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Introduction. In this note we want to construct a complete orthonormal
system of the Hubert space H\D) of square integrable holomorphic functions on
an irreducible symmetric bounded domain D. A symmetric bounded domain
D is canonically realizable as a circular starlike bounded domain with the center
0 in a complex cartesian space by means of Harish-Chandra's imbedding (Harish-
Chandra [3]), which is constructed as follows. The largest connected group G
of holomorphic automorphisms of D is a connected semi-simple Lie group without
center, which is transitive on D. Thus denoting the stablizer in G of a point
oEfl by K,D is identified with the quotient space G/K. Let g (resp. I) be the
Lie algebra of G (resp. K) and g=f-fψ the Cartan decomposition of g with
respect to f. Then there exists uniquely an element H of the center of I such
that adH restricted to p coincides with the complex structure tensor on the
tangent space TO(D) of D at the origin o, identifying as usual p with TO(D). Let
Qc be the Lie algebra of the complexification Gc of G and put Z=>/ — \H^QC.

Let (ί>c)± be the ( ± l)-eigenspace in QC of ad Z. Then they are invariant under
the adjoint action of K and the complexification pc of p is the direct sum of (pc)+

and (pc)~. Let Uc denote the normalizer of <pc)+ in G c . Then D=G/K is
holomorphically imbedded as an open submanifold into the quotient space Gc/Uc

in the natural way. For any point #eZ>, there exists uniquely a vector X^ (pc)~
such that

exp X mod Uc = z .

The map zh^X of D into (pc)~ is the desired imbedding. Note that the natural
action ofKonD can be extended to the adjoint action of K on the ambient space

Henceforth we assume that D is a bounded domain in (pc) realized in the
above manner. Let ( , ) denote the Killing form of gc and r the complex con-
jugation of QC with respect to the compact real form ί + \ / — lp of gc. We define
a ϋΓ-invariant hermitian inner product ( , )τ on g c by

(X, Y)τ = -(X, TY) for Xy
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This defines a X-invariant Euclidean measure dμ(X) on (pc)~- Let H\D)
denote the Hubert space of holomorphic functions on Z>, which are square
integrable with respect to the measure dμ(X). The inner product of H\D) will
be denoted by (( , )). X acts on H\D) as unitary operators by

(kf)(X) =/(k-'X) for k<=K,X<=ΞD.

Let 5f*((pc)") denote the graded space of polynomial functions on (pc)~. It has
the natural hermitian inner product (, )τ induced from the inner product (, )τ on
(pc)~. K acts on *S*((£C)"~) as unitary operators by

(kf)(X) = /(Ad k-'X) for U G i f , l G ( ) 3 c r .

Now let S denote the Shilov boundary of D. It is known (Koranyi-Wolf [7])
that X acts transitively on S. Thus denoting by L the stabilizer in X of a point
Z O G 5 , S is identified with the quotient space X/L. Let dx denote the X-
invariant measure on S induced from the normalized Haar measure of X and
L2(S) the Hubert space of square integrable functions on S with respect to the
measure dx. The inner product of L\S) will be denoted by < , >. X acts on
L2(S) as unitary operators by

(kf)(X)=f(Adk-1X) for k£ΞK,X£ΞS.

The space C°°(S) of C-valued C°°-functions on S is a X-submodule of L\S).
The restrictions S*((pc)-)^H2(D) and 5*((pc)-)-^L2(S) are both X-equivariant
monomorphisms. Their images will be denoted by S*(D) and S*(S), respec-
tively. They have natural gradings induced from that of S*((pc)~). Then the
"restriction" S*(Z>)->S*(S) is defined in the natural manner and it is a
X-equivariant isomorphism. Since D is a circular starlike bounded domain, a
theorem of H. Cartan [2] yields that the subspace S*(D) of H\D) is dense in
H\D) (cf. 1).

We decompose first the X-module S*(Z>) into irreducible components. We
take a maximal abelian subalgebra t of ϊ and idenitfy the real part \/ — I t of the
complexificatϊon t c of t with its dual space by means of Killing form of Qc. Let
2 c ^ - I t denote the set of roots of QC with respect to t c . We choose root
vectors Xa^Qc for α G Σ s u c h that

ΓV v 1 2

(a, a)

A root is called compact if it is also a root of the complexification ϊ c of f, other-
wise it is called non-compact. 2 f (r^sp. Σ p ) denotes the set of compact roots
(resp. of non-compact roots). We choose and fix once for all a linear order >
on \J — I t such that (pc)+ is spanned by the root spaces for non-compact positive
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roots Σ p Two roots a, β ^ Σ are called strongly orthogonal if a±β is not a
root. We define a maximal strongly orthogonal subsystem

Δ =

of Σ p a s follows (cf. Harish-Chandra [3]). Let γ2 be the highest root of Σ
for eachy, γ y + 1 be the highest positive non-compact root that is strongly
orthogonal to γ19 •••, γ y . We put

Then it is known (Kordnyi-Wolf [7]) that Xo is on the Shilov boundary S of D.
Henceforth we shall take the above point Xo as the origin of S. We put for

S\K, L)= {έχ 7, ; n^Z, n^n^-^n^O, Σ«t = v) ,
1 P i l

and
S*(K, L) = 2 &(K, L).

v>o

We shall prove the following

Theorem A. Any irreducible K-submodule of S*(D) is contained exactly
once in S*(D). The set Sy(D) of highest weights (with respect to t c) of irrrducible
K-submodules contained in SV(D) coincides with SV(K, L). Denoting by S$(D)
(resp. St(S)) the irreducible K-submodule of S*(D) (resp. of S*(S)) with the highest
weight λςΞS*(K,L),

S*(D)= Σ ΘS*(Z>)

and

S*(S) =
λ

are the orthogonal sum relative to the inner product (( , }) and < , >, respectively.
The restriction f^f of Sf(D)-+Sf(S) is a similitude for each X(ΞS*(K, L), i.e.
there exists a constant hλ>0 such that

((/> S)) = ^λ</', g'> for any

Thus, if

is an orthonormal basis of 5*(5), then

Whx-'hy, \<=S*(K, L),

is a complete orthonormal system of H2(D).
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A basis {f\pi; l</<rf λ} is, for instance, constructed as follows. Take an
irreducible if-module (p, V) with the highest weight λ, carrying a if-invariant
hermitian inner product ( , ). Choose an orthonormal basis {w, ; l < / < J λ } of
V such that the first vector ux is L-invariant. This can be done in view of
Frobenius' reciprocity since the if-module V is if-isomorphic with a K-
submodule of C°°(S). Then the functions f'Ki (1 <z<rfλ) defined by

u1) for

form an orthonormal basis of S$(S) (cf. 2).
We compute next the normalizing factor hλ. Let

be the Λ-span of \J — 1Δ in t and

denote the orthogonal projection of >/— 1* o n t o V7— l α F ° r

the number of roots α ^ J ] such that t&a=rY is called the multplicity of γ. Let
r (resp. 2s) be the multiplicity of ^(y1—72) (resp. of iT^ . If follows from
Theorem A and Frobenius' reciprocity that for each X^S*(K9 L) there exists
uniquely an L-invariant polynomial Ωλ in S$((pc)~) such that Ω λ (X 0 )=l, where
S%((PΎ) denotes the irreducible if-submodule of S*((t)c)-) with the highest
weight λ. The polynomial Ωλ is called the zonal spherical polynomial for D
belonging to λ. Let

be the C-span of {X-y'y γGΔ} in (pc)". It is identified with the complex car-
tesian space Cp by the map

Thus the zonal spherical polynomial Ωλ restricted to (α~)c is a polynomial
£lx(Yx, •••, Yp) in/)-variables. Let μ(D) denote the volume of D with respect
to the measure dμ(X). We shall prove the following

Theorem B. For λecS*(^, L), the normalizing factor hλ is given by

hλ = c(D)\ ΩΛ(JΊ>->3V)I Π (yi-yJ)
r\fίyi

sdy1-'dyp

where

Ππ (Λ-y/I
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Hua [6] proved Theorem A for classical domains by decomposing the
character of the i^-module *Sr*((pc)") into the sum of irreducible characters of
K, while Schmid [11] proved it for general domain D. Schmid proved

(a) &{D)<zS>{K, L)

by seeing the character of the i£-module *Sf*((pc)~) and by making use of E.
Cartan's theory on spherical representations of a compact symmetric pair. But
his proof of

(b)

is complicated and was done after nine successive lemmas. In this note we give
another proof of (a) by means of a lemma of Murakami and Cartan's theory, and
give a relatively short proof of (b) by means of a theorm of Harish-Chandra on
invariant polynomials for a symmetric pair.

Hua [6] computed the factors hλ for certain classical domains by integrating
certain polynomials. Our integral formula in Theorem B will clarify the mean-
ing of integrals of Hua.

1. Circular domains

A domain DdCn containing the origin 0 is said to be a circular domain with
the center 0 if together with any point z^D the point evτ:ϊθz is in D for any real
Θ^R. D is said to be a star like domain with the center 0 if together with any
point z^D the point rz is in D for any real r^R with 0 < r < 1.

Theorem 1.1. (H. Cartan [2]) Let DdC" be a circular domain with the

center 0. Then any holomorphic function f on D can be developed in the sum of

homogeneous polynomials P v in n-variables with degree v (z>=0, 1, 2, •••):

Λ*) = Σ Λ W for zt=D.
v=»o

The sum converges uniformly on any compact subset of D. The homogeneous poly-

nomials P v are uniquely determined for f.

Let D be a bounded domain in C"> dμ(z) the Euclidean measure on Cn,
induced from the standard hermitian inner product of C". Let H\D) denote
the Hubert space of holomorphic functions on Ώy which are square integrable
with respect to the measure dμ(z). The inner product of H\D) will be denoted
by (( , }). Let £*(Cn) be the graded space of polynomials in w-variables and
S*(D) the subspace of H\D) consisting of all functions on D obtained by the
restriction of polynomials in S*(Cn). Then Theorem 1.1 yields the following

Corollary. Let DdCn be a circular starlike bounded domain with the center
0. Then the subspace S*(D) of H\D) is dense in H2(D).
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Proof. If suffices to show that Ίϊ f<=H2(D) with «/, S*(Z>)»= {0}, then
/ = 0 . Theorem 1.1 implis that/can be developed as

uniformly convergent on any compact subset of D. Choose an orthonormal basis
{Pv,y} of S\D) with respect to ({ , » for each p. Then we have

In fact, since dμ(e^lθz)=dμ(z) for any Θ<EΞR, we have
((Pv,p Pμ,i)) for any Θ^R. Then/can be developed as

/ = 2 βv,y^v,y with a^

uniformly convergent on any compact subset of D. Since D is a starlike
domain, the closure rD of rZ) is a compact subset of D for any re7? with
0 < r < 1, so that the above series converges uniformly on rD. Therefore for any
Pμti we have

If we put

z for
r

then z=rz'y dμ(z)=r2ndμ(z') so that

Hence we have

and

aKi = Urn aκir»** = Urn

= ((/> -Pμ.ί)) = 0 (from the assumption).

This implies that / = 0 . q.e.d.
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2. Spherical representations of a compact symmetric pair

Let K b e a compact connected Lie group, L 2L closed subgroup of K and
S be the quotient space K/L. The space of C-valued C°°-functions on S will be
denoted by C"(S). We shall often identify C°°(S) with the space of C°°-functions
f on K such that

f(kj)=f(k) for any k<=Kyl<=L.

Let dx denote the X-invariant measure on S induced from the normalized Haar
measure on K and L2(S) the Hubert space of sequare integrable functions on S
with respect to the measure dx. The inner product of L2(S) will be denoted by
< , >. K acts on L2(S) as unitary operators by

(kf)(x) = f(k-χx) for k<=K,xeίS.

Then C°°(S) is a jK"-submodule of L2(S). A (continuous finite dimensional com-
plex) representation

p:K-+GL(V)

of K is said to be spherical relative to L if the i£-module V is equivalent to a K-
submodule of C°°(S), which amounts to the same from Frobenius' reciprocity
that the i£-module V has a non-zero L-invariant vector. We denote by S)(K% L)
the set of equivalence classes of irreducible spherical representations of K relative
to L. The totality off^C°°(S) contained in a finite dimensional i^-submodule
of C-iS), which will be denoted by o(K, L), is a i^-submodule of C^S). A
function in o(K, L) is called a spherical function for the pair (K, L). For p e
<D(K, L), the totality of / e o(i£, L) that transforms according to p, which will be
denoted by op(Ky L), is a finite dimensional i£-submodule of o(K> L). Then

o(KyL)=
p

is the orthogonal sum with respect to the inner product < , >. Peter-Weyl
approximation theorem implies that the subspace o(K, L) of L2(S) is dense in
L2(S). We assume furthermore that the pair (K, L) satisfies the condition

(*) any ρ^<3)(K, L) is contained exactly once in o(K, L),

which is by Frobenius' reciprocity equivalent to that for any spherical representa-

tion
p: K-*GL(V)

of K relative to L, an L-invariant vector of V is unique up to scalor multiplica-
tion. Then for each pG^)(J^, L), there exists uniquely an L-invariant function
ωpeop(i£, L) such that ωp(e) = l. ωp is called the zonal spherical function for
(K, L) belonging to p. Let

p: K-*GL(V)
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be a spherical representation of K relative to L. Choose a ^-invariant hermitian
inner product ( , ) on V. The equivalence class containing p will be denoted by
the same letter p. Choose an orthonormal basis {wf ; l<ί<έ/ p} of V such that
Wj is L-invariant. Define ^ f G C°°(S) (1 </<rfp) by

= (ui,p(k)u1) for k<=K.

We know that they are linearly independent, in view of orthogonality relations
of matrix elements (w, , p{k)uj). For any k'e.K we have

(u{, p{k"k)Uι) = {p(k')uit p(k)Ul)

i.e. *V,

In particular

Iφ1 = φ1 for any / e i ,

and

Therefore the system {̂ >f ; 1<;<*/P} forms a basis of op(^, L) and the zonal
spherical function ωp is given by

ωμ(k)=(uliP(k)u1) for

Furthermore orthogonality relations implies that the system

forms an orthonormal basis of op(K, L) and that

<ωp, ω/> = δ p/——.
d?

Henceforth we assume that the pair (K, L) is a symmetric pair, i.e. there
exists an involutive automorphism θ of K such that if we put

Kθ= {ktΞK;θ(k) = k} ,

L lies between Kθ and the connected component K°θ of Kθ. Then the pair (i£, L)
satisfies the condition (*) (E. Cartan [1]). For example, a compact connected
Lie group S admits a symmetric pair (K9 L) such that S=KjL. In fact,

K=SxS,
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and

θ: (*, y) H+ (y9 x) for x9yς=S

have desired properties.
In the following we summarize some known facts on a symmetric pair (cf.

Helgason [4]).
Let I (resp. I) be the Lie algebra of K (resp. of L). The involutive automor-

phism of I obtained by differentiating the automorphism θ of K will be also
denoted by the same letter θ.

Choose and fix once for all a C-bilinear symmetric form ( , ) on the com-
plexiίication lc of I, which is invariant under both the C-linear extension to lc

of θ and the adjoint action of lc and furthermore is negative definite on ϊ X !.
Then S is a Riemannian symmetric space with respect to the iC-invariant
Riemannian metric on S defined by — ( , ). We put

8 = {XtΞl tΘX=-X} = { Z e I ; ( X , I ) = {0}} .

Then we have orthogonal decompositions

where c is the center of ϊ and V is the derived algebra [ϊ, ϊ] of ϊ. We choose a
maximal abelian subalgebra α in £. Such α are mutually conjugate under the
adjoint action of L. dim α is the rank of the symmetric pair (K, L). Extend α
to a maximal abelian subalgebra t of I containing α. Then we have the
decomposition

t = bφα where b = t n l -

Let t ' = t Π V and af=a, (Ί I7. The real vector space >/— I t has the natural inner
product (,) induced from the bilinear form (, ) on I c . We shall identify %/ — 11
with the dual space of %/— I t by means of the inner product ( , ). We have
the orthogonal decomposition

Let σ be the orthogonal transformation on \/— I t defined by

σ | v

/ : = Γ ϊ ί > = — 1 and σ | \ / : r Ϊ C i = 1

and

be the orthogonal projection of \/^ϊt onto γ / ^ T α Let $ ] f denote the set oi
roots of tc with repsect to the complexification tc of t. Let Wχ=Nκ{T)IT be
the Weyl group of I, where T is the connected subgroup of K generated by t and
NK(T) is the normalizer of T in K. Σf *s a σ -invariant reduced root system in
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\/ — 11'. As a group of orthogonal transformations of \/ — 11, W^ is generated

by reflections with respect to roots in 2 f

Σf° = Σ f Π V^ΐb = {αGΣp urα = 0} ,

Γ Σ ? } = <* Σ , - {0} ,

where 4̂ is the connected subgroup of K generated by α and NL(A) (resp.

the normalizer (resp. the centralizer) of A in L. An element of 2 $ is a restricted

root of the symmetric space S and Ws is the Weyl group of S. ^ s is a (not

necessarily reduced) root system in ^/Hfci'. As a group of orthogonal trans-

formations of \J — lα, PFS is generated by reflections with respect to roots in 2 ^ .

A linear order > on \/— 1* is said to be compatible for 2 j w ^ t n respect to σ (or

with respect to the orthogonal decomposition \J — 11=\/— lb0v/— lα) if

f > ^ > " a n d OΌC^F— cc imply σα>0. Take a compatible order > on

— I t and fix it once and for all. Let

be the fundamental root system of Σ f with respect to the order > and put

Wχ is also generated by reflections with respect to roots in Πf We have the

decomposition

σ = sp where ίG Wv pUt = Ut

of σ in such a way that />2=1, p(ΐlf- n ? ) = n t - Π? and aai=pa{ mod {Π?}z

for any α . e Π t - Π ? (Satake [10]). We put

Π* = {va{; α ^ Π r Π j } = ^ Π f - { 0 } .

We may assume that Π s = {ΎJ, •••, Ύ̂ ,} with vχai=
rγi ( K i < ί ) , changing indices

of the a/s if necessary. Π^ is the fundamental root system of ]ΓJ5 with respect

to the order >. We put

Then Σ * is a reduced root system in V — 1 &'• The fundamental root system

Πf of 'ΣHs w ^ r e spect to the order > is given by

Π* = ίβ ... β \

where β. = I '
12%. if

Ws is also generated by reflections with respect to roots of Π^ or of Πf. Let
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Σ f

+ (resp. Σί> ( Σ ? D denote the set of positive roots in Σ f (resp. Σ 5 , Σ*).
Then

Σ,+ = -*(Στ

+-Σ?) = v Σ ? - { 0 } .

For AGV'^Tt, λφO, we define

A/ —~~

(λ,λ)

Theorem 2.1. (E. Cartan) Assume that K is simply connected. Then
1) KΘ is connected.
2) The kernel of exp: a-*K is the subgroup of a generated by {2πχ/ —17*;

Theorem 2.2. (Harish-Chandra) Let S£(§) (mp. S^(α)) be the space of
polynomial functions on § (resp.on α), which are invariant under the adjoint actions
of L (resp. of Ws). Then the restriction map

is an isomorphism.

Now we shall consider ίFs-invariant characters of a maximal torus of S. Put

Γ = Ί\K9 L) = {i/eα; exp H&L}

and

Γc = Γ Π Cα where Cα = c Π α .

Then Γ is a ^-invariant lattice in α and Γc is a lattice in Cα. Let Co be the
connected subgroup of ^generated by Cα. Then the ^4-orbit A in S through
the origin x0 of S and the Cα-orbit Cα in S through the origin have identifications

i=α/Γ
and

Oa = Cα/Γc .

Hence both A and Cα have structures of toral groups. The toral group A is said
to be a maximal torus of the symmetric space S. The adjoint action of Ws on
4̂ induces the action of Ws on A. This action is compatible with the natural

action of Ws on α/Γ relative to the identification: A=α/Γ. Put

Z=Z(K, L) = {λex/^Tα; (λ, H)^2πV^ίZ for any ίfGΓ} .

Z is isomorphic with the group 3)(A) of characters of A by the correspondence
\ where eκ<=£)(Ά) is defined by *λ((exp H)xo)=exp (λ, i/) for H^a. Put
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D = D(K, L) = {λ<=Z; (λ, %)>0 for any

= {λeZ; (λ, τ)>0 for any

Then we have

D = {λeZ; ί λ < λ for any ίG PFS

An element of D is called a dominant integral form on α. We define a lattice Γo'
in a! to be the subgroup of α' generated by {2π\/ — 1(J γ*) γ e Σ J We define
a lattice Γo in α and a toral group Ao by

Γo =

and

i o = α / Γ o .

Put

Zo = {λG\/^Tα; (λ, H)^2τt\/^ΛZ for any

and

ZQ is isomorphic with the group £D(A0) of characters of Ao. Put furthermore

Zo' = ZoΠV^Ϊα' = fλeV^lα^; ψ^Δ^lZ for any
I (γ, 7)

and

Lemma 1. If L=KΘ9 then

MM M / M\"1

Proof. For H^a, exp i / = £ <̂> exp — exp — = £ <=> exp — = ί exp — J <=>

H I M\ M
exp — = 0 ί exp —J <=» exp — e Kβ, which yields Lemma 1. q.e.d.

Lemma 2. 1) Γ0

/=2τrv/^Ί Σ Z(| fit)

and it is Ws-invariant. Therefore Γo is Ws-invariant.
2) Γ0CΓ. Therefore Z^Z and D0Z)D.
3) // S is simply connected, then Γ = Γ 0 = Γ 0

/ {thus Z=Z0=ZQ\ D=Z)0=Z)0

/)
and Ao can he identified with A.

Proof. 1) Denoting the reflection of \J — \a with respect to y S ^ Π * by
ί,e Ws, we have
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It follows that Γo' is Ws-invariant. Since we have

^ ^ ^ λ* for
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for 7 6 = 2 , .

4(λ, λ) (λ, λ)

Γo' is the subgroup of α' generated by 2τr\/^ϊ(i 'y*) for γ e Σ * Thus it
suffices to show that

γ*<Ξ Σ Zβf for any γ e Σ * .

But this follows from the first equality since there exist βiv •••, βir&TL* such

that vV^Πf
2) Since Γc C Γ, it suffices to show that Γo' C Γ' for Γ ' = Γ Π α'. Let X ' be

the connected subgroup of K generated by ϊ ' and L'=K' Π L. Then (K', U)
is also a symmetric pair with respect to θ and S'~KΊL' can be identified with
the K^-orbit in S through the origin x0 of S. Let

be the covering homomorphism of the universal covering group Ko' of Kf and put

L o ' = {k(ΞK0';θ0(k) = k} ,

where ^0 is the involutive automorphism of Ko' covering the involutive automor-
phism θ of K'. Ko' is compact since K' is semi-simple. 5 ' can be identified
with K0'ln'-\Lf). It follows from Theorem 2.1 and Lemma 1 that Lo' is con-
nected and

Let A' (resp. A/) be the connected subgroup of K! (resp. of JSΓ/) generated by
αr and ^47 (resp. Ao') be the J'-orbit in S' (resp. the ^o'-orbit in S0'=K0'IL0')
through the origin. Then we have identifictions

and

On the other hand, since ^ ' " ^ L ' J D L / , the covering homomorphism zr7 induces
the commutative diagram

s.'
u u
i Ί 0 —* /±
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It follows that

Γ O 'CΓ ' .

3) Under the notation in 2), we have a covering map

OaXS'-+S.

It follows from the assumption that Oa= {e} and S' is simply connected. Thus
the covering map πr is trivial and Γ '=Γ 0 ' . Moreover Cα= {0} implies that Γ = Γ '
and Γ 0 = Γ 0 ' . q.e.d.

REMARK. Define A ^ v ^ l f (ί<t<l) by

Then define M{ (1 < i < p) by

2Λ, if pai = ai and (α,. ΠJ) = {0}

Λ, if pai = a{ and (α, , ΠJ)Φ {0}

Then it can be verified (cf. Sugiura [12]) that M,.<E \/^\a' (1 <*'</>) and

(M Λ £ /8f) = Stj (1 </, <ρ).

It follows that

l — l

and

D̂Q = { Σ m>iMi m^Z

It follows from Lemma 2,1) that ί F s acts on ^40=α/Γ0 and from Lemma
2,2) that we have a fFs-equivariant homomorphism

7τ0: Ao —> A .

Let <R(A) denote the character ring of A. Then Ws acts^on &(A) (or
more generally on the space C°°(A) of C-valued C°°-functions on A) by

(sX)(ά) = X(s'ιά) for SEΞW

This action coincides on Z=W(A)cz 5l{A) with the adjoint action of Ws on Z.
Let iRpp^A) be the subring of TFs-invariant characters of A and 3lWs{A)c the
C-span of SlWs(A) in C~(i). Let 5 i ( i 0 ) , 5 i ^ ( i 0 ) and &Ws(A0)

c denote the
same objects for Ao. Then 7r0 induces a Ws-equivariant monomorphism
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and monomorphisms

Henceforth we shall identify 3lWs(A) with a subring of <RWs(A0) and 3iWs(A)c

with a subalgebra of <RWjS(Ά0)
c by means of these monomorphisms πf.

For λ e \ / ^ T α , we shall denote by λc the ^/^Tcα-component °f

respect to the orthogonal decomposition

The following facts can be proved in the same way as the classical results

for a compact connected Lie group S> so the proofs are omitted.

We define an element δ in Z o by

δ =

For λ G Z 0 , we define £ λ i

= Σ
For λ e Z , ί?λ is divisible by £ s in the ring iR^o) and

_ gλ+8

is in SίWs{A). If %λ has the expression

Xλ = Σ m^ei"

then /zc are the same for any μ. In particular, if λ E ΰ , then the highest com-

ponent in the above expression of Xλ is eλ with w λ = l . Any PFs-invariant

character X^3lWs(A) of A has an expression

X = ^mxXx with \<=D,mλ^Z.

The expression is unique for %. In particular, the system {%λ; λGD} forms a

basis of the space !RWs(A)c~

Now we come back to spherical representations of a symmetric pair (Ky L).

Theorem 2.3. (E. Cartan [1]) Let p<=3){Ky L) have the highest weight

λ G \ / - I t and ωλ be the zonal spherical function for (K, L) belonging to p. Then

1) λEfl,

2) ωλ restricted to A is in SlW8{A)c and has an expression

ωλ = Σ tfμ£"~μ with /AGZ, a^Ry α μ > 0 , Σ av- = 1 >
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with the lowst component a^e~x.

Proof. Proof of E. Cartan [1] was done in the case where K is semi-simple
and L—KQ. His proof can be applied for our case without difficulties. But his
proof of λ G \ / - lft i s n o t complete. A correct proof is seen, for example, in
Schmid [11]. q.e.d.

Lemma 3. For any λ G ΰ , there exists an irreducible representation p of K
such that the highest weight of p on tc is X.

Proof. Let ί ίGt with exp H=e. Decompose H as

H=H'+H" with F e b , f f ; / e a .

Then exp H"= (exp fiΓ'y^eL, i.e. # " G Ξ Γ . It follows from
that {X,H)^(\iH')+(X,H")={X,H")<=2π^^\Z. Moreover (λ, <*,)=
(λ, t?rα, ) > 0 for any α ^ Π j since λGfl. Thus eλ is a dominant character of
the maximal torus T of K. Then the classical representation theory of compact
connected Lie groups assures the existence of p. q.e.d.

Lemma 4. Let ZL(A) be the centralizer in L of A and ZL(A)° the connected
component of ZL(A). Then

= ZL(A)°expΓ.

Proof. The centralizer gf(α) in I of α has the decomposition

where ^(α) is the centralizer in I of α. Since the centralizer ZK(A) in the compact
connected Lie group K of the torus A is connected, we have the decomposition

It follows that any element m^ZL(A) can be written as

m = m'a with

Then a^m'^m^L so that ^eexpΓ. Thus mGZL(i)°expΓ, which proves
Lemma 4. q.e.d.

Lemma 5. Let Kc denote the Chevalley complexification of K. Put

and

where L° denotes the connected component of L. Then (K*)° is a closed subgroup of
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Kc normalized by K* and

Therefore K* is a closed subgroup of Kc with the connected compoenet (K*)°.

Proof. The first statement is clear. Take any element / G L . From the
conjugteness of maximal abelian subalgebras in § under the adjoint action of L°,
there exists l^L° such that IJ^NL(A). Since

NL(A)/ZL(A) = NLo(A)IZLo(A) = Ws ,

we can choose /2eL° such that 12IJ^ZL(A). It follows from Lemma 4 that
there exist 13^ZL(A)° and #eexρ Γ such that l2lj=lza. Therefore
l^l^l^ha with l^l^l^ISdiK*)0, i.e. ltE(K*)° exp Γ. This completes the
proof of Lemma 5. q.e.d.

Now we can prove the following

Theorem 2.4. (E. Cartan [1], Sugiura [12], Helgason [5]) For any λ E D ,
there exists an irreducible spheiical representation p of K relative to L such

that the highest weight of p on tc is λ.

Together with Theorem 2.3 we have the following

Corollary. For p^<D(K, L), let λ(p) denote the highest weight of p on t c .

Then the correspondence p i—> λ(p) gives a bijection:

4)(K, L) -> D(K, L).

Proof of Theorem 2.4. This theorem for the case where K is semi-simple
and L=KΘ was stated in E. Cartan [1] but its proof is not complete. It was
stated for simply connected K without proof in Sugiura [12]. It was proved
in Helgason [5] for the case where K is semi-simple and L is connected.
Helgason's proof can be applied for our case without difficulties, so we shall
confine ourselves to point out necessary modifications.

Let

p:K-*GL(V)

be the irreducible representation of K with the highest weight λ (Lemma 3).
By extending p to the Chevalley complexification Kc of K and restricting it to
the closed subgroup K* of Kc (Lemma 5), we have an irreducible representa-
tion of K*y which will be denoted by the same letter p. It suffices to show that
p has a non-zero L-invariant. Let N be the connected subgroup of K* generated
by the subalgebra

n=ϊ*n Σ IS,
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where I* is the Lie algebra of K* and tc

Λ is the root space of lc for a. We
shall first prove that the representation p of K* is a conical representation of
K* in the sense of Helgason [5], i.e. if υλ^ V, ^ λ φ 0 , is a highest weight vector
for p with repsect to t c, we have

p(mή)vλ = vλ for any

Denoting the infinitesimal action of ϊ c on V by the same letter p, we have

p(n)vλ = p(8j(a)K= {0} .

In fact, p(π)^λ={0} since π c 2 *£• p(bc)ΐ;λ= {0} for the complexification b c

of b since (\/=ϊb, λ ) = {0}. p(!g)ι;λ= {0} for α e Σ p α>0." It follows from
(α, λ ) e ( \ / ^ l b , λ)={0} for α ^ Σ ϊ that λ — a is not a weight of p for
α ^ Σ p α > 0 . Since the complexification of jj(α) is spanned by b c and the !£'s
for o ί G Σ p we have p(δj(α))ϋλ= {0}. Therefore it suffices from Lemma 4 to
show that

p(exp H)vλ = vλ for any H^T .

But it is clear since λGZ, i.e. (λ, H)^2πy/~^ΐZ for any H^T.
Thus we can prove in the same way as Helgason [5] that V has a non-zero

L-invariant vector, by constructing a J£*-submodule V of the i£*-module
C°°{K*) of C°°-functions on i£*, having a non-zero L-invariant, and by construct-
ing a i£*-equivariant isomorphism of V onto V. q.e.d.

Next we shall describe zonal spherical functions in terms of the basis
{Xλ; \<=D) of &WS(A)C.Λ

For β=(exρ H)XOGA, i ί e o , we put

D(ά) = Π 2sm(a,V-lH)

Let da denote the normalized Haar measure of A and | Ws \ the order of the
Weyl group Ws. For Ws-invariant functions %, Xf on A, we define

where

c=\ in the case where S is a compact connected Lie group. In particular, if X
and X' can be extended to L-invariant functions / and / ' on S, then (X, %'>
coincides with the inner product <(/, /')> in L2(S) (cf. Helgason [4]).

Fix a dominant integral form λ e Z λ We define a finite subset Dλ of Z) by
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Dλ = {μGΰ; μc = λc,

Since the system {Xμ; μ^D} forms a basis of SlWs(A)c> the matrix

is a positive definite hermitian matrix. Let

be the inverse matrix of the above matrix. In particular Aλλ>0. For any
we put

^ _

where dκ is the degree of an irrducible representation of K with the highest weight
λ. Then we have

Theorem 2.5. Let X E D and ωλ 6e ί/*e ^onα/ spherical function belonging
to the class of an irreducible representation of K with the highest weight λ. Then
ωλ restricted to A is given by

CO\ =

Proof. The idea of the following proof owes to Hua [6]. Let
Then ωμ restricted to A is in 3ίWs{A)c by Theorem 2.3. It follows by Theorem
2.3 and Corollary of Theorem 2.4 that ωμ has an expression

«V = Σ ^/VΛ with ί^GΛ, c'ΐ>0, c'l= 0 if

We define an upper triangular matrix C by

C = (C μ)v,fieDλ

Then we have

Since <ωμ, ωv> = dji1 δμV( we have

(J ^ \

where

β = (O ) μ , > V € Ξ Z > λ

It follows that

' = B' .

Comparing (μ, λ)-components of both sides, we have
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In particular

(cWdk = V"9 i.e. 3 =

hence

Since 6 " " = ^ , we have

** = ^ . q.e.d.

EXAMPLE. If S is a compact connected Lie group and (K, L) the symmetric
pair with K/L=S as mentioned before, then the set <£(S) of equivalence classes
of irreducible representations of S is in the bijective correspondence with S)(Ky L)
by the assignment pi—>pE3p*> where p* denotes the contragredient representa-
tion of p. A is a maximal torus of the compact Lie group S. Let Xp be the
invariant character of A for the dominant integral form in D(K, L) corresponding
to pKlp* by the bijection in Cororally of Theorem 2.4. Then it is nothing but
the character of p. It follows from orthogonality relations of irreducible
characters that the matrix (bkμ) is the identity matrix. Thus the zonal spherical
function ωp^p* belonging to pKIp* is given by

o>mp* - ^

where dp is the degree of p.

3. Polynomial representations associated with symmetric bounded
domains

Let D be an irreducible symmetric bounded domain with rank p realized in
(pc)~ as in Introduction. We shall use the same notation as in Introduction.

Let

Π = {<*!, •••>#/}

be the fundamental root system of 2 with respect to the order > and let
H t = Π Π Σf It is known that Π f is the fundamental root system of Σf> Π — ΐίf
consists of one element, say aly which is the lowest root in 2 ί > a n ^ for any

Σ Λ Σ p > w x = l . Let Σt + denote the set of positive compact roots.

Put

b = {H^a; (V^ΪH, Δ) = {0}} .
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Then we have the orthogonal decomposition

with respect to ( , ). We define an orthogonal transformation σ on \/~ΞΓ\ϊ by
σ\b= — 1 and σ | v

/ Z Γ T α = l . Let

be the orthogonal projection of \J~^\ί onto x/^Tα. Let /c be the unique in-
volutive element of the Weyl group Wt of K such that K ΐlf= — Πv Since
2p is the set of weights on tc of the irreducible i^-module (ΐ>c)+, we have
* Σ P = Σ ί a n d *7i=αi Put

Δ/ = *Δ = {γ/, .-, 7/}, 7/ = Λ7f ( K i < ί ) , 7/ = a x .

It is the original maxiaml strongly orthogonal subsystem of Σp °f Harish-
Chandra [3]. For the system Δ', the orthogonal projection

onto the /2-span ^/—laf of Δ7 is defined in the same way as for Δ. Put

Pi = {«^Σp+; V(α) = i(7/+7/) for some 1 <#<./<*} ,

V(α) - i7/ for some l<ί<£} ,

p π'(a) = h(Ύ/~Ύ/) for some l<i,j<ρ] ,

p vf'(a) = i7/ for some 1 </</>}.

Then (Harish-Chandra [3]) Σ is the disjoint union of P/, - P / , P/, - P ^ , K0'9
K\, — K\ and we have

if P

Furthermore the multiplicity (with respect to -sr7) of any 7/ is 1 and that of any
\ 7/ is even. It follows that

I {±i(r/±7/); Kkί<ί, ±7/, ±i7/; Kί<Λ if

Moreover we have (Moore [8])

, π _ , 0 , = UrΛi(r,/- y10. ,i(<y/- y;-i).-iT,! if
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and

, π _ m = ί ft( y/- y.O, - . i(τ/-7;-0} if *V = Φ
f I ttCyZy') - KV-rl-,), - I T / } if

Lemma 1. 1)

t y α i ~ I iΎp if P / Φ f

2) (Scbmid [11]) // Pj' Φ φ and

Y\ tnBβ with

m £λe R-span {PI}R of P/, ίAew mβ=Ofor any β.

Proof. For any a^^^+=P1

/\J P\\ ΌS'GL can be writen as

where m^Z, wt >0, mp+1=l. Since Όr/cif=i(7 /+7y/) o r iΎ/ f°r s o m e t#ι i> w e

have

Furthermore « G P / (resp. a^P\) if and only if mp=0 (resp. mp=\).
1) If P / = φ , then γ ^ P / . For a = 7 j , the coefficients in the above

expression are m 1= =m / > _ 1 =2, ^ = 0 and vr/y1=yp

/. If P / φ φ , then for
a = 7 i , the coefficients are m1=^'=mp_1=2y mp=l and t?r / 7i=i7/. Now the
assertion 1) follows from tara1=/c~1t<r//ca1=/c"1'ar/71.

2) Let

a = 2 w, α, with w, e Z, τ/, > 0
i l

be in Σ ρ + I* follows from the first argument that

(a) if α G P ; , vr'cCi^ - i 7 / , then n~0,
(b) if α e P/, then there exists ^ E Π J such that n{>0 and vr/a4= — £ 7/.

This implies the assertion 2). q.e.d.
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Now P19 P±, Ko and K± are defined for Δ in the same way as for Δ'. Then
K transforms P1 (resp. Ph Koy Ki) onto P/ (resp. P/, Ko', K{). It follows that
the above mentioned properties due to Harish-Chandra are also satisfied by our
objects for Δ. But Moore's results should be modified as follows.

I { i(7χ-7 2 ), - UΎp^-Ύp), W if A Φ Φ

f I ίiίTx-Ύ,),-,1(7^1-7^ iΎ }̂ if Λ Φ Φ

They follows from Lemma 1,1) and

Note that X . c Σ f

+ while JSΓ/c—Σf

+.

Lemma 2. 1) 77*e or&r > z'ί α compatible order for 2 wiϊλ respect to σ
in the sense of 2.

2) -αr/Γ0— {0} is a root system with the fundamental root system

with respect to the order > .

3) IfP&φand

Ύ\mQβ with

is in the R-span {P^R of Ply then mβ=0for any β.

Proof. 1) is clear from the form of -αrΠ— {0} above.

2) is clear since

πKo-{0} = {± UΎi-Ύj);l<i<j<p}

3) follows from Lemma 1, 2) and κP^=Pi', κP1=P1

/. q.e.d.

For λ e v7 —1*> λφO.we define as in 2

λ* = —?— λ
(λ,λ)
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and put

Σ
β<ΞΔ

Since (^γ, , γ y * ) = δ , y for 1 <i,j<:p, we have

Hence eigenvalues of adZ0 are ± 1 , ± i on pc

y 0, ± | on F . Let pgly pgh tξ,
l^ denote the corresponding eigenspaces. Note that the origin Xo of the Shilov
boundary S is in p£t.

The following results are due to Korάnyi-Wolf [7]. We define an element
c of G c, which is called Cayley transform, by

and define an automorphism of Gc by

for

The automorphism Adc2 of gc obtained by differentiating θ will be also denoted
by the same letter θ. Then ΘA=\ and on \/ — I t it coincides with — σ. Put

g o =

and

Then ! 0 is ^-invariant and!0

I o = { l G f ; [ Z 0 , Z ] = 0 } .

Hence ϊ0 is a real form of Iξ containing t as a maximal abelian subalgebra. Ko

is nothing but the set of roots of tξ with respect to tc. The complexification p$
of p0 is the direct sum of p%x and p% g0 is a reductive subalgebra of g with a
Cartan decomposition

9o = I
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Let Go (resp. Ko) be the connected subgroup of G generated by g0 (resp. by ϊ0)
and let

= XQ} = Kof)L .

Put

and

Then Go acts on Do transitively and K Π Go coincides with iC0, so that Do is
identified with the quotient space GQjK0. Furthermore Ko acts on So transitively
so that So is identified with KJL0. Do is totally geodesic in D with respect to
Bergmann metric of D and it is also an irreducible symmeric bounded domain
with the same rank as D. So is the Shilov boundary of 2)0. The complex
structure of Do is given at the origin by adH0 with \/ — \H0=Z0. We have

The inclusion DQCZp^_x is nothing but the Harish-Chandra's imbedding of
D0=GJK0. (Koy Lo) is a symmetric pair with respect to θ, having the same
rank as D. Hence

I o =

is the Lie algebra of Lo and a is a maximal abelian subalgebra of

We can define a semi-linear transformation Xv^X of p£t by

X=τθX=θτX for

Put

It is a real form of p^j and is invariant under the adjoint action of Lo on p^. The
correspondence X\-^[Xy Xo] gives an isomorphism

which is equivariant with respect to the adjoint actions of Lo.
Now we shall consider the polynomial representation *Sf*((pc)") of K. Let

S*((PC)+) be the symmetric algebra over (t>c)+. K acts on 5*((t>c)+) by the
natural extension Ad of the adjoint action of K on (pc)+. On the other hand,
the non-degenerate pairing
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by means of the Killing form ( , ) induces the identification

This identification is compatible with the actions of K, since the Killing form is
invariant under the adjoint action of K. In the same way we have a J^0-equi-
variant identification

can be considered as a i£0-submodule of 5^((pc)+) by means of the natu-
ral monomorphism 5*(p$i)-^ 5*((pc)+) induced from the inclusion pζ1d(pc)+.

Theorem 3.1. (i) Any irreducible K-submodule of S*((pc)+) (resp. K0-sub-
module of S*(p%J) is contained exactly once in S*((pcY) (resp. in S^p^)).

(ii) For an irreducible K-submodule V of £*((t>c)+), we put

Then V\-^V0 is the one to one correspondence between the set of irreducible K-sub-
modules of 5r

Hί((pc)+) and the set of irreducible K0-submodules of S^p^) in such a
way that

1) The highest weights on tc of V and Vo are the same.
2) The subspace of L-invarίants in V is 1-dimensional and contained in Vo.

(iii) The highest weight λ e y ' - I t of an irreducible K-submodule V of
S*((pc)+) is of the form

P

2 Qλ = 2
ί=»l

IfΊln~vy then V is contained in Sv((pc)+). i.e. S\D)(ZS\K, L) under the
i

notation in Introduction.

For the proof of the theorem, we need the following

Lemma 3. (Murakami [9]) Let ϊ be a Lie algebra over R and ΐc the com-
plexification of I. Assume that there exists F G \ / - l ϊ c ϊ c such that ϊc is the
direct sum of O-eigenspace tξ> (-\-Y)-eigenspace t% and (— \)-eigenspace ϊ£ of ad Y,
respectively. Let (p, V) be a complex irreducible l-module with t-invariant
hermitian inner product. Denoting the extension to tc of p by the same letter p, let
a1>a2>'">am (a^R) be eigenvalues of ρ(Y)> and St be areigenspace of p(Y)
(1 <* <m). Put ϊ o =ϊ£ Π ! ( , which is a real form of tξ). Then

2) Each St is a tQ-submodule of V and

V=S1+-

is the orthogonal direct sum.
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3) Sλ and Sm are irreducible t0submodules of V and characterized by

S, = {v<EΞ V; p(X)v = 0 for any X<= ϊ $ ,

Sm = {VZΞ V; p(X)v = 0 for any I G ϊ£} .

Proof of Theorem 3.1. The infinitesimal action of tc on ^((^O*) induced

from the adjoint action Ad of K will be denoted by ad.

Let V be an irreducible i£-submodule of 55iί((pc)+). Since Z is in the center

of I c, it follows from Schυr's lemma that V is contained in an eigenspace of

ad Z in 5Hί((pc)+). But since ad Z is the scalor operator v on 5v((pc)+), V is

contained in 5v((pc)+) for some v. Let λ e \ / ^ I t be the highest weight of V.

Put Y= 2Z0 e \J ^ T ϊ C ϊ c . Then the decomposition

satisfies the assumption in Lemma 3. So we have a decomposition

V=S1+-+Sm

into i£0-submodules, where St is an irrducible .SΓ0-submodule and is the eigen-

space for the maximum eigenvalue of ad Y in V. It is characterized by

S, = {v<=Ξ V; ad {X)v = 0 for any I G ff} .

Thus a highest weight vector vλ of the i^-module V is contained in Sx because

of ^ c 2 f

+ . It follows that putting V0=S19 Vo is an irreducible J^0-submodule

of S^((pc)+) with the highest weight λ.

We shall show that Vo= V Π ̂ (p^i)- We have the decomposition

as j£0-modules. ad Zo is the scalor operator r-\-\s=\{r-\-v) on S,($£)(&Ss(\ήj).

In the same way as the first argument, we can get the decompsotion

into irreducible ^0-submodules such that any V{ is contained in

for some (r9 s). Since 5*((pc)~) is i^-isomorphic with 5 * ( 5 ) c C°°(S), V has an

L-invariant z^ΦO. Decompose w as

w = ^-f \-wki w,e Vi (ί^i^h).

At least one of the w/s, say wu is not zero. Let \1&χ/~ΞP[t be the highest

weight of the irreducible i£0-module Vx. Since wx is a non-zero L0-invariant of

V19 V1 is a spherical i£0-module relative to Lo. (Ko> Lo) is a symmetric pair, a is

a maximal abelian subalgebra of §0 and the order > on y/ — I t is a compatible

order for Ko with respect to σ by Lemma 1, 1), so we shall use the notations
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Γ(Koy Lo), Z(KOi Lo), D(KQJ Lo) in 2. Then it follows from Theorem 2.3 that
o, Lo). On the other hand, if Γ x c Sr(ϊ>f)<g)Ss(p<?), λx is of the form

with 2 wfl>=r, 2 ι»β=ί. Since D(K0, L 0 ) c \ / ^ ϊ α = {Δ}ΛC {P^*, we have

It follows from Lemma 2,3) that r=v, s=0, i.e. J^C F Π Sv(pξ). On the other
hand, V Π 5v(pf) c F"o since the possible maximum eigenvalue of adF on F i s
2z/. Thus we have that Vo= V1== V D *Sv(pc).

The above argument shows also that any L-invariant in V is contained in
Vo. It is unique up to scalor since (Ko, Lo) is a symmetric pair.

Conversely, let Vo be an irreducible i£0-submodule of ^ ( p ^ ) with the
highest weight λ e \ / ^ T t . In the same way as the first argument, we know
that Vo is contained in *5v(p51) for some y. Let ϊ ; λ G F 0 be a highest weight
vector. Then ad Ifϋ λ= {0} because of [ϊf, p J J = {0}. Hence ad Xavλ=0 for
any α E ^ . We define V to be the C-span of {Ad kvλ;k<=K} in Sv((pc)+).
Then V is an irreducible i£-submodule of *Sf

ί̂((p
c)+) with the highest weight

It is easy to see that each of the above correspondences FH-> VO and Vot-*V
is the inverse of the other. This proves assertions (i) and (ii).

(iii) We have [iγ*, X_Ύ]]=-δ,jX-v (l<i,j<p) because of (i<tf, Ύi)

we have

Thus we have

and

It follows from

Therefore λ is

p). It follows that

Ad(expH)X0=-

T(Koy LQ) =

Z(Koy

Lemma 2,2) that

D(KoyLo)= {±nir
f = l

of the form

P

p

for H= 2π v — 1 2
ι = l

p

p

P

Lo) = Σ Zγ, .

P

λ = *ΣϊnirYi with fii
i = l

On the other hand, λ is of the form
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X = 2] maa with W Λ G Z , ^ 0 ,
*ep1

which implies that nx > > /^ > 0. If F C Sv((pc)+), then F o c Sv(P+i) and ad Zo

is the scalor operator v on Fo, which equals (λ, Z 0 ) = Σ w* q.e.d.

REMARK. In terms of polynomial functions S*((pc)~), for an irreducible K-
submodule V of S*((pc)~)> VQ is obtained by restriction to p£± of functions in V.

Proof of Theorem A. Orthogonality relations for the S$(D)ys (resp. for
the Sf(S)'&) and the assertion that the restriction S$(D)^>S$(S) is a similitude
follow from Schur's lemma. So it suffices to show that the cardinalities of
S\D) and S\K, L) are the same.

From the first argument in the proof of Theorem 3.1 (iii), we see that

= X _ v ( γ e Δ ) for the L0-equivariant isomorphism ψ: \/—
We put

Since the Weyl group WSQ of So is isomorphic with the group of permutations
of Δ by Lemma 2,2), the "Weyl group" Ws=Nφ-)IZLlcΓ), where NLo(a~)
(resp. ZLo(a~)) is the normalizer (resp. centralizer) of α~ in Lo, is isomorphic
with the group of permutations of {X-y; γGΔ}. On the other hand, since
Sfo($o) is isomorphic with S%g (a) by Theorem 2.2, Sfjfi^) is isomorphic
with SSr-(α-). Hence 5 ^ ^ ) ° is isomorphic with S^-((cΓ)c). It follows
from Theorem 3.1, (ii), 2) that the cardinality of c5v(D) is equal to dim SΊ0(#ii)
=dim Sws-((a~)c)=the number of linearly independent symmetric polynomials
in ^-variables with degree v> which is known to be the cardianlity of SV(K, L).

q.e.d.

4. Normalizing factor hλ

Let Ά=AdA(X0), denoting by A the connected subgroup of Ko generated
by a. A has a natural group structure induced from that of α. Let

T= { ίeC*; | f | = l }

be the 1-dimensional torus. Under the identification in Introduction of (α~)c

with Cp, a' is identified with Rp and A with Tp. We see that the latter identi-
fication is compatible with group structures and complex conjugations, in view
of the expression of Ad(exp H)X0 in the proof of Theorem 3.1, (iii). Moreover,
under the same identification we have (Moore [8])

DΠa' =

denoting by z{ (!</</>) the i-th component of z^Cp. By means of this
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identification we define a measure on α" by

dH = dx1 ••• dxp

and a function D(H) on α" by

D(H)=ή(2xi)xi» Π ((*,+*,.)(*,—*y)) r for ffεc",

where r, 2s are multiplicities defined in Introduction. Then we have the
following

Lemma 1. There exists a constant c'>0 such that

\ f{X)dμ,{X)=c'\ J(H)\D(H)\dH
JD JDΪ\CL

for any integrable K-invariant function f on D.

Proof. It is easy to see that Ad cH=H for any //Gb and Adcγ* =
Xy—X_γep for any γ G Δ . Put

α° = AdcW^la) = {XΊ-X.Ί\

5 = Ad

and

Then α° is a maximal abelian subalgebra of p, § is a Cartan subalgebra of
g containing α° and ί)R is the real part of the complexification ί)c of §. We
define lienear forms h£ (1 </</>) on α° by

If At is identified with an element of α° by means of the Killing form, we have
Aάc^y^—hi ( l<z </>). The linear order on \)R induced by Kάc from the
order > on \/— I t is a compatible order for A d c Σ w i t n respect to the decom-
position ΐ ) Λ = \ / ^ T b φ α 0 . This follows from 3, Lemma 2,1). Thus positive
restricted roots on α° of the symmetric space D=G/K are

>, 2/*,.; \^i<p} if

{hi±h.;l<:i<jtζp,2hiyhi;l<:i<p} if

The multiplicity of h{±hj (l</<y</>), i.e. the number of roots in Ad c^
projecting to hi±hjy is the same as that of i(7/±7 y ) . Since the Weyl group
WD on α° of D=GjK is generated by reflections with respect to hr—h2, •••,
hp_1—hpf hp, hence transitive on the set {±hi±hj\ 1 < i<j^p}, it follows that
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multiplicities of these roots are the same r. By the same reason, multiplicities
of hi (l<z</>) are the same 2s, which is even from the results of Harish-
Chandra mentioned in 3. In the same way we know that multiplicities of
2hi (1 </</>) are 1. Thus the product D° of positive restricted roots (multiplicity
counted) is given by

ίlD\W)=ίl2hi{H'>)h{{HT Π ((hi+hJ)(H°)(hi-h/)(H°)γ for tf eα".

Let dX (resp. dH°) denote the Euclidean measure of p (resp. of α°) induced
from the Killing form ( , ), and dk the normalied Haar measure of K. Then
(cf. Helgason [4]) under the surjective map Kxa°->p defined by (k, H°)\-*
Ad kH°, these measures are related as follows:

dX=c"\D\H°)\dkdW with some constant c " > 0 .

Now we define a K-equivariant jR-isomorphism^: p-*(pc)~ by

for

It is easy to see that j(Xy—X_y)=—X_y for any γ G Δ , hence ja°=a~. Since
K acts irreducibly on p, the map j is a similitude with respect to inner products
(,) and the real part of (, )τ. Therefore under the surjective map Kx a~-^(pc)~
defined by (k, H) ι-> Ad kHy we have

dμ(X) = c' I D(H) I dk dH with some constant c' > 0 .

Seeing Ad K(D Π a~)=D, we get the proof of Lemma 1. q.e.d.

Take a form \^S*(Ky L). Choose an orthonormal basis {u{\ l < ί
of St((pc)~) with respect to ( , )τ such that {κf l < ί <dKo} spans

p£1) and ux is L-invariant. Put

upui)τ fork^K (l<f,

The arguments in 2 show that {//; l < / < J λ } form an orthonormal basis of
S*(S) with respect to < , > and 99/ is the zonal spherical function ωλ for (K, L)
belonging to λ, identifying C°°(S) with the space of right L-invariant C°°-func-
tions on K. The zonal spherical polynomial Ωλ for D belonging to X defined
in Introduction is characterized by that its restriction to S coincides with ωλ.
Ωλ restricted to p^ is the zonal spherical polynomial for Do belonging to λ and
ωλ restricted to *S0 is the zonal spherical function for (KQy Lo) belonging to λ. Ωλ
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restricted to (α~)c is a symmetric polynomial since it is Wjo-invariant. Let
fi^S^((pc)~) ( l < * < d λ ) be the unique polynomial such that its restriction to S
is//. Then {/,•; l < z < J λ } form an orthogonal basis of S*((pc)~) with respect
to ( , )τ such that {/,•; l</<rf λ 0 } form an orthogonal basis of S$((pc)~) ΓΊ

^ ) . They satisfy relations

/,(Ad k-'X) = g ρί(k)fj(X) for ktΞK, X^{)?CY (ί<i<dλ).

We put

Then for any k&Kwe have

Φλ(Ad k-*X) = -J-Σ ( Σ

= T Σ (Σ

for

i.e. Φ λ is a isΓ-invariant C^-function on {pc)~. Note that

Φλ(X) = ̂ Σ I / β ( ^ ) l 2 for

Lemma 2.

( Φλ(H)\D(H)\dH
D(\Ct~

Proof.

ί Φλ(X)^(Z) = -j- Σ <(/.-, /,)) = i- Σ Aχ</Λ //> = ̂ λ

On the other hand, by Lemma 1 we have

Φκ(X)dμ(X) = A Φκ(H)\D(H)\dH. q.e.d.
J DΓ\CtDΓ\Ct

Proof of Theorem B. Making use of the complex conjugation X\-^X oί
p£j_ defined in 3, we define Φ λe5 f*(p£ 1) by

d\,0

Then Φ λ = Φ λ on p_x and we have for any
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Φλ(Ad kXΛ) = ±- Σ/»(Ad kX,)fΛ{Ad kX0)

= j Σ/.(Ad kX0)fΛ(Adθ(k)X0)

1

= Σ pΐ(k)pΐ(θ(k)) = Σ

In particular for any

i.e. for any ά e A
Φλ(ά) = ωλ(ά2) =

Since A = T* is a compact real form of C*p and C* p is open in Cp—(a~)c, we
have

Φχ(*» - . * > ) = Ωλ(βϊ, , a») for any ̂  C * = (α") c .

By Lemma 2 we have

Φκ{H)\D(H)\dH

d

= C' [ ΓLx(xl .», **) I Π (2x,)ίcf Π ((

= c(D)\ Ωχ(Λ, ,^)l Π ( j . - ^ Π Π

for some constant c(D)>0, which does not depend on λ. Inparticular, for λ=0

π (yi-yj)r\Ay\dyι-dy,9

since Ω o = 1. This completes the proof of Theorem B. q.e.d.

REMARK. It can be proved that Φ λ is an L0-invariant polymomial on p£x.

The multiplicities r, s are given as follows.

D rank D r s

P 2 q-p

(Π).

(ΠI).
(IV)Λ (w>3)
(EIII)

(EVII)

Γ /?Ί

Lnl 1
n
2
2
3

Λ
T"

1
» — 2

6
8

ί2

(o
0
0
4
0

M odd
n even
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The zonal spherical polynomial Ωλ is given as follows.
For integers nly *",np we define the Schur function {nly ~ ynp} on the

/>-dimensional torus Tp by
Γ •* ~\

(\fk\-( f **i'^~p~'j\ . . if I

{ "»"W( ' )=^//>-Λ '? for ί= i leΓ'cC".

{wj, •••, w^} i s s y m m e t r i c i n v a r i a b l e s ^ , ••-, ̂  a n d i t is a p o l y n o m i a l i n ί1? •••, tp

P P

if and only if w, > 0 (1 </</>). For an element λ = Σ ni

rYi^^Zji=Z(K0>Lo),

the i-th coefficient n{ will be denoted by w, (λ).
Then we have

Theorem 4.1. The zonal spherical polynomial Ωλ for D belonging to
, L) is determined on (α~)c by the relation

Ω\(t) = Σ ^λ{wi(^)> •••> W ^ ( A ^ ) } ( 0 f ° r a n y tξ=zTp

where the c£'s are coefficients in Theorem 2.5 for the symmetric pair (Koy Lo).

Proof. As we have seen in the proof of Theorem B, Ωλ is determined on

Ωλ(£) = ωλ(t) for any t^ Tp = A .

By Theorem 2.5, ωλ has an expression

rt for t(=Tp=A.

Since the Weyl group WSQ acts on Z(Koy Lo) by the group of permutations of
7i> "•> 7/»> PFso-invariant characters Xλ of 4̂ are nothing but Schur functions.
As we have seen in the proof of Theorem 3.1, (iii), the z-th component of
Ad(exp H)XotΞ TP=A is exp(-(γ, , H)) for any H<=a. It follows that

Xμ(t) = {nx{μ)y ..., np(μ)}(t) for ί e Γ^ = A .

Hence we have

for t£ΞTp = A. q.e.d.

In the case of the domain D of type (ϊ)ptq (p^q), So is the unitary group
U(p) of degree p. We have in view of Example in 2 that

1 for t^τp = Ay
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where dλ is the degree of the irreducible representation of U(p) with the signa-

ture (Wj(λ), •••, np(\)). In the case of the domain D of type (IV)rt, So is the Lie

sphere and Ωλ can be described in terms of Gegenbauer polynomials, which are

zonal spherical functions for the sphere. So our integral formula in Theorem B

clarifies the meaning of integrals of Hua [6].
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