NOTE ON KRULL-REMAK-SCHMIDT-AZUMAYA'S THEOREM

Hikoji KANBARA

(Received March 20, 1971)

The Krull-Remak-Schmidt's theorem is very important in the ring theory and many algebraists tried to generalize it. Especially, Azumaya [1] succeeded to extend this theorem in a case of infinite direct sums.

In this note, we shall further generalize Azumaya's theorem. Let R be a ring with unit, and let all modules in this note be unitary R-modules. We assume that an R-module M has decompositions: $M = \sum_{\alpha \in I} \bigoplus M_{\alpha} = \sum_{\beta \in J} \bigoplus N_{\beta}$, where M_{α} and N_{β} are completely indecomposable modules for every $\alpha \in I$ and $\beta \in J$, (namely, $\operatorname{End}_R(M_{\alpha})$, $\operatorname{End}_R(N_{\beta})$ are local rings). In this case we shall consider the following condition.

(*) For any subset I' in I (resp. J' in J), there exists a one-to-one mapping φ of I' into J (resp. J' into I), such that $M_{\alpha} \approx N_{\varphi(\alpha)}$ for all $\alpha \in I'$ (resp. $N_{\beta} \approx M_{\varphi(\beta)}$ for all $\beta \in J'$) and $M = \sum_{\alpha' \in I'} \bigoplus N_{\varphi(\alpha')} \bigoplus_{\alpha \in I-I'} \bigoplus M_{\alpha}$ (resp. $M = \sum_{\beta' \in J'} \bigoplus N_{\beta'} \bigoplus_{\alpha \in I-\varphi(J')} \bigoplus M_{\alpha}$).

Then we have a problem whether the condition (*) is satisfied for any two decompositions of M or not.

Aaumaya [1] showed that if I' is finite, (*) is satisfied. In a case of infinite set I', P. Crawley and B. Jónsson gave an example in which (*) was not satisfied. On the other hand, M. Harada and Y. Sai [3] considered a category related to $\{M_{\alpha}\}_{{\alpha} \in I}$ and gave a necessary and sufficient condition for (*) being satisfied for any objects in the category

In this note, we shall give a complete answer that problem for any two direct decompositions: $M = \sum_{\alpha \in I} \bigoplus M_{\alpha} = \sum_{\beta \in I} \bigoplus N_{\beta}$.

We shall refer the reader to [3] for the notations and definitions.

The author would like to express his thanks to Professor Manabu Harada for suggesting the topic and his guidance.

Let $\{M_{\omega}\}_{\omega \in I}$ be a family of completely indecomposable modules and $\{f_i\}_{i=1}^{\infty}$ any sequence of non isomorphic R-homomorphisms of M_{ω_i} to $M_{\omega_{i+1}}$ in $\{M_{\omega}\}_{\omega \in I}$. We call $\{M_{\omega}\}_{\omega \in I}$ a T-nilpotent system, if there exists n which depends on the sequence and any element m in M such that $f_n f_{n-1} \cdots f_1(m) = 0$

for any set $\{M_{\alpha_i}, f_i\}_i$, and we call $\{M_{\alpha}\}_{\alpha \in I}$ a semi-T-nilpotent system, if the above condition is satisfied only for any sequence $\{f_i\}_{i=1}^{\infty}$ such that $\alpha_i \neq \alpha_j$ for $i \neq j$ (cf. [3], [4]).

We shall show the following theorem.

Theorem. The following conditions (i), (ii) are equivalent for $M = \sum_{\alpha \in I} \bigoplus M_{\alpha}$ $= \sum_{\beta \in J} \bigoplus N_{\beta}$ with infinite sets I and J, where M_{α} 's and N_{β} 's are completely indecomposable modules.

- (i) $\{M_{\alpha}\}_{\alpha \in I}$ is a semi-T-nilpotent system.
- (ii) M satisfies the condition (*) for any decomposition of M. In the above case, we have
- (iii) Every direct summand of M is also a directsum of completely indecomposable modules which are isomorphic to some M_{α} . (cf. condition III ln [3].)

In order to prove the theorem, we give several lemmas and definitions.

Let I be a well ordered set and $M = \sum_{\sigma \in I} \oplus M_{\sigma}$, then $S_M = \operatorname{End}_R(M)$ is equal to the ring of column summable matrices, whose entries consist of elements in $\operatorname{Hom}_R(M_{\tau}, M_{\sigma})$, namely for $f \in S_M$ and $x_{\tau} \in M_{\tau}$, $f = (b_{\sigma\tau})$ and $b_{\sigma\tau}(x_{\tau}) = 0$ for almost all $\sigma \in I$. Let $\mathfrak A$ be the set of all endomorphisms $(b_{\sigma\tau})$ of M such that $b_{\sigma\tau}$ is a non-isomorphic R-homomorphism of M_{τ} to M_{σ} for every σ , τ . Then $\mathfrak A$ is a two-sided ideal of S_M and $\mathfrak A$ is independent of a decomposition of M. (cf. [3] Corollary to Lemma 5).

Lemma 1. Let M and \mathfrak{A} be as above. If \mathfrak{A} is the radical of S_M , then Condition (ii) for any subset I', J' and any decomposition of M, and (iii) of the theorem are satisfied. (cf, [3] Corollary 2 to Theorem 7.)

Lemma 2. If $\{M_{\omega}\}_{\omega \in I}$ is a T-nilpotent system, then $\mathfrak A$ is the radical of S_M .

Proof. We take the induced additive category \mathfrak{B} from $\{M_{\alpha}\}_{\alpha\in I}$ and \mathfrak{F} the ideal of \mathfrak{B} in [3]. From [3] Lemma 10 and $\mathfrak{A}=\mathfrak{F}$ (End_R(M)), we obtain the lemma.

Lemma 3. For every element f in \mathfrak{A} , 1-f is monomorphic.

Proof. We obtain the lemma from [3] the proof of Proposition 10.

Lemma 4. Let $M = \sum_{\alpha \in K} \bigoplus_{\beta \in I_{\alpha}} \bigoplus M_{\alpha\beta}$ be a directsum of completely indecomposable modules, I_{α} be an inifinite set for all $\alpha \in K$ and $M_{\alpha\beta} \approx M_{\alpha\beta'}$ $M_{\alpha\beta} \approx M_{\alpha'\beta'}$ for $\alpha \neq \alpha'$. If $\{M_{\alpha\beta}\}_{\substack{\alpha \in K \\ \beta \in I_{\alpha}}}$ is a semi-T-nilpotent system, then $\{M_{\alpha\beta}\}_{\substack{\alpha \in K \\ \beta \in I_{\alpha}}}$ is a T-nilpotent system.

Proof. Let $\{f_{\alpha}\}_{i=1}^{\infty}$ be any sequence of non-isomorphic R-homomorphism of $M_{\alpha_i\beta_i}$ to $M_{\alpha_{i+1}\beta_{i+1}}$ ($M_{\alpha_i\beta_i}$ may be equal to $M_{\alpha_j\beta_j}$ for $i \neq j$). From the assumption of infinite set I_{α} , we may assume that $\beta_i \neq \beta_j$ for all $i \neq j$. Therefore, we obtain the lemma, since $\{M_{\alpha\beta}\}$ is a semi-T-nilpotent system.

Lemma 5. Let M, $\{M_{\alpha\beta}\}$ be as above, but I_{α} be a finite set for all $\alpha \in K$. Then $\mathfrak A$ is the radical of S_M .

Proof. Let f be any element in \mathfrak{A} . 1-f is monomorphic by Lemma 3. Therefore, we have only to show that 1-f is an epimorphism, that is, f is a quasi-regular element in S_M . From the assumption, we obtain

$$M = \sum_{|I_{\boldsymbol{g}}|=1} \bigoplus M_{\boldsymbol{\sigma}_1} \bigoplus \sum_{|I_{\boldsymbol{\beta}}|=2} \bigoplus (M_{\boldsymbol{\beta}_1} \bigoplus M_{\boldsymbol{\beta}_2}) \oplus \cdots \oplus \sum_{|I_{\boldsymbol{\gamma}}|=n} \bigoplus (M_{\boldsymbol{\gamma}_1} \bigoplus \cdots \oplus M_{\boldsymbol{\gamma}_n}) \oplus \cdots$$

where $|I_{\alpha}|$ is the cardinal number of I_{α} . Put $N_{\alpha(n)} = M_{\alpha(n)_1} \oplus \cdots \oplus M_{\alpha(n)_n}$, $M = \sum_{n=1}^{\infty} \bigoplus_{\alpha(n)} \bigoplus N_{\alpha(n)}$, and we consider the following sequence

$$N_{\omega(n)} \xrightarrow{i} M \xrightarrow{1-f} M \xrightarrow{p_{\omega(n)}} N_{\omega(n)}$$

where *i* is an inclusion and $p_{\alpha(n)}$ is a projection of M to $N_{\alpha(n)}$. Then we have $p_{\alpha(n)}$ (1-f) $i=1_{N\alpha(n)}$ ($mod \, \mathfrak{A}$), therefore $p_{\alpha(n)}$ (1-f) i is an isomorphism by [3] Corollary 1 to Theorem 7 and we put Im ((1-f) i)= $N'_{\alpha(n)}$, which is a direct summand of M and a submodule of Im (1-f), then we have a decomposition

$$*(\alpha(n)): M = N'_{\alpha(n)} \bigoplus_{\alpha'(n') + \alpha(n)} \bigoplus N_{\alpha'(n')}.$$

We shall show that the submodule $M_0 = \sum_{n=1}^{\infty} \sum_{\alpha(n)} N'_{\alpha(n)}$ is a directsum $M = \sum_{n=1}^{\infty} \bigoplus_{\alpha(n)} \sum_{\alpha(n)} M'_{\alpha(n)}$. Let x be an element in M_0 and $x = \sum_{i=1}^{t} x_{\alpha_i(n_i)}$, where $x_{\alpha_i(n_i)} \in N'_{\alpha_i(n_i)}$. From $*(\alpha_1(n_1))$ and $*(\alpha_2(n_2))$, we have $M = N'_{\alpha_1(n_1)} \oplus \sum_{\alpha(n) \neq \alpha(n_1)} M_{\alpha(n)} = N'_{\alpha_2(n_2)} \oplus \sum_{\alpha(n) \neq \alpha_2(n_2)} M_{\alpha(n)}$. We apply [3] Corollary 1 to Theorem 7 to these decomposition, by $M_{\alpha_1(n)j_1} \approx M_{\alpha_2(n_2)j_2}$ we have

$$*(\alpha_{1}(n_{1}), \alpha_{2}(n_{2})): M = N'_{\alpha_{1}(n_{1})} \oplus N'_{\alpha_{2}(n_{2})} \oplus \sum_{\alpha_{\ell}(n_{1}) \pm \alpha_{1}(n_{1}), \alpha_{2}(n_{2})} \oplus N_{\alpha(n)}.$$

Using $*(\alpha_3(n_3))$ again, we have

$$*(\alpha_{1}(n_{1}), \alpha_{2}(n_{2}), \alpha_{3}(n_{3})): M = N'_{\alpha_{1}(n_{1})} \oplus N'_{\alpha_{2}(n_{2})} \oplus N'_{\alpha_{3}(n_{3})} \oplus \sum_{\alpha_{i}(n_{i}) \neq \alpha_{i}(n_{i}) \neq \alpha_{i}(n_{i}) \neq \alpha_{i}(n_{i})} \oplus N_{\alpha(n_{i})}$$

Repeating this argument, we have $M_0 = \sum_{n=1}^{\infty} \bigoplus_{\alpha(n)} \bigoplus N'_{\alpha(n)}$.

We assume $M \neq M_0$, that is, there exists some $\alpha_1(n_1)$ such that $N_{\alpha_1(n_1)}$ is not contained in M_0 . Let x be an element in $M_{\alpha_1(n_1)j_1}$ which is not contained in M_0 .

412 H. KANBARA

By *($\alpha_1(n_1)$) we have $x = x_1 + \cdots + x_t$, where $x_1 \in N'_{\alpha_1(n_1)}$, $x_k \in M_{\alpha_k(n_k)j_k}$ for $\alpha_k(n_k) \pm \alpha_1(n_1)$, $k \ge 2$. Then there exists $k \ge 2$, such that x_k is not contained in M_0 , and x_k is a homomorphic image of some homomorphism f_1 of $M_{\alpha_1(n_1)j_1}$ to $M_{\alpha_k(n_k)j_k}$ and we may assume $\alpha_k(n_k) = \alpha_2(n_2)$. By *($\alpha_1(n_1)$, $\alpha_2(n_2)$) and the same argument, there is $x_3 \in M_{\alpha_3(n_3)j_3}$, $f_2 \in \text{Hom}_R(M_{\alpha_2(n_2)j_2}, M_{\alpha_3(n_3)j_3})$ such that $x_3 = f_2(x_2) = f_2 f_1(x)$ $\notin M_0$ and $\alpha_3(n_3) + \alpha_1(n_1)$, $\alpha_2(n_2)$. Repeating this process, we have a sequence $\{f_i\}$ of non-isomorphisms f_i such that $f_n f_{n-1} \cdots f_1(x) \neq 0$ for any n, and $f_i \in \text{Hom}_R(M_{\alpha_i(n_i)j_i}, M_{\alpha_{i+1}(n_{i+1})j_{i+1}})$, $\alpha_k(n_k) + \alpha_j(n_j)$ for $k \neq j$, which contradicts the assumption of semi-T-nilpotent system.

Proof of Theorem (ii) \Rightarrow (i) is proved in [3] Lemma 9. (i) \Rightarrow (ii) Let $M = \sum_{\alpha \in K} \bigoplus_{\beta \in I_{\alpha}} \bigoplus M_{\alpha\beta} \bigoplus_{\sigma \in L} \bigoplus_{\rho \in J_{\sigma}} \bigoplus M_{\sigma\rho}$, where $M_{\alpha\beta}$ and $M_{\sigma\rho}$ are completely indecomposable modules for all $\alpha, \beta, \sigma, \rho$, I_{α} is a finite set for all $\alpha \in K$, J_{σ} is an infinite set for all $\sigma \in L$, and $M_{\nu\mu} \approx M_{\nu\mu'}$, $M_{\nu\mu} \approx M_{\nu'\mu'}$ for $\nu \neq \nu'$. Put $M_1 = \sum_{\alpha \in K} \bigoplus_{\beta \in I_{\alpha}} \bigoplus M_{\alpha\beta}$, $M_2 = \sum_{\sigma \in L} \bigoplus_{\rho \in J_{\sigma}} \bigoplus M_{\sigma\rho}$, $M = M_1 \bigoplus M_2$ and

$$f = \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix} \in \mathfrak{A} \subset \begin{pmatrix} \operatorname{Hom}_{R}(M_{1}, M_{1}) & \operatorname{Hom}_{R}(M_{2}, M_{1}) \\ \operatorname{Hom}_{R}(M_{1}, M_{2}) & \operatorname{Hom}_{R}(M_{2}, M_{2}) \end{pmatrix}$$

Then 1-f is a unit in S_M , since 1- f_{ii} is a unite in $\text{Hom}_R(M_i, M_i)$ by lemmas 4 and 5, (cf. [3] the proof of Lemma 8). (ii) is clear from Lemma 1.

In the following, we shall consider the several results given by M. Harada in [4], which are related to semi-T-nilpotent system. We use definitions in [4].

Let $\{M_{\alpha}\}_{\alpha\in I}$ be a family of completely indecomposable right R-modules. We define an additive category \mathfrak{B} in the same way as in [3] and [4]. The objects of \mathfrak{B} consist of some directsum of M'_{α} s and the morphisms of \mathfrak{B} consist of all R-homomorphisms, Furthermore, we consider the ideal \mathfrak{F} of \mathfrak{B} (see [3], [4]). Then we know from Theorem 7 in [3] that $\mathfrak{B}/\mathfrak{F}$ is a C_3 -completely reducible abelian category. Let M, N be objects in \mathfrak{B} and i be an inclusion of N to M. If i is isomorphic modulo \mathfrak{F} , then we call Im i a dense submodule in M (see [4]).

Corollary 1. Let $M = \sum_{\alpha \in I} \bigoplus M_{\alpha}$, then the following conditions are equivalent.

- 1. $\{M_{\omega}\}_{{\omega}\in I}$ is a semi-T-nilpotent system.
- 2. Condition (ii) of Theorem.
- 3. \mathfrak{A} is the radical of S_M .
- 4. Every dense submodule of M coincides with M.

It is clear from Theorem and [4], Theorem 2.

Corollary 2. ([4], Proposition 2) Let M and N be in \mathfrak{B} and $\overline{M} \supseteq \overline{N}$, then there exists a submodule N in M satisfying the following conditions.

- 1. N_0 is an object in $\mathfrak{B}: N_0 = \sum_{\alpha \in \mathcal{A}'} \oplus M_{\alpha}$.
- 2. N_{0J} is a direct summand of M for any finite subset J of I', (if $\{M_{\omega}\}_{{\omega} \in I'}$ is a semi-T-nilpotent system, J needs not be finite).
 - 3. $\vec{N}_0 = \vec{N}$

Furthermore, if N = Im e and e is an idempotent in S_M , then we can choose N_0 in N.

Corollary 3. ([4], Lemma 2) Assume that $M = \sum_{\alpha \in I} \bigoplus M_{\alpha} = N_1 \bigoplus N_2$. If either N_i is finitely generated or a dense submodule of N is semi-T-nilpotent system, then N_i is in \mathfrak{B} .

Corollary 4. $M = \sum_{i=1}^{\infty} \bigoplus M_i$, where M_i is a comcompletely indecomposable module such that $[M_i, M_j] = 0$ for i < j. Then M satisfies the condition (*).

Proof. It is clear that the assumption implies that $\{M_i\}$ is a semi-T-nilpotent system.

Proposition 13 in [3] is a special case of Corollary 4.

OSAKA CITY UNIVERSITY

References

- [1] G. Azumaya: Correction and supplementaries to my paper concerning Krull-Remak-Schmidt's theorem, Nagoya Math. J. 1 (1950), 117-124.
- [2] P. Crawley and B. Jónsson: Refinements for infinite direct decomposition of algebraic system, Pacific J. Math. 14 (1964), 797-855.
- [3] M. Harada and Y. Sai: On categories of indecomposable module I, Osaka J. Math. 17 (1970), 323-344.
- [4] M. Harada: On categories of indecomposable modules II, ibid, 8 (1971), 309-321.
- [5] R. B. Warfield Jr.: A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1969), 460-465.