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Introduction. In this note we want to construct a complete orthonormal
system of the Hilbert space H*(D) of square integrable holomorphic functions on
an irreducible symmetric bounded domain D. A symmetric bounded domain
D is canonically realizable as a circular starlike bounded domain with the center
0 in a complex cartesian space by means of Harish-Chandra’s imbedding (Harish-
Chandra [3]), which is constructed as follows. The largest connected group G
of holomorphic automorphisms of D is a connected semi-simple Lie group without
center, which is transitive on D. Thus denoting the stablizer in G of a point
o€ D by K, D isidentified with the quotient space G/K. Let g (resp. f)be the
Lie algebra of G (resp. K) and g=f-+p the Cartan decomposition of g with
respect to §. Then there exists uniquely an element H of the center of ¥ such
that ad H restricted to p coincides with the complex structure tensor on the
tangent space T,(D) of D at the origin o, identifying as usual p with T,(D). Let
g€ be the Lie algebra of the complexification G¢ of G and put Z=+/ —1H&gC.
Let (p€)* be the (& 1)-eigenspace in g€ of ad Z. Then they are invariant under
the adjoint action of K and the complexification p¢ of p is the direct sum of (p°)*
and (p€)~. Let UC denote the normalizer of (p°)* in G¢. Then D=G/K is
holomorphically imbedded as an open submanifold into the quotient space G¢/U°¢
in the natural way. For any point 2& D, there exists uniquely a vector X & (p°)~
such that

exp X mod U¢ = z.

The map z—X of D into (p€)” is the desired imbedding. Note that the natural
action of K on D can be extended to the adjoint action of K on the ambient space
).

Henceforth we assume that D is a bounded domain in (p€)~ realized in the
above manner. Let (, ) denote the Killing form of g€ and = the complex con-
jugation of g€ with respect to the compact real form £++/ —1p of g¢. We define
a K-invariant hermitian inner product ( , ), on g¢ by

(X, V), = —(X,7Y) for X, Yegq.
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This defines a K-invariant Euclidean measure du(X) on (p€)~. Let H*(D)
denote the Hilbert space of holomorphic functions on D, which are square
integrable with respect to the measure du(X). The inner product of H*(D) will
be denoted by { , ). K acts on H*D) as unitary operators by

() X)=f(kX) for k€K, XeD.

Let S*((p°)~) denote the graded space of polynomial functions on (p€)~. It has
the natural hermitian inner product (, ), induced from the inner product (, ), on
(p°)~. K acts on S*((p©)") as unitary operators by

() X) = fAdk'X)  for keK, Xe(po) .

Now let S denote the Shilov boundary of D. It is known (Koranyi-Wolf [7])
that K acts transitively on S. Thus denoting by L the stabilizer in K of a point
X,€S, S is identified with the quotient space K/L. Let dx denote the K-
invariant measure on S induced from the normalized Haar measure of K and
L*(S) the Hilbert space of square integrable functions on S with respect to the
measure dx. 'The inner product of L*(S) will be denoted by {, >. K acts on
L*(S) as unitary operators by

(k) X)=f(Adk'X) for keK,XeES.

The space C>(S) of C-valued C*=-functions on S is a K-submodule of L*(S).
The restrictions S*((p€)~)—H?*(D) and S*((p°)~)—L*S) are both K-equivariant
monomorphisms. Their images will be denoted by S*(D) and S*(S), respec-
tively. 'They have natural gradings induced from that of S*((p€)~). Then the
“restriction” S*(D)—>S*(S) is defined in the natural manner and it is a
K-equivariant isomorphism. Since D is a circular starlike bounded domain, a
theorem of H. Cartan [2] yields that the subspace S*(D) of H*(D) is dense in
H*(D) (cf. 1).

We decompose first the K-module S*(D) into irreducible components. We
take a maximal abelian subalgebra t of ¥ and idenitfy the real part \/ —11 of thc
complexification t€ of t with its dual space by means of Killing form of g¢. Let
21C\/ —1t denote the set of roots of g¢ with respect to t¢. We choose root
vectors X, g¢ for ¢ =3 such that

[Xa Xl = —2a,

(a, )
X, =X_,.

A root is called compact if it is also a root of the complexification ¢ of £, other-
wise it is called non-compact. 33, (resp. 23, ) denotes the set of compact roots
(resp. of non-compact roots). We choose and fix once for all a linear order >
on /1t such that (p€)* is spanned by the root spaces for non-compact positive
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roots 2‘_,";' . Two roots a, BE ] are called strongly orthogonal if o+ is not a
root. We define a maximal strongly orthogonal subsystem

A= {r, %} %1>9,>>7,>0, p=rankD

of 2; as follows (cf. Harish-Chandra [3]). Let v, be the highest root of >3 and
for eachj, 7,,, be the highest positive non-compact root that is strongly
orthogonal to v,, -, v;. We put

X,=-X_,.

YEA

Then it is known (Koranyi-Wolf [7]) that X, is on the Shilov boundary S of D.
Henceforth we shall take the above point X, as the origin of S. We put for
ve Z,v>0

4 »
‘SW(K) L) = {2”:’71’; Il,-EZ, n1>nz>”'>np>0y Eni = ”} )
i=1 i=1

and

SHK,L)= 8K, L).

¥>0
We shall prove the following

Theorem A. Any irreducible K-submodule of S*(D) is contained exactly
once in S¥(D). The set S*(D) of highest weights (with respect to tC) of irrrducible
K-submodules contained in S*(D) coincides with S*(K, L). Denoting by S¥(D)
(resp. S¥(S)) the irreducible K-submodule of S*(D) (resp. of S*(S)) with the highest
weight A S*(K, L),

S¥D)= 3 @®SHD)

AES*K, 1D

and

S¥S)= 2 DSKS)

AES*( K, L)

are the orthogonal sum relative to the inner product { , Y and < , >, respectively.
The restriction fr— f’ of S¥(D)—S¥(S) is a similitude for each N S*(K, L), i.e.
there exists a constant hy >0 such that

(f, ) =m<f,g>  forany f,geS¥D).
Thus, if
{fri 1<i<d\}, AeS¥K, L)
is an orthonormal basis of S¥(S), then
{\/h_—R_lfk,i; AE S*(K’ L)a 1<l<d)‘}

is a complete orthonormal system of H*(D).
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A basis {f"5 ;; 1<i<d,} is, for instance, constructed as follows. Take an
irreducible K-module (p, V') with the highest weight A, carrying a K-invariant
hermitian inner product (, ). Choose an orthonormal basis {u;; 1<i<d,} of
V such that the first vector u, is L-invariant. This can be done in view of
Frobenius’ reciprocity since the K-module V is K-isomorphic with a K-
submodule of C=(S). Then the functions f, ; (1<i<d,) defined by

f,k,i(kXo) = \/d_}‘(ui: P(k)ux) for keK

form an orthonormal basis of S¥(S) (cf. 2).
We compute next the normalizing factor &,. Let

a= {/—1A}z
be the R-span of \/ —1A in t and

w:V/—1t—>v—1a

denote the orthogonal projection of \/— 1t onto/—1a. For yew>— {0},
the number of roots @ =3 such that wa=1 is called the multplicity of v. Let
r (resp. 2s) be the multiplicity of i(y,—1,) (resp. of %v,). If follows from
Theorem A and Frobenius’ reciprocity that for each & S*(K, L) there exists
uniquely an L-invariant polynomial Q, in S¥((p€)~) such that 0,(X,)=1, where
S#((p°)7) denotes the irreducible K-submodule of S*((p€)~) with the highest
weight A. The polynomial Q, is called the zomal spherical polynomial for D
belonging to A. Let

(@7)° = {X_y; yEA}c

be the C-span of {X_,; y€ A} in (p€)~. It is identified with the complex car-
tesian space C? by the map

- éziX—w = (zl>

=l
%p

Thus the zonal spherical polynomial Q, restricted to (a~)¢ is a polynomial
(Y, +++, Y,) in p-variables. Let u(D) denote the volume of D with respect
to the measure du(X). We shall prove the following

Theorem B. For n& S*(K, L), the normalizing factor h, is given by

P4
h =cDS Q(yy, v, 11 —v. )| 1y dy,--dy
’ ( )0<.v,<<1(1<i<p) 2 yp) 1<i<i<»(y y’) ;—1y V1 4
where

oD) = w(D)| |2, | Ty dyiedy)

0<y; <1a<isp 1SISI<P
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Hua [6] proved Theorem A for classical domains by decomposing the
character of the K-module S*((p€)~) into the sum of irreducible characters of
K, while Schmid [11] proved it for general domain D. Schmid proved

(a) S(D)C SK, L)

by seeing the character of the K-module S*((p€)~) and by making use of E.
Cartan’s theory on spherical representations of a compact symmetric pair. But
his proof of

(b) SK, L)c $'(D)

is complicated and was done after nine successive lemmas. In this note we give
another proof of (a) by means of a lemma of Murakami and Cartan’s theory, and
give a relatively short proof of (b) by means of a theorm of Harish-Chandra on
invariant polynomials for a symmetric pair.

Hua [6] computed the factors %, for certain classical domains by integrating
certain polynomials. Our integral formula in Theorem B will clarify the mean-
ing of integrals of Hua.

1. Circular domains

A domain D CC” containing the origin 0 is said to be a circular domain with
the center 0 if together with any point z& D the point eV~ 2 is in D for any real
0= R. D issaid to be a starlike domain with the center 0 if together with any
point z€ D the point rz is in D for any real r& R with 0<r< 1.

Theorem 1.1. (H. Cartan [2]) Let DCC” be a circular domain with the
center 0. Then any holomorphic function f on D can be developed in the sum of
homogeneous polynomials P, in n-variables with degree v (v=0, 1, 2, ---):

fz) = gP,,(z) for z€D.

The sum converges uniformly on any compact subset of D. The humogeneous poly-
nomials P, are uniquely determined for f.

Let D be a bounded domain in C”, du(2) the Euclidean measure on C”,
induced from the standard hermitian inner product of C*. Let H*D) denote
the Hilbert space of holomorphic functions on D, which are square integrable
with respect to the measure du(2). The inner product of H*(D) will be denoted
by ¢, ). Let S*(C") be the graded space of polynomials in #-variables and
S*(D) the subspace of H*D) consisting of all functions on D obtained by the
restriction of polynomials in S*(C”). Then Theorem 1.1 yields the following

Corollary. Let DCC” be a circular starlike bounded domain with the center
0. Then the subspace S*(D) of H*(D) is dense in H*(D).
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Proof. If suffices to show that if fe H*(D) with (f, S*(D))= {0}, then
f=0. Theorem 1.1 implis that f can be developed as

f=3P, PeSD),

uniformly convergent on any compact subset of D. Choose an orthonormal basis
{P,,;} of S¥(D) with respect to { , }) for each ». Then we have

«Pu,,'; Pp.,.'» = 8»,...8,',' .

In fact, since du(eY™z)=du(z) for any 6 R, we have (P, ; Pui)y=evV71071®
{Py,;» Pu ;) for any 6€R. Then f can be developed as

f=vzl}a,,,].P,,,j with a, ;€C,

uniformly convergent on any compact subset of D. Since D is a starlike
domain, the closure rD of 7D is a compact subset of D for any r&R with
0<r<1, so that the above series converges uniformly on 7D. Therefore for any
P, ; we have

| A)Pei@dn@ =B, P& Pes@dnta).

rD

If we put

=2 for zerD,

then z=r2’, du(2)=r""d (') so that

[ P Pe@du) = | Py () Pu () dut)

D
= r"HP, L, Pug) = rP8,S5,

Hence we have

S f(z)m)dy,(z) — a“,,-rz"ﬂﬂ

rD
and
an = lim @ o = lim [ f()Pa (2) dp(a)

rD

={f, Pu;)=0 (from the assumption) .

This implies that f=0. g.e.d.
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2. Spherical representations of a compact symmetric pair

Let K be a compact connected Lie group, L a closed subgroup of K and
S be the quotient space K/L. The space of C-valued C=-functions on .S will be
denoted by C~(S). We shall often identify C=(S) with the space of C~-functions
fon K such that
S(RD) = f(k) for any keK,lel.

Let dx denote the K-invariant measure on .S induced from the normalized Haar
measure on K and L*S) the Hilbert space of sequare integrable functions on S
with respect to the measure dx. The inner product of L*(S) will be denoted by
<{,>. K acts on L*(S) as unitary operators by

(kf)(x) = f(k'x) for keK,xeS.

Then C=(S) is a K-submodule of L*.S). A (continuous finite dimensional com-

plex) representation
p: K—GL(V)

of K is said to be spherical relative to L if the K-module V is equivalent to a K-
submodule of C*=(S), which amounts to the same from Frobenius’ reciprocity
that the K-module V" has a non-zero L-invariant vector. We denote by 9(K, L)
the set of equivalence classes of irreducible spherical representations of K relative
to L. The totality of f& C=(S) contained in a finite dimensional K-submodule
of C=(S), which will be denoted by o(K, L), is a K-submodule of C=(S). A
function in o(K, L) is called a spherical function for the pair (K, L). For pe
9(K, L), the totality of f€o(K, L) that transforms according to p, which will be
denoted by 0,(K, L), is a finite dimensional K-submodule of o(K, L). Then
o(K,L)y= 233 Doy(K, L)

pe g)(K,L)
is the orthogonal sum with respect to the inner product {, >. Peter-Weyl
approximation theorem implies that the subspace o(K, L) of L*(S) is dense in
L¥S). We assume furthermore that the pair (K, L) satisfies the condition

(*) any pe 9(K, L) is contained exactly once in o(K, L),

which is by Frobenius’ reciprocity equivalent to that for any spherical representa-
tion

p: K— GL(V)

of K relative to L, an L-invariant vector of V' is unique up to scalor multiplica-
tion. Then for each pe 9(K, L), there exists uniquely an L-invariant function
0,E0,(K, L) such that wy(e)=1. w, is called the =onal spherical function for
(K, L) belonging to p. Let

p: K— GL(V)
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be a spherical representation of K relative to L. Choose a K-invariant hermitian
inner product (, ) on V. The equivalence class containing p will be denoted by
the same letter p. Choose an orthonormal basis {;; 1<i<d,} of V such that
u, is L-invariant. Define ¢, C=(S) (1<i<d,) by

@{(R) = (u;, p(k)u,) for kK.
We know that they are linearly independent, in view of orthogonality relations
of matrix elements (u;, p(k)u;). For any &€ K we have

Pk k) = (w; p(k' T R)uy) = (p(R)) s, p(k)u,)
= eV )0 PBY)
= 32 (oK) ) 2(H),
ie. Ko =31 (pK)us, u)p,  (1<i<d,).
In particular
lp,=¢, forany leL,
and
pie)=1.

Therefore the system {p;; 1<7<d,} forms a basis of 0,(K, L) and the zonal
spherical function w, is given by

(k) = (u,y p(R)u,) for kK.
Furthermore orthogonality relations implies that the system
Vdopi; 1<i<d,}
forms an orthonormal basis of 0,(K, L) and that

Copy 0> = Spf .

d,

Henceforth we assume that the pair (K, L) is a symmetric pair, i.e. there
exists an involutive automorphism @ of K such that if we put

K,= {kcK; 0 =1},

L lies between K, and the connected component Kj of K,. Then the pair (K, L)
satisfies the condition (%) (E. Cartan [1]). For example, a compact connected
Lie group S admits a symmetric pair (K, L) such that S=K/L. In fact,
K=SxS,
L = {(», x); xS}
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and
0: (x, ) — (y, %) for =z yeS

have desired properties.

In the following we summarize some known facts on a symmetric pair (cf.
Helgason [4]).

Let t (resp. I) be the Lie algebra of K (resp. of L). 'The involutive automor-
phism of £ obtained by differentiating the automorphism 6 of K will be also
denoted by the same letter 4.

Choose and fix once for all a C-bilinear symmetric form (, ) on the com-
plexification ¥¢ of £, which is invariant under both the C-linear extension to ¢
of 6 and the adjoint action of ¢ and furthermore is negative definite on £x¥.
Then S is a Riemannian symmetric space with respect to the K-invariant
Riemannian metric on S defined by —(, ). We put

8= {Xet;0X=—-X} = {Xet; (X, )= {0}}.
Then we have orthogonal decompositions
I=148=c¥,

where c¢ is the center of ¥ and ¥ is the derived algebra [£, ] of £. We choose a
maximal abelian subalgebra a in 8. Such a are mutually conjugate under the
adjoint action of L. dim a is the rank of the symmetric pair (K, L). Extend a
to a maximal abelian subalgebra t of ! containing a. Then we have the
decomposition

t=bPa where b=1tnNIl.
Let '=tN? and a’=aN?¥. The real vector space \/ — 1t has the natural inner
product (, ) induced from the bilinear form (,)on$C. We shall identify/ — 11

with the dual space of \/ —1t by means of the inner product (,). We have
the orthogonal decomposition

V=1t=v=1bdv —1a.
Let o be the orthogonal transformation on \/ — 1t defined by
olvV=1b=—1 and o|v/“la=1
and
o =}(l+0): V=1t >/ “Ta

be the orthogonal projection of v/ — 1t onto v/ —Ta. Let 33, denote the set ot
roots of I¢ with repsect to the complexification 1€ of t. Let W,=N(T)/T be
the Weyl group of £, where T is the connected subgroup of K generated by t and
Ng(T) is the normalizer of T'in K. 373 is a o-invariant reduced root system in
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v/ —1t.  As a group of orthogonal transformations of \/ —1t, W, is generated
by reflections with respect to toots in 33,. Put

2;‘ = Zgn\/—_ib = {aeE(; wo = 0} ’

2= {wa; aeX}— 20} = w 25— {0},

Ws= Ni(4)/Z(4),
where A is the connected subgroup of K generated by a and N (4) (resp. Z,(4))
the normalizer (resp. the centralizer) of A in L. An element of 3} is a restricted
root of the symmetric space S and Wy is the Weyl group of S. 37 is a (not
necessarily reduced) root system in v/ —1a’. As a group of orthogonal trans-
formations of \/ — 1a, W is generated by reflections with respect to roots in >,
A linear order > on \/— 11 is said to be compatible for 33, with respect to o (or
with respect to the orthogonal decomposition / —1t=+/—1bP\/ —14a) if
a€>), a>0 and sa+ —a imply ca>0. Take a compatible order > on
v/ —1t and fix it once and for all. Let

H[ = {au R al}
be the fundamental root system of >3, with respect to the order > and put
H: = II, ﬂZ;’ :

W, is also generated by reflections with respect to roots in [[,. We have the
decomposition

c=sp where seW, pll,=II,

of o in such a way that p’=1, p(II,— I1})=1II,— IT; and oa;=pa; mod {13},
for any o;€ IT,— I} (Satake [10]). We put
I, = {wa;; o, ,—1I}} = =II,— {0} .

We may assume that []s={v,, ---, 7,} with wa;=1v,; (1<¢< p), changing indices
of the a,’s if necessary. Il is the fundamental root system of >, with respect
to the order >. We put

E.,s'k = {VEES; Z'YGEES} .

Then 3>* is a reduced root system in /—1a’. The fundamental root system
II* of 23¥ with respect to the order > is given by

H: = {181, RS} an}
vi i 29,30
27, if 2v,e33;.

W, is also generated by reflections with respect to roots of I[¢ or of II¥. Let

where B; = {
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S (resp. 333, (33¥)*) denote the set of positive roots in 33, (resp. 23, 23F).
Then

2= (X2 =2 —{0}.
For 2ev/—1t, A+0, we define

2
A¥ = x.
(N

Theorem 2.1. (E. Cartan) Assume that K is simply connected. Then

1) K, is connected.

2) The kernel of exp: a—K is the subgroup of a generated by {2n\/ —17*;
vE2s}-

Theorem 2.2. (Harish-Chandra) Let S¥(8) (resp. S%,4(a)) be the space of
polynomial functions on 8 (resp.on a), which are invariant under the adjoint actions
of L (resp. of Ws). Then the restriction map

SE(8) = S¥ys(a)
is an isomorphism.
Now we shall consider W s-invariant characters of a maximal torus of S. Put
I'=TI(K, L)= {Hea;exp He L}
and
Te=TMNc where ¢ =cNa.

Then T is a Ws-invariant lattice in a and T'¢ is a lattice in ¢;. Let Cq be the
connected subgroup of K generated by ¢;. Then the A4-orbit A in S through
the origin x, of S and the Cg-orbit Cain S through the origin have identifications

A= a/T
and

éa = Calrc .

Hence both A and Cq have structures of toral groups. The toral group A is said
to be a maximal torus of the symmetric space S. The adjoint action of W on
A induces the action of W5 on A. This action is compatible with the natural
action of W on a/T relative to the identification: fi=a/I‘. Put

Z=Z(K,L)= {nev—1a; (A, H)€22/—1Z forany HET} .

Z is isomorphic with tﬁhe group D(A) of characters of A by the correspondence
A—er, where et e 9(A) is defined by e*(exp H)x,)=exp (A, H) for HEa. Put
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D =D, L)y= {»&€Z; (N, 7,)=0 for any v,II}
= {A&€Z; (N, ¥)=0 for any y3}.
Then we have
D= {reZ; sn<\ forany s€s W} .
An element of D is called a dominant integral form on a. We define a lattice T,/

in a’ to be the subgroup of a’ genera,l\ted by {27/ —1( v*); ve2)}. We define
a lattice T’y in a and a toral group A, by

T, = TePT,
and
/io = aT,.
Put
Zy= {rxev/=1a; (A, HYE22\/—1Z for any HET}
and

D,=DnZ,.

Z, is isomorphic with the group Q(Ao) of characters of Ao. Put furthermore

Z)=Z,Nv/—-1d = {7\.6\/:—1 a’; z((h’;)')EZZ for any ’YEZS}
and ’
D/=D,Nnv/—-1d’=DNZ}.
Lemma 1. If L=K,, then

T'={4H; Hca,expH=2¢} .

Proof. For Hea, exp H=e < exp % exp %:e < exp %{= (exp §>-l=>

2
€xp —F‘ZI“‘—‘ 0(exp %) & exp %E K,, which yields Lemma 1. q.e.d.
Lemma 2. 1) I,/=2=v/—1 i Z(3 B¥)

and it is Ws-invariant. Therefore T, is W g-invariant.

2) T,cT. Therefore Z,DZ and D,DD.

3) If Sis simply connected, then T=T,=T (thus Z=Z,=Z/, D=D,=D,)
and Ao can he identified with A.

Proof. 1) Denoting the reflection of \/—1a with respect to B,II¥ by
5;€ W, we have



PoLyNOMIAL REPRESENTATIONS 453

;7% = () = 'Y*—Mﬁ’f for ye3;.
(v, 7)

It follows that T')’ is Ws~invariant. Since we have

(20 = 4%737;) — (7\,)"7\.) = I* for rev/—1qa, A0,

T/ is the subgroup of a’ generated by 2zv/ —1(3v*) for ye>¥¥. Thus it
suffices to show that
al= é ZB¥ forany ye>¥.

i=s1

But this follows from the first equality since there exist B;,, +--, B;,€ II¥ such
that s;,---s; ye II¥.

2) Since TCT, it suffices to show that T'/CIY for V=T"Na’. Let K’ be
the connected subgroup of K generated by ¥’ and L’=K’NL. Then (K’, L)
is also a symmetric pair with respect to § and S’=K’/L’ can be identified with

the K’-orbit in S through the origin x, of S. Let

£19

7' K/ - K’
be the covering homomorphism of the universal covering group K,’ of K’ and put
L/ = {k€K/; 0o(k) =k},

where @, is the involutive automorphism of K, covering the involutive automor-
phism @ of K’. K| is compact since K’ is semi-simple. S’ can be identified
with K//z’~}(L’). It follows from Theorem 2.1 and Lemma 1 that L,’ is con-
nected and

T,/ = {Hed; expg,HEL,} .
Let A’ (resp. A"I),\ be the connected subgroup of K’ (resp. of K,') generated by
a’ and A’ (resp. A,) be the A’-orbit in S’ (resp. the 4/ -orbit in S/=K,'/L,")
through the origin. Then we have identifictions
A =ar
and .
A =d[Ty.

On the other hand, since »’~*(L")DL,/, the covering homomorphism 7’ induces
the commutative diagram

Sol L S’
R
A/ —> A
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It follows that
r/cr.

3) TUnder the notation in 2), we have a covering map
éa X S ’/ - S .

It follows from the assumption that Co= {¢} and S” is simply connected. Thus
the covering map 7 is trivial and TV=T',’. Moreover co= {0} implies that I'=T"
and T,=T,". q.e.d.

ReEmMARK. Define A;e/—11 (1<i<!) by
(A af)=28;; (1<sj<]).
Then define M; (1<i<p) by
2A,; if pa;=a; and (o II})= {0}

M; =4 A if po;=a; and (a; II})=+ {0}
Ai+Ay i pa; = anka;.

Then it can be verified (cf. Sugiura [12]) that M;e\/—1a’ (1<i<p) and

(M; $8%)=28;; (1<i,j<p).
It follows that

=2p:ZMi

i=1

and
Dy = { Y\ mM,; me Z, m;>0 (1<i<p)} .

It follows from Lemma 2,1) that W5 acts on /io= a/T, and from Lemma
2,2) that we have a Wg-equivariant homomorphism
7y: Ay A
Let .CR(A) denote the character ring of A. Then Ws acts on .‘R(A) (or
more generally on the space C"“(A) of C-valued C~-functions on A) by
(sX)(@) = X(s7'a@) for s€Ws, dEA.

This action coincides on Z—Q(A)C_‘R(A) with the adjoint action of Ws on Z.
Let .‘RWS(A) be the subrmg of W s-invariant characters of A and .CRWS(A)C the
C-span of g{WS(A) in C‘”(A) Let _‘R(A ), _CRWS(A ) and _CRWS(AO)C denote the

same objects for A,. Then z, induces a Ws-equivariant monomorphism

¥ R(A) - R(A)



PoLYNOMIAL REPRESENTATIONS 455

and monomorphisms
71'3"3 RWS(A) g -CR-Ws(Ao) ’
7§ Ryps(A)° = Ry (A .
Henceforth we shall identify QIWS(A) with a subring of ﬂws(l‘io) and —CRWS(A\)C

with a subalgebra of Ry (A,)¢ by means of these monomorphisms 73"

For A&/ —1a, we shall denote by ¢ the /— 1 ce-component of A with
respect to the orthogonal decomposition

V-la=+vV—-1au®Vv/—-1a".

The following facts can be proved in the same way as the classical results
for a compact connected Lie group S, so the proofs are omitted.
We define an element § in Z, by

= 217
YEX g™

For AneZ,, we define &, & .‘R(AQ by
Ex= D) (dets)e™.

sSewg

For NE Z, £, is divisible by £, in the ring R(A,) and

X, = Exvs

Es
is in _CRWS(A). If X, has the expression
XA=2mpe“ With MEZ, my.EZ, m,..=|=0,

then uc are the same for any x. In particular, if A€ D, then the highest com-

ponent in the above expression of X, is ¢* with my=1. Any Wjg-invariant
A A .

character X& Ry ((A) of A has an expression

X = 2 m;‘X,‘ with XED, m,\EZ.

The expression is unique for X. In particular, the system {X,; A€ D} forms a

basis of the space _CRWS(A\)C .
Now we come back to spherical representations of a symmetric pair (K, L).

Theorem 2.3. (E. Cartan [1]) Let pe D(K, L) have the highest weight
AE\/ =1t and w), be the zonal spherical function for (K, L) belonging to p. Then

1) aeD,

2) o, restricted to Aisin QQWS(A)C and has an expression

o= >lape”" with ueZ aueR,au>0,Dla. =1,
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with the lowst component a, e ™.

Proof. Proof of E. Cartan [1] was done in the case where K is semi-simple
and L=K,. His proof can be applied for our case without difficulties. But his

proof of Ae+/—1a is not complete. A correct proof is seen, for example, in
Schmid [11]. q.e.d.

Lemma 3. For any NED, there exists an irreducible representation p of K
such that the highest weight of p on 1€ is \.

Proof. Let Het with exp H=e. Decompose H as
H=H'+H” with H'eb, H'a.

Then exp H”=(exp H')'€L, i.e. H”&T. It follows from rneZcCv/—1a
that (A, H)=(\, H)+\, H")=(\, H")E27n/ —=1Z. Moreover (A, a;)=
(A, wa;) >0 for any ;= H' since AeD. Thus ¢ is a dominant character of
the maximal torus T'of K. Then the classical representation theory of compact
connected Lie groups assures the existence of p. q.e.d.

Lemma 4. Let Z,(A) be the centralizer in L of A and Z (A)’ the connected
component of Z;(A). Then

Z(A)=Z (A expT.
Proof. 'The centralizer 3(a) in t of a has the decomposition

5[(“) = 3[(“)65“ ’

where 3,(a) is the centralizer in of a. Since the centralizer Z(4) in the compact
connected Lie group K of the torus A is connected, we have the decomposition

Zu(A) = Z,(4YA.
It follows that any element me Z;(A4) can be written as
m=m'a with m'eZ (4A), ac4.

Then a=m'-'meL so that acexp I'. Thus meZ,(4)° exp T, which proves
Lemma 4. q.e.d.

Lemma 5. Let K€ denote the Chevalley complexification of K. Put

K*= Lexp\/—18
and
(K*)'= L' exp vV —18,

where L° denotes the connected component of L. Then (K*)° is a closed subgroup of
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K¢ normalized by K* and
K* = (K*YexpT.
Therefore K* is a closed subgroup of K€ with the connected compoenet (K*)'.

Proof. The first statement is clear. Take any element /L. From the
conjugteness of maximal abelian subalgebras in 8 under the adjoint action of L°,
there exists /,& L° such that /, /e N, (A4). Since

NL(A)/ZL(A) = NL°(A)/ZL°(A) = Ws,

we can choose [,&L° such that [,/,le Z;(A). It follows from Lemma 4 that
there exist ,&Z;(4)° and acexp " such that [,/,/=Il,a. Therefore
I=I7 13" e with [T ,e L' (K*), i.e. [e(K*)° exp . This completes the
proof of Lemma 5. q.e.d.

Now we can prove the following

Theorem 2.4. (E. Cartan [1], Sugiura [12], Helgason [5]) For any A€ D,
there exists an irreducible spheiical representation p of K relative to L such
that the highest weight of p on 1€ is .

Together with Theorem 2.3 we have the following

Corollary. For pe (K, L), let \(p) denote the highest weight of p on {€.
Then the correspondence p — \(p) gives a bijection:

DK, L)— DK, L).

Proof of Theorem 2.4. This theorem for the case where K is semi-simple
and L=K, was stated in E. Cartan [1] but its proof is not complete. It was
stated for simply connected K without proof in Sugiura [12]. It was proved
in Helgason [5] for the case where K is semi-simple and L is connected.
Helgason’s proof can be applied for our case without difficulties, so we shall
confine ourselves to point out necessary modifications.

Let
p: K— GL(V)

be the irreducible representation of K with the highest weight A (Lemma 3).
By extending p to the Chevalley complexification K€ of K and restricting it to
the closed subgroup K* of K¢ (Lemma 5), we have an irreducible representa-
tion of K*, which will be denoted by the same letter p. It suffices to show that
p has a non-zero L-invariant. Let N be the connected subgroup of K* generated
by the subalgebra

n=1tn >V I,
s n}
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where I* is the Lie algebra of K* and IS is the root space of ¢ for . We
shall first prove that the representation p of K* is a conical representation of
K* in the sense of Helgason [5], i.e. if va& V, v,+0, is a highest weight vector
for p with repsect to {¢, we have

p(mn)vy = v, for any meZ,(4), neN.
Denoting the infinitesimal action of £¢ on V' by the same letter p, we have

p(M)ox = p(3(a))or= {0} .
In fact, p(n)va={0} since ncC >} . p(bC)v,= {0} for the complexification bC
ae zr“'

of b since (\/ —1b, M)={0}. p(t)v = {0} for a2, @>0. It follows from
(o, M)e(v/ —1b, A)={0} for a3} that A—a is not a weight of p for
a€Xl, a>0. Since the complexification of 3,(a) is spanned by b¢ and the £S’s
for a€>7y, we have p(3(a))va={0}. Therefore it suffices from Lemma 4 to
show that

p(exp H)v, = v, forany HeT.

But it is clear since A Z, i.e. (A, H)€2n/ —1Z for any HET.

Thus we can prove in the same way as Helgason [5] that V' has a non-zero
L-invariant vector, by constructing a K*-submodule V'’ of the K*-module
C=(K*) of C~-functions on K*, having a non-zero L-invariant, and by construct-
ing a K*-equivariant isomorphism of ¥ onto V. q.e.d.

Next we shall describe zonal spherical functions in terms of the basis
{X»; neD} of Rws(A).
For d=(exp H)x,=c A, H €a, we put

II 2sin(a,/—1H)|.

D(d) =

Let dé denote the normalized Haar measure of A andAl Ws| the order of the
Weyl group Ws. For Wg-invariant functions X, X’ on A, we define

x> = e | xaw@D@da,

| Ws|
where
c=( ' ul/“ SAD(d)dd)"'.

c¢=1 in the case where S is a compact connected Lie group. In particular, if X
and X’ can be extended to L-invariant functions f and f’ on S, then {X, X">
coincides with the inner product {f, f*> in L*S) (cf. Helgason [4]).

Fix a dominant integral form A& D. We define a finite subset D, of D by
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Dy = {n€D; pe= N, p<A} .
Since the system {X,.; u D} forms a basis of SQWS(A)C, the matrix

(<Xﬂ') xv>) P, vED)

is a positive definite hermitian matrix. Let

(bw)ﬂ,ven,‘

be the inverse matrix of the above matrix. In particular $**>0. For any
w€ D,, we put
- b

&= Vg

where d, is the degree of an irrducible representation of K with the highest weight
A. Then we have

Theorem 2.5. Let AED and o, be the zonal spherical function belonging
to the class of an irreducible representation of K with the highest weight n. Then
w, restricted to A is given by

W) — 2 c'ix”..

II-EDA

Proof. The idea of the folloxANing proof owes to Hua [6]. Let p€D,.
Then w, restricted to A is in Ry, (A)C by Theorem 2.3. It follows by Theorem
2.3 and Corollary of Theorem 2.4 that w, has an expression

wp = 2 WX, with ¢/LER, ’>0, =0 if v>pu.

vep,
We define an upper triangular matrix C’ by

C'= (c,rl-)v,l'-en,\ .

Then we have
(op, mv>)l~“,veD,‘ = *C"({Xp, xv>)#,venx c’.
Since wy, w,> = di’ 8u,, We have

(8w )i ven, = C'*B/C'Y,
where

B’ = (b,‘w)lb,veb)‘ = (<’zll-’ Xv>);,];aen,\-
It follows that
C,(dl" SILV)!",VED)‘tC, =B.

Comparing (u, N)-components of both sides, we have
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hdyet = b

In particular

. TN
(dr=b™ ie. cy=4/t

hence
brEA BN

it Nau™

/
Ci":

Since b*'=b"*, we have

e U ed

A \/m = Cy . q.e.d.

ExampLe. If S is a compact connected Lie group and (K, L) the symmetric

pair with K/L=_S as mentioned before, then the set 9(S) of equivalence classes

of irreducible representations of .S is in the bijective correspondence with (K, L)

by the assignment p— p[X]p*, where p* denotes the contragredient representa-

tion of p. A is a maximal torus of the compact Lie group S. Let X, be the

invariant character of A for the dominant integral form in D(K, L) corresponding

to p[Xp* by the bijection in Cororally of Theorem 2.4. Then it is nothing but

the character of p. It follows from orthogonality relations of irreducible

characters that the matrix (5**) is the identity matrix. Thus the zonal spherical
function w,z,+ belonging to p[Xp* is given by

pmpr = 5 Xp
]

where d, is the degree of p.

3. Polynomial representations associated with symmetric bounded
domains

Let D be an irreducible symmetric bounded domain with rank p realized in
(p©)” as in Introduction. We shall use the same notation as in Introduction.
Let

H = {an R al}

be the fundamental root system of > with respect to the order > and let
II=II N> Itisknown that ], is the fundamental root system of >3, IT —II,
consists of one element, say «,, which is the lowest root in >}, and for any

l
a=2Ima,E>3;, m=1. Let 3 denote the set of positive compact roots.
i=1

Put
b= {Hea; (/—=1H, A)= {0}}.
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Then we have the orthogonal decomposition
VvV —1t=v—=1bdv —Ta
with respect to (, ). We define an orthogonal transformation & on /—1t by
glb=—1and ¢|\/—1a=1. Let
o =}(140): vV -1t—>V—1a

be the orthogonal projection of v/ —1t onto v/ —1a. Let « be the unique in-
volutive element of the Weyl group W, of K such that « [I,=—1II,. Since
> is the set of weights on ¢ of the irreducible K-module (p€)*, we have

kX% =>% and ky,=a,. Put
A = kA= {71/’ °tty 'Yp,}’ 'Yg'l = KY; (1<i<1>), 71/ = .

It is the original maxiaml strongly orthogonal subsystem of >}; of Harish-
Chandra [3]. For the system A’, the orthogonal projection

@'t/ —1t >V —1d
onto the R-span \/— 1a’ of A’ is defined in the same way as for A. Put
P/ = {a€3;; w'(a) = §(v/+v,) for some 1<i<j< p},
Py = {ae>;; w'(a) = § v, for some 1<i<p},
K/ = {acX}; w'() = §(v/—,") for some 1<, j<p} ,
Ky = {a€>y; w'(a) = } v,/ for some 1<i<p} .
Then (Harish-Chandra [3]) 37 is the disjoint union of P/, — P/, P/, — Py, K/,
Ky, — K}’ and we have ,
o'P/ = {§(v/+7,"); 1<i<i<p},
w'Py = {$v/;1<i<p} if P/=+¢,
o' K/ —{0} = {4 (v/—7/); 1<i<j<p},
w' Ky = {$v/; 1<i<p} if P/=o.
Furthermore the multiplicity (with respect to w”’) of any v,” is 1 and that of any
Lo,/ is even. It follows that
{3/ v,/ 1<i<i<p, £9;5 1<i<p} if P/ =¢
{£3(v/£v,)); 1<i<i<p, £9/, 29/ 1<i<p} if P/=+¢.
Moreover we have (Moore [8])
{71,’ %(72,—71,)) °tty %(yp,—'yz»l)} lf P‘l’ == ¢'
) 2 =) s 5 (v =) —30, Y i PYs¢,

@50} = |

o’ [[—{0} = {
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and

o' II —{0} _ { {4 ('Yz,"")’ll)s R %(79’_7;_1)} if P/=¢
t HEv =), -, %('Yp,“")';,-x), *%'Ypl} if PY+d.

Lemma l. 1)

Vs if P/=¢
37, if P/+¢.
2) (Schmid [11)) If P{=+¢ and

1zroz1={

N mgB  with mg>0
BEPY

is in the R-span {P,'} p of P/, then mg=0 for any (5.
Proof. For any a€3%,*=P/U Py, w’a can be writen as
o = m, (v, =)+ Em (v =)+ Em, (v, —-)
—tmyy,/+m, v
= §(2m,,—m) v+ 5 (m—m)y, -5 (my_,—m, )V,
+i(m,_,.—m,)v,’

where m;e Z, m;>0,m,,,=1. Since w’a=%4(y/+v,’) or 37, for some i, j, we
have
>0.

2zm>m,>>m, >m

p-1 b4

Furthermore a € P,/ (resp. a € Py') if and only if m,=0 (resp. m,=1).
1) If P/=¢, then v,eP’. For a=v,, the coeflicients in the above

expression are m,=---=m,_,=2, m,=0 and w’v,=v,. If P/s%¢, then for
a=1,, the coefficients are m,=+.-=m, =2, m,=1 and w’y,=%v,. Now the
assertion 1) follows from wa, =« "'w’ka,=x"'w’y,.

2) Let

!
a=2ma; with neZ n>0
i=1

be in >3,*. It follows from the first argument that

(a) if aeP/, w’'a;=—13%v,/, then n;=0,
(b) if a< Py, then there exists or;& [I, such that #,>0 and w’a;=—3%v, .
This implies the assertion 2). q.e.d.
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Now P, P,, K, and K, are defined for A in the same way as for A’. Then
« transforms P, (resp. P}, K,, K,) onto P/ (resp. P/, K/, K}'). It follows that
the above mentioned properties due to Harish-Chandra are also satisfied by our
objects for A. But Moore’s results should be modified as follows.

{%(71_72)1 ."’%(’Yp—l—’)lp)’ 'YP} if P, =9

— {0} =
Il { } {{%(')’1_’72)’ ""%('Ypﬂ_'yp), %'Yp} if P% * ¢.
{%(71—72)’ --.1%(')/1)—1_7;)} if P% = ¢

— {0} =
GH' { } {{%(')’1_72)) "'a%(')’p—f"")'p)a %’)’p} if P% =+ ‘;b

They follows from Lemma 1, 1) and
wll, = ¢ w'kll, = —e w11, .

Note that K;C > while K/C —>3.

Lemma 2. 1) The order > is a compatible order for > with respect to o
in the sense of 2.

2) w K,— {0} is a root system with the fundamental root system

{3(i—=7), 3 (¥ p—7,) }
with respect to the order >.
3) If P,&=¢ and
DmgB with mg>0

BEPy
is in the R-span {P} of P,, then mg=0 for any .
Proof. 1) is clear from the form of w ] — {0} above.
2) is clear since
o K— {0} = {£ §(v;i—v,); 1<i<j<p}.
3) follows from Lemma 1, 2) and «P,=P)/, x P,=P/'. q.e.d.
For ne+/ —1t, A+0,we define as in 2

2

A =
(A 2)

A
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and put

Z,= %‘Z_‘.\ v*.
Since (}7;, 75%)=3;; for 1<i, j < p, we have

P, = {ae3); (a, Z) =1},
Py= {a€3; (@, Z,) = 4},
K,= {a€>; (o, Z,) =0},
K= {a€>y; (o, Z,) = 3} .

Hence eigenvalues of ad Z, are &1, &4 on p¢, 0, =4 on IC. Let pg,, pg;, £S,
¢, denote the corresponding eigenspaces. Note that the origin X, of the Shilov
boundary S is in pC,.

The following results are due to Koranyi-Wolf [7]. We define an element
¢ of G¢, which is called Cayley transform, by

e =exp(—Z 53 (X,+X.,))

and define an automorphism of G¢ by
O(x) = *xc™? for x=G°.

The automorphism Ad¢® of g¢ obtained by differentiating 6 will be also denoted
by the same letter §. Then 6*=1 and on /=1t it coincides with —g. Put
g = {Xeg; /X = X},
t,=g,Nt,
and
Po=1g,NP.
Then ¥, is f-invariant and

t,= {Xet; [Z, X]=0}.

Hence £, is a real form of ¥§ containing t as a maximal abelian subalgebra. K,
is nothing but the set of roots of ¥§ with respect to t¢. The complexification p§
of p, is the direct sum of p¢, and p¢,. g, is a reductive subalgebra of g with a
Cartan decomposition

Go = ro"l"po .
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Let G, (resp. K,) be the connected subgroup of G generated by g, (resp. by ;)
and let
L,= {keK; Adk X, = X} = K,NL.

Put

D, = Dnys,
and

S, = S Nys,.
Then G, acts on D, transitively and K N G, coincides with K, so that D, is
identified with the quotient space G,/K,. Furthermore K acts on S, transitively
so that S, is identified with K,/L,. D, is totally geodesic in D with respect to
Bergmann metric of D and it is also an irreducible symmeric bounded domain

with the same rank as D. S, is the Shilov boundary of D,. The complex
structure of D, is given at the origin by ad H, with /—1H,=Z,. We have

wl=172,.

The inclusion D,Cp¢, is nothing but the Harish-Chandra’s imbedding of
D,=G,/K,. (K, L,) is a symmetric pair with respect to 4, having the same
rank as D. Hence

[, = {Xel,; X=X}
is the Lie algebra of L, and a is a maximal abelian subalgebra of
g,={Xel,;0X=—-X}.
We can define a semi-linear transformation X — X of p¢, by
X=X =06rX for Xeype,.

Put
po,= {XEpSI;X= X} .

It is a real form of pC, and is invariant under the adjoint action of L, on p¢,. The
correspondence X — [X, X|] gives an isomorphism

Y \/jgo'_’p—l ’

which is equivariant with respect to the adjoint actions of L,.

Now we shall consider the polynomial representation S*((p€)~) of K. Let
Sx((p€)*) be the symmetric algebra over (p€)*. K acts on Sy((p€)*) by the
natural extension Ad of the adjoint action of K on (p€)*. On the other hand,
the non-degenerate pairing

()" x®°) —=C
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by means of the Killing form ( , ) induces the identification
Sx((P)) = S*((99)) -

This identification is compatible with the actions of K, since the Killing form is
invariant under the adjoint action of K. In the same way we have a K -equi-
variant identification

S«(p$,) can be considered as a K -submodule of Sx((p€)*) by means of the natu-
ral monomorphism S(p$,) = Sx((p€)*) induced from the inclusion p§,C (p€)*.

Theorem 3.1. (i) Any irreducible K-submodule of Sx((p°)*) (resp. K,-sub-
module of Sx(P$,)) is contained exactly once in Sx((p€)*) (resp. in S«(vS))).
(i) For an irreducible K-submodule V of S((p€)"), we put

V=V 0S4(p5) -

Then V-V is the one to one correspondence between the set of irreducible K-sub-
modules of Sx((¥°)*) and the set of irreducible K -submodules of Sx($,) in such a
way that

1) The highest weights on 1€ of V and V, are the same.

2) The subspace of L-invariants in V is 1-dimensional and contained in V.

(iil) The highest weight N/ —1t of an irreducible K-submodule V of

S«((p°)*) is of the form
»
A=21m;, nEZ nz=n>->n,>0.
=

If 33 n;=v, then V is contained in S,((p€)*). i.e. SY(D)CS'(K, L) under the

notation in Introduction.

For the proof of the theorem, we need the following

Lemma 3. (Murakami [9]) Let £ be a Lie algebra over R and € the com-
plexification of . Assume that there exists Y &/ —18C¥C such that € is the
direct sum of 0-eigenspace t§, (4 1)-eigenspace t§ and (— 1)-eigenspace € of adY,
respectively. Let (p, V) be a complex irreducible t-module with t-invariant
hermitian inner product. Denoting the extension to £ of p by the same letter p, let
a,>a,> - >a,, (a;€ R) be eigenvalues of p(Y), and S, be a,-eigenspace of p(Y)
(A<t<m). Put t, =N (, which is a real form of £§). Then

1) ay=a,—t+1 (1<t<m).

2) Each S, is a ¥,-submodule of V and

V=58+-+8,

is the orthogonal direct sum.
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3) S, and S,, are irreducible ¥,-submodules of V and characterized by

S, = weV; p(X)v=10 forany XS},
S,,= {v€V; p(X)v =0 for any Xic} .

Proof of Theorem 3.1. The infinitesimal action of £¢ on Sy((p°)*) induced
from the adjoint action Ad of K will be denoted by ad.

Let V be an irreducible K-submodule of Sk((p€)*). Since Z is in the center
of ¢, it follows from Schur’s lemma that V' is contained in an eigenspace of
ad Z in Si((p°)*). But since ad Z is the scalor operator » on S,((p¢)*), V is
contained in S,((p€)*) for some ». Let A&/ —11 be the highest weight of V.
Put Y=2Z,&/—1tctC. Then the decomposition

1€ =t I 10,
satisfies the assumption in Lemma 3. So we have a decomposition
V=_8++Sn

into K -submodules, where S, is an irrducible K;-submodule and is the eigen-
space for the maximum eigenvalue of ad Y in V. It is characterized by

S, = {veV;ad(X)p=0 forany X} .

Thus a highest weight vector v, of the K-module V is contained in S, because
of K,C>),*. It follows that putting V,=S,, V, is an irreducible K,-submodule
of S,((p€)*) with the highest weight .

We shall show that V,=V N Sx(pS,). We have the decomposition

SU(F)") =, 31 S,()DS.()

as K;-modules. ad Z, is the scalor operator 7+ }s=14(r+v) on S,(p{)@ Sy(pS).
In the same way as the first argument, we can get the decompsotion

V=Vt

into irreducible K,-submodules such that any V; is contained in S, (p§)® Sy(¥f)
for some (7, s). Since S*((p¢)~) is K-isomorphic with S*(S)c C=(S), V has an
L-invariant w=0. Decompose w as

w=w1+"'+wk, ‘w,-G V,‘ (lgigk)'

At least one of the w;’s, say w,, is not zero. Let A,&+/—1t be the highest
weight of the irreducible K;-module V,. Since w, is a non-zero L,-invariant of
V., V, is a spherical K;-module relative to L,. (K,, L,) is a symmetric pair, a is
a maximal abelian subalgebra of 8, and the order > on v/ —1t is a compatible
order for K, with respect to ¢ by Lemma 1, 1), so we shall use the notations
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T(K,, L,), Z(K,, L,), D(K,, L,) in 2. Then it follows from Theorem 2.3 that
MED(K,, Ly). On the other hand, if V,CS,(pf)® S,(pf), N\, is of the form

A= 2 My o+ E mﬂlB’ My, MgE Z, mm>0’ mﬁ>0
aEP, BEPy

with 33 m,=r, 31 meg=s. Since D(K,, L,)C+/ —1a={A}rC {P} g, we have
E mﬂﬁe {Pl R+
BEP

It follows from Lemma 2,3) that r=v, s=0, i.e. V,CV N S,(pf). On the other
hand, V NS,(pf)C ¥V, since the possible maximum eigenvalue of adY on V' is
2v. Thus we have that V,=V,=1 N.S,(p°).

The above argument shows also that any L-invariant in V is contained in
V,. It is unique up to scalor since (K,, L,) is a symmetric pair.

Conversely, let ¥, be an irreducible K -submodule of Su(p¢,) with the
highest weight A&/ —1t. In the same way as the first argument, we know
that V, is contained in S,(pS,) for some ». Let v,E€V, be a highest weight
vector. Then ad f{v,= {0} because of [ff, p¢,]={0}. Hence ad X,v,=0 for
any a€>)". We define V to be the C-span of {Ad kv,;k€K} in S,((p€)*).
Then V is an irreducible K-submodule of Sy((p°)*) with the highest weight
rEV -1t

It is easy to see that each of the above correspondences V'V, and V-V
is the inverse of the other. This proves assertions (i) and (ii).

(iii) We have [$9¥F, X y]=—8;X_y, (1<i,j<p) because of (377, 7:)

=5, (1<i,j<p). It follows that for H=27+/ =13 x;(}v¥)Ea we have
Ad(exp H)X, = —ﬁ exp(—27zv —1x)X_, .
Thus we have

T(K,, L) = 2=/ 13 Z(37%)

i=1
and

Z(Ky L) =3} 2.
It follows from Lemma 2,2) that
D(K,, L,) = {g nYi MEZ, m>n> =0} .
Therefore A is of the form
x:zp]n,-'y,- with n,€Z,n,>->n,.

=1

On the other hand, A is of the form
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A= DIm,«x with m,eZ, m,>0,

asp,
which implies that 7,>-+->n,>0. If V' CSy((p°)"), then V,CS,(pS,) and ad Z,
is the scalor operator » on V,, which equals (A, Zo)=?)"__| n;. q.e.d.

ReMARK. In terms of polynomial functions S*((p€)~), for an irreducible K-
submodule V of S*((p°)7), V, is obtained by restriction to pC, of functions in V.

Proof of Theorem A. Orthogonality relations for the S¥(D)’s (resp. for
the S¥(.S)’s) and the assertion that the restriction S¥(D)— S¥(S) is a similitude
follow from Schur’s lemma. So it suffices to show that the cardinalities of
S¥(D) and S8*(K, L) are the same.

From the first argument in the proof of Theorem 3.1 (iii), we see that
V(3 v¥)=X_,(yeA) for the Lj,-equivariant isomorphism +r:/—18—>p_,.
We put

a” =PV —10a) = {X_y; vEA}RCYH_,.

Since the Weyl group W, of S, is isomorphic with the group of permutations
of A by Lemma 2,2), the “Weyl group” Ws,=N, (a”)/Z.(a"), where N (a”)
(resp. Z, (a7)) is the normalizer (resp. centralizer) of a” in L,, is isomorphic
with the group of permutations of {X_,; yEA}. On the other hand, since
S%,(8,) is isomorphic with S'?,E,So(a) by Theorem 2.2, S¥ (-,) is isomorphic
with S"p‘,,go(a'). Hence S¥(p¢,) is isomorphic with S ’;’,‘Vgo((a‘)c). It follows
from Theorem 3.1, (ii), 2) that the cardinality of S¥(D) is equal to dim S} (pS,)
=dim Su‘}S;((a')C)=the number of linearly independent symmetric polynomials
in p-variables with degree », which is known to be the cardianlity of S*(K, L).

q.e.d.
4. Normalizing factor k,
LetAzﬁi:AdA(Xo), denoting by A the connected subgroup of K, generated
by a. A has a natural group structure induced from that of a. Let

T = {teC*; |t|= 1}

be the 1-dimensional torus. Under the identification in Introduction of (a™)¢
with C?, a~ is identified with R? and A with T?. We see that the latter identi-
fication is compatible with group structures and complex conjugations, in view
of the expression of Ad(exp H)X, in the proof of Theorem 3.1, (iii). Moreover,
under the same identification we have (Moore [8])

DNna = {xeR?; |x;| <1 (IKi<p)},

denoting by z; (1<i< p) the i-th component of 2=C?. By means of this
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identification we define a measure on a~ by

dH = dx, - dx,

and a function D(H) on a~ by
»
D(H) = .I=11 (2x;); l<‘.I;_E‘P((x,-—}—x (xi—x;)) for Hea,

where 7, 2s are multiplicities defined in Introduction. Then we have the
following

Lemma 1. There exists a constant ¢’ >0 such that

[ f0au0=¢| s pE)an
for any integrable K-invariant function f on D.

Proof. It is easy to see that AdcH=H for any H&b and Adcy*=
X,—X_,ep for any ye A. Put

®=Adc(v/—=10a)= {X;—X_y; yE A},
b — Ad c(bDv/ ZTa) = bPa®
and

b=/ —1bDa’.

Then a° is a maximal abelian subalgebra of p, § is a Cartan subalgebra of
g containing a° and Y is the real part of the complexification §¢ of §. We
define lienear forms %; (1<i< p) on a° by

hi(ij"X—v,) = 8:‘:‘ (1 <i,j<P) .

If £; is identified with an element of a’ by means of the Killing form, we have
Ade(3v:)=h; (1<i<p). The linear order on hg induced by Adc from the
order > on v/ — 1t is a compatible order for Ad¢>} with respect to the decom-
position hr=+/—1bPa’. This follows from 3, Lemma 2,1). Thus positive
restricted roots on a° of the symmetric space D=G/K are

{hikh;; 1<i<j<p, 2h;; 1<i<p} if P=¢,

{hikh;; 1<i<j<p, 2h;, hi; 1<i < p} if Po.
The multiplicity of k;+4; (1<i<j<p), i.e. the number of roots in Ad ¢ 3>}
projecting to h;%h;, is the same as that of §(y;+7,). Since the Weyl group

Wy, on o° of D=G/K is generated by reflections with respect to A,—#h,, -,
h,—y—h,, h,, hence transitive on the set {+h;xh;; 1<i<j<p}, it follows that
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multiplicities of these roots are the same . By the same reason, multiplicities
of h; (1<i<p) are the same 25, which is even from the results of Harish-
Chandra mentioned in 3. In the same way we know that multiplicities of
2h; (1<i< p)are 1. Thus the product D° of positive restricted roots (multiplicity
counted) is given by

DY(H®) = Ijl 2h(HOWH Y _TT_ (hit-h)HY = )HOY  for  HoSo

Let dX (resp. dH®) denote the Euclidean measure of p (resp. of a’) induced
from the Killing form (, ), and dk the normalied Haar measure of K. Then
(cf. Helgason [4]) under the surjective map Kxa’—p defined by (k, H°)—
Ad kH°, these measures are related as follows:

dX = ¢”|D(H®)|dkdH® with some constant ¢”’>0.
Now we define a K-equivariant R-isomorphism j: p—(p°€)~ by
J(X)=$%(X—[Z, X]) for Xep.

It is easy to see that j(X,—X_,)=—X_, for any yE A, hence ja’=a~. Since
K acts irreducibly on b, the map j is a similitude with respect to inner products
(,) and the real part of (,),. Therefore under the surjective map K x a™—(p¢)~
defined by (k, H)+— Ad kH, we have

du(X) = ¢’|D(H)|dkdH with some constant ¢’ >0.

Seeing Ad K(DNa~)=D, we get the proof of Lemma 1. q.e.d.

Take a form A€ S*¥(K, L). Choose an orthonormal basis {u;; 1< <d,}
of S¥((¥°)~) with respect to ( , ). such that {u;; 1<i<d,} spans S¥(p°)")N
S*(pC,) and u, is L-invariant. Put

pi(k) = (Ad ku,, u),  forkeK (1<i,j<d,),
i(k)= pi(k) for ke K (1<i<d,),
fi=Vidigp/ (1<i<d)).

The arguments in 2 show that {f,/; 1<i<d,} form an orthonormal basis of
S¥(S) with respect to , > and @, is the zonal spherical function w, for (K, L)
belonging to A, identifying C=(S) with the space of right L-invariant C~-func-
tions on K. The zonal spherical polynomial Q, for D belonging to A defined
in Introduction is characterized by that its restriction to S coincides with w,.
Q, restricted to pC, is the zonal spherical polynomial for D, belonging to A and
w, restricted to S, is the zonal spherical function for (K, L,) belonging to A. Q,
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restricted to (a”)° is a symmetric polynomial since it is Wj -invariant. Let
€ S¥((p°)7) (1<i<d,) be the unique polynomial such that its restriction to .S
is f/.  Then {f;; 1<i<d,} form an orthogonal basis of S¥((p¢)”) with respect
to (, ). such that {f;; 1<i<d,,} form an orthogonal basis of S¥((p¢)7)N
S*(C,). They satisfy relations

9

fAEX) = 31 pi(Rf(X)  for keK, XE(0) (1<i<d).
We put
®y(X) = d% z:} f(X)F for Xe(®O) .

Then for any k€ K we have

(ALK X) = 533 (ST AR, (2 ARLAC)
= 2 3 (2 PR PN AD)
- diz Saf(X)fX) = @x(X)  for Xe (),
i.e. @, is a K-invariant C'~-function on (p¢)~. Note that
&0 = FIUAX)?  for Xepe,.
Lemma 2.
by = ¢ SDM_CI:A(H)lD(H)[dH
Proof.
[, @0dX) = 33V (fo V= 4 SV S = I
On the other hand, by Lemma 1 we have
SD O\ X)du(X) = ¢ gm_ @,(H)| D(H)|dH . q.e.d.

Proof of Theorem B. Making use of the complex conjugation X — X of
pC, defined in 3, we define &, S*(p¢,) by

ax,0

BX) = 3 SLXE)  for Xewe,,

Then &,=®, on p_, and we have for any ke K,



PovwowiaL Ressssmrarions a3
B(AdRX) = - Tf(Ad kX [(ATRX)

= - TSAAdRX)[(ALORK,)

= o DIOFER) = 3 od Bp )

= YR (6 = 32 PR )

= PHOE B = wn(0(R)"R)

In particular for any ac 4
) @, (Ad a X)) = wr(a?),
i.e. for any de A
D.(d) = (%) = Qu(@7) .

Since A=T"?is a compact real form of C*? and C*? is open in C?=(a")¢, we
have

Da(2y -0y 2,) = Q2 -+, 22) for any 2€C? = (a7)°.

By Lemma 2 we have

b= ¢ LM_ &,\(H)| D(H)|dH

?
= g On@d, -, a2)| TT Qo TT ((wi-bax) (wi—s,)) | da, - dx,
1241<101Ki<PH) i=1 1<i<j<?p
= (D) S
for some constant ¢(D)>0, which does not depend on A. Inparticular, for A=0

w(D) = hy= (D) |

since Q,=1. This completes the proof of Theorem B. q.e.d.

?
(2, '“’J’p)llg.g@(yi—y,-)'lgyidyl e dy,

0<7;<1 UKi<H

»
II (y:—yi)| gly: ay,---dy,,

0<y;<1AKi<P) 1<i<j<p

RemARk. It can be proved that ®, is an L-invariant polymomial on pC,.

The multiplicities 7, s are given as follows.

D rank D r s
(Ds,¢ (£<9) P 2 q—p .
2 d
(i, /2] 4 {5 o
(111),, n 1 0
(IV), (n=3) 2 n—2 0
(EIII) 2 6 4
(EVII) 3 8 0
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The zonal spherical polynomial Q, is given as follows.
For integers n,, ---,n, we define the Schur function {n,, ---,n,} on the
p-dimensional torus 7'? by

det(t;"i"*"9)\ci i< L
{nn ) nﬁ} (t) = det (t,-"-f)l<i,j<p for 2= ;

} eT?cc?.

»

{ny, +*+, n,} is symmetric in variables ¢,, ---, ¢, and it is a polynomial in ¢,, --+, ¢,
if and only if 7,>0 (1<i<p). Foran clement \=3)n;7,& 31 Z7,=Z(K,, Ly),
the ¢-th coefficient #; will be denoted by #;(A). - B

Then we have

Theorem 4.1. The =zonal spherical polynomial Q, for D belonging to
ANE S*(K, L) is determined on (a”)C by the relation

Q) = 23 X {my(p), -+, n, ()} (2) for any te TP=AC(C(')C ,

!"ED)\

where the c\’s are coefficients in Theorem 2.5 for the symmetric pair (K,, L,).

Proof. As we have seen in the proof of Theorem B, Q, is determined on
(a7)¢ by
Qi(2) = wa\(2) forany t€T?= A.

By Theorem 2.5, w, has an expression

wx(t) = Fg} cl Xu(?) for teT?=A.

A

Since the Weyl group W, acts on Z(K,, LA") by the group of permutations of
Y1 ***» ¥p» Ws,-invariant characters X, of A are nothing but Schur functions.
As we have seen in the proof of Theorem 3.1, (iii), the i-th component of
Ad(exp H)X, € T?=A is exp (—(vy, H)) for any H=a. It follows that

Xl"(t) = {nl(ll')’ "ty np(lb)}(f) for teT?= A .
Hence we have

0 = 33 ), ) 0

A

= ZD cx{n(n), -, ny(n)} () for teT?=A. q.e.d.
BED,

In the case of the domain D of type (I), , (p<g), S, is the unitary group
U(p) of degree p. We have in view of Example in 2 that

(1) = d{{nm, e mO}(®)  for teT?—=A,
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where d, is the degree of the irreducible representation of U(p) with the signa-
ture (n,(\), -+, n,(7)). In the case of the domain D of type (IV),, S, is the Lie
sphere and Q, can be described in terms of Gegenbauer polynomials, which are
zonal spherical functions for the sphere. So our integral formula in Theorem B
clarifies the meaning of integrals of Hua [6].
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