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SOLVABILITY OF GROUPS OF ORDER 2p>
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1. Introduction

At the beginning of this century Burnside proved his famous paqb-theorem
by the help of character theory. Group-theoretic proof of the theorem was given
by Goldschmidt [2] for odd primes in 1970.

The object of this paper is to give a simple group-theoretic proof of the fol-
lowing

Theorem.l:> Groups of order 2apb are solvable.

Lemma 1, 4 and 5 are due to Goldschmidt [2]. Notation used here follows
Gorenstein [3].

2. Preliminaries

Lemma 1. Suppose ?$ is a p-subgroup of the p-sohable group ©. Then

Proof. See Goldschmidt [2], lemma 2.
Next lemma plays an important role in this paper.

Lemma 2. Suppose © is a p-group and !Q is a subgroup of ©. Then £> <!©
or N®($)2&x(*&)for some I G @ .

Proof. Let A be a ©-conjugate class containing £>. If | A | 4= 1, then £> acts
on A— {£>} by conjugation. Since pX I A— {£>} |, §> fixes some element §-s~\
Then bGN®^'1) and hence &XQ

Lemma 3. (Suzuki-Thompson) Suppose A is a conjugate class of a group
. If any two elements of A generate a p-group, then A £ 0^(©).

Proof. See [3], 3.8.2.

1) After finishing this work the author has found that Bender [1] has also obtained a group-
theoretic proof of the theorem in the general case.
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3. The Minimal counter example

In this section let © be a minimal counter example to the theorem. It is
immediate to show that © is simple and any proper subgroup of © is solvable.

Let r be either prime divisor of | © |.

Lemma 4. A sylow r-subgroup of © normalizes no non-identity r'-subgroup

Proof. See Goldschmidt [2], Lemma 3.

Lemma 5. (Bender) Suppose TO is a maximal subgroup of ©. Then the
Fitting subgroup of TO is an r-group.

Proof. We set %=F(JOt), the Fitting subgroup of TO. Let %=%2X%P be
the primary decomposition, and 3=Z(3 )=3 2 x3 i > , the center of %.

Suppose lemma 5 is false, then ?$2=|=1, §^=j=l. We first prove the next
assertion [A],
[A] §r n a s t w o distinct subgroups of order r, for some r e {2>p}.

Suppose |/1] is false, then %p is cyclic, and § 2 is cyclic or a quaternion group.
(i) In the case %2 is cyclic.

Let p̂ be a Sylow />-subgroup of TO. Since ^P/C«p(S2) is a 2-group, ^3=
C?(g2). Then Z(*P)£ Ca#(g), and hence Z(*P)£%p by Fitting's theorem. (See
[3], 6.1.3.) Since %p is cyclic, Z($P) is a characteristic subgroup of %p. Then TO=
iV©(Z($P)) and *P is a Sylow ^-subgroup of ©, contrary to lemma 4.

(ii) In the case § 2 is
 a quaternion group.

Let Q be a Sylow 2-group of TO. Since £}/CQ(S^) is abelian, O /CCo(§ />).
Then Z(Q) n Q ; £ g 2 . Z(Q) fl D ' contains a unique subgroup § of order 2. So
§ is a chatacteristic subgroup of O. Since TO=A^@(§)2A^@(O), it follows that
O is a Sylow 2-subgroup of ©. A contradiction.

By (i) and (ii), we have [A].
Next we prove the following statement [B],

[B] Let TO be a maximal subgroup of © containing B. Then TO=TO

Let i$=F03i)=i§2x^$p be the Fitting subgroup of TO and 3 = S " 2 x 3 ^ be

the centre of %. Since &2x3p is contained in TO, Op(NWl(S2))^%p=Op(SDl) by
lemma 1. Now &p is a normal subgroup of Nm(S2) we have 2p^Op(NWl(^2))^

Then ffipy %2]=1. So S2CiV®(3^)=5Dl. In the same way, we have %pQWl.

Then in the same way as above we have %2=O2(N^ji(%p))^%2. Interchanging

TO and TO in the above argument, we obtain f$2C?f2. Then %2=%2 and we have

TO=TO. Thus [B] holds.
Now we prove lemma 5. By [A] we may assume that $r contains an abelian

subgroup 51 of type (r, r). Let $R be a Sylow r-subgroup of TO. If $ is an r'-
subgroup of © normailized by % then $ = n C$(X). (See [3], 5.3.16.) Since
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and C@(X)23, C®(X)g2Ji by [B]. It follows ®£TO. Then
%/ is the unique maximal r'-subgroup of © normalized by SR. So iV©(9t)£
iV@(|$r

/)=50i. Then 9t is a Sylow r-subgroup of ©. A contradiction.
q.e.d.

Lemma 6. © contains a maximal subgroup 3Ji W/KIA satisfies the following
condition;

/or some Sylow p-subgroup ?$ and Sylow 2-subgroup O 0/ @.

Proof. Let Q be a Sylow 2-subgroup of © and X be an invloution
contained in Z(£l). Suppose A is a conjugate class of © containing X. By
lemma 3, A contains two elements X19 X2 such that (X19 Xzy is not a 2-group.
Since <X1, Xj> is a dihedial group, | Xx • X21 is not a power of 2. Then <X1 • X2>
contains a unique subgroup £> of order P. Let 3JI be a maximal subgroup con-
taining iV®(£>). It is immediate to show that *$Sl satisfies the condition of the
lemma. q.e.d.

Proof of the theorem. Let TObea maximal subgroup of © which satisfies
the condition of lemma 6. By lemma 5 F^Sl) is an /"-group. Let G be an element
of 3Ji contained in the centre of some Sylow /-subgroup 5R of ©, and let 5t be a
Sylow r-subgroup of © containing %r=F(f$l). Since 3Ji=iV@(Sr), it follows
Z(5R)£gr by Fitting. Then 5fto=<Z(9*)x: Z E < G » f i g r and hence it is an r-
group normalized by G. Let fl be a complete ©-conjugate class containing
Z(9i) and n^^HiH \-fls be a disjoint sum of <G>-orbits. Let 5ft,- be a group
generated by ft,-. For some element YeSR, Z(9t)Fen,., then n,=<Z(3l)ir^:
Xe<G»=<Z0R)* F ; I G < G » . It follows that 9i,—9t0

r. Then 31, is an r-
group normalized by GY=G for t = l , •••, *S. So there exist £liv •••, nf-; such
that the group generated by fl^U ••• Ufl,^ is an r-group normalized by G. ( /^ l )
Let / be maximal. We may assume {V'"*"/} = {1> ••-, /} and 9l=<ft1U ••• Ufl/>-
It is trivial to show that AT©(3i) 3 G. Let 5t0 be a Sylow r-subgroup of © containing
3d. Bylemma2, 5R < 5R0 or JV©(5«) 3 5RX( =̂  5R) for some X e $R0. If 9i<[9i0, then
AT®(?1) contains a complete conjugate class of © containing G. A contradiction.
If Ar@(9i)2?ix( + 5R), then since ftf U — U^f S5JJ, there exists some element Y
of 91 such that Z(9l)rC9t* and Z(3l)yffi?l. Suppose Z(5R)r is an element of ft,-.
(/>/), then 8fl,CJV«(9l) from j\fa(9t) B G and iV(s(9l)2Z(5R)y. Now 9 1 - ^ is an
r-group normalized by G and generated by f^U ••• U^/U^,-, contrary to our
choice of 5JJ. Thus we proved the theorem. q.e.d.
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