The following theorem is basic in proof of the general case.

Theorem 3.4. ([1], Proposition (4.9), [5], Proposition (3.8))
Let Gbe a compact connected Lie group and ί: Γ->G the inclusion of a maximal

torus. Then for each locally compact G-space X there is a natural homomorphism of
K%{X)-modules z"*: Kf(X)->K%(X) such that i * ( l ) = l , and hence i*i*=identity.

Theorem 3.5. Let G be a compact connected Lie group and p: G-*U(ή) a
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unitary representation. Then, for each closed subgroup H of G we have

K%(U(n), ad,M) = ARίm(θ?, - , θ»)

as an algebra over R(H) where pH is the restriction of p onto H.

Proof. As in §2, we denote (U(n), ad?) by U(p). Let π,: U(p)xG/H-+

U(p) and π2: U(p)xG/H-+GIH be the projections. Let d: G-+GxG be the
diagonal map.

We consider the homomorphism

</*: K%xG(U(P)xG/H) -* K%{U(p)xGjH).

From Lemma 3.3 and §2, Step 2 we get

x

From (1) we see that d* induces a homomorphism

μi: K%(U{p))®K%{βlH) -> K%( U(p) X G/H)

and then μt is as follows:

for

Since K%{U{p)xGjH)^ K${U(pH)) and Amm{θ?, •-, θ%) is a subalgebra of
K%{U{pH)) by Lemma 3.2, ARCH)(πf(θγ), -, πf{θ°)) is a subalgebra of Kξ
(U(p)xGIH) and also

( 2) Im M l = ARcm(πΐ(θξ), , wf (fl?)) .

Therefore if we prove that μx is an epimorphism, then we obtain Theorem 3.5.
Let T be a maximal torus of G. First we consider the restriction ρτ: T-

U(ή) of p onto T. As the case of p: G-*- U(n) we have

) X GIH)^K$(U(pT))®Kf(GIH)

and so the homomorphism

Kf(U(pr)xG/H)

induced by *i*. Also we get

from §2, Step 1 and a parallel argument to Corollary 1.2.
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Now we observe the following diagram

i + K%{U{pτ))®K%{GIH)

I *Ί.<8>*2.

4 *
K%{U(p)xGjH) z~Γ~* K$(U(pτ)xG/H)

Γ, -.., ΘΪ)®K%{GIH)

where zΊ, ί2 and y are the inclusion of T, and /u, ι'2, and y* denote the natural
homomorphisms mentioned in Theorem 3.4.

For any xeK^(U(ρ)xG/H) we can write

( 3 ) /•(*) = a

for a, «,,...,-, ei?(Γ) and y, yiv..lteK$(GIH).
Let put

z = ί'S

in ίCf.( U{pτ))®K%{GIH). Then from (3) we get

( 4 ) μ&)=j*(x).

Moreover

since ifθ^θϊ l<k<>n and i x A*=l, and

( 5 ) rfi φ ί J M ) = τr̂ 2*(

because of j*π$=πfi24t. By Theorem 3.4, 7* is the homomorphism of K%
(U(p)x G/i/)-modules. Therefore (5) shows

because of πfiϊ=j*πf.
From (3) and (6) we obtain

ζ" ^ ^

( 7 ) rf
and so we see that μ1 is an epimorphism. Hence (2) and (7) conclude
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q.e.d.

Proof of the general case. Let G be a compact Lie group and p: G-> U(n) a
unitary representation of G.

Embed G in a unitary group t/(w) and consider an embedding

f:G-+U(n)xU(m)

denned by

Let π: U(n)x U(m)-*U(ή) be the projection. If we regard G as a closed
subgroup of U(n)x U(m) by/, then p is the restriction of π onto G. Therefore,
from Theorem 3.5 we get

This completes the proof of Theorem 1.1.

4. The special unitary group SU(n)

Let G be a compact Lie group and p: G-» £/(n) a unitary representation of
G. Then *St/(w) becomes a G-submanifold of (C/(n), «JP) which we denote by
(SU(n), adp).

Let j : SU{ri)-+U{ri) be the inclusion of SU{n). We use the same symbol
θ^ for the image of ^GίCJ(f/(w), ad?) by/* for l<f t<n— 1. In particular,
.7*(0?)=O.

Let Z1 be the standard maximal torus of U(n) and / : T-> U(n) the inclusion
of T. Then, by a parallel proof to that in [4] we obtain

Proposition 4.1. Using the notation of [4], Lemma 1 w
(i) ^f(5(^ΘH0)=^ί(5ί/(»)/Sf/(Λ-l)) is an exterior algebra over R{T)

with one generator g satisfying

where π: SU(n)->S(C@>W)(=SU(n)/SU(n—l)) is the projection, and therefore

(ii) Kf(SU(n), ad,) = ARCT,(ΘL - , θ^)
as an algebra over R(T).

From Proposition 4.1 an analogous statement can be made as follows.

Proposition 4.2. Let G be a compact Lie group and p: G-* U(ή) a unitary
representation of G. Then
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K%(SU(n), ad,) = ΛjKcίβf, - , «£.,)

as an algenra over R(G).
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