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Let R be a ring with identity element. One of the authors studied the
endomorphism ring of projective right R-module P with chain conditions in [6]
and showed that the ring is right artinian (resp. noetherian) if so is P as an
R-module.

We shall consider its dual in this short note. Unfortunately, we could not
give the complete dual of them.

Recently, many authors have studied structures of injective module Q and
given many interesting results between ideals in R and S-submodules in Q,
where S=Hompg(Q, Q). However, we shall study mainly, in this note, some
properties between R-submodules and left ideals in S.

In the first section, we shall consider the above problem in an abelian C.-
category A (see [10], Chap. III), and show that if 4 is a quasi-injective object in
A and A4 is noetherian (resp. artinian), then the endomorphism ring [4, 4] of
A is semi-primary (resp. left noetherian).

In the second section, we shall study conditions under which S=
Hompg(M, M) is left artinian, when M is a right R-quasi-injective noetherian
module and shall give a condition that } gives us a Morita duality on categories
of finitely generated right R-(resp. left .S)-modules.

In this paper, we always assume that R-modules M are unitary and the ring
of endomorphism of M operates from the left side.

After having completely settled this note, we have found J.W. Fisher’s
results in [5]. His Theorem 2 is contained in [6], Theorem 2. 8 and Theorem 3
coincides with our Theorem 1. Further, K. Motose obtained similar results in
[12].

1. In cases of C.-abelian categories

Let Abe an abelian C,-category (see [10], Chap. III). For any object 4 in
A, by S, we denote the ring of morphisms of 4 to itself. Let B be a sub-object
in 4. By [(B) we denote the left ideal in S, whose elements consists of all s in
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S such that Ker sDB. We call [(B) the left annihilator ideal of B. Conversely,
let T be a sub-setin S,. By 7(T) we denote /\ Kert. We call it an annihilator
ter

sub-object in A. We define the dual of idempotent sub-object in 4, (cf. [6]). If
r(()=r(?) for a left ideal I in S, then (1) is called a coidempotent sub-object in
A. If the sub-objects in A satisfy the descending (resp. ascending) chain condi-

tions, we say A is artinian (resp. noetherian). A is called a quasi-injective, if
i, A . .
[4, 4] L4 [B, A] is surjective for any sub-object B and #:B — 4 inclusion.
Theorem 1. Let A be a quasi-injective object in the abelian C-category A.
If A is noetherian with respect to annihilator sub-objects, then S=[A, A] is a semi-
primary ring. (Dual of [6], Proposition 2. 4).

In order to prove it we need some lemmas.

Lemma 1. Let A be a quasi-injective object in A and | a left ideal in S,
such that lr()=1. Then Ir(14 S x)=14Sx for any x in S,. (Dual of [6],
Proposition 2. 3, cf. [1], Lemma 1 in §5 and [9], Theorem 2. 1).

Proof. The proof is analogous to [9], Theorem 2.1. It is clear that
Ir(1+Sx)D1+Sx, where S=S,. Let y be in Ir(I4+Sx)=Ir(/)Nr(x)). Then
r(y)2r(I)Nr(x) and hence, we have a commutative diagram

0 —r()Nr(x) — (1) Sl xr(l) — 0
i iﬁ
0—> 7y) — A 2> y4 -0

where y4A=Imy and xr(l)=Im (x|7(l)). Hence, we have a morphism ¢ in
[xr(l), yA] such that Ox|r({)=yz by [10], p. 23, Proposition 16. 5. Since 4 is
quasi-injective, € is extended in an element s in S. Hence, y—sxelr(l)=1L

Therefore, y s[4 Sx.

Corollary. Let A be as above. Then lr(1)=1 for any finitely generated left
ideal lin S,. (Dual of [6], Lemma 2.6 or [13], Theorem 1. 1).

Lemma 2. Let A be a quasi-injective object in A. If A satisfies the condi-
tion in the theorem, then every co-idempotent sub-object B (%= A) of A is contained in
a proper direct summand of A.

Proof. The proof is a dual of [6], Proposition 2. 3. However, we shall give
the proof for the sake of completeness. Let B=r(l")=r(I"’) for a left ideal I in
S=[4, 4]. From the assumption we can take a maximal sub-object C' among
C’ such that A22C’2B and C'=r([)=r(*). Since [’+0, we can choose x in |
which has properties; lx=+0 and 7(x) is maximal among 7(y) such that [y=0,
yel. If Ux=0, ImxCr(I)=7(l), and lx=0. Therefore, there exists y in |
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such that lyx=+0. Since r(yx)2r(x), (yx)=7(x) by the maximality of r(x).
Hence, Syx=Sx by Lemma 1. Therefore, there exists a in | such that ax=x.
If a is not idempotent, then 01'={z]| €1, zx=0} £I. Further 7(I')DImx and
r() DImx. Hence, I is nilpotent by the maximality of C. Thus, we can find
a non-zero idempotent e in [. Hence, 7(I) S7(¢)=Im (1—e).

Proof of the theorem. Since every direct summand of 4 is an annihilator
object, 4 is a directsum of finite number of indecomposable objects. First we
assume that 4 is indecomposable. Let [ be a proper ideal in S. Then r(I")=
r(I*") for some integer » by the assumption. Hence, 7(I")=4 by Lemma 2.
Therefore, [ is nilpotent, which implies that S is a semi-primary ring with
unique maximal ideal. In general case, we can use the standard argument as
in the proof of [6], Proposition 2. 4.

Corollary. Let A be a quasi-injective and quasi-projective object in A. If
A is noetherian, S 4 is right artinian.

Proof. S, is semi-primary by Theorem 1 and right noetherian by [6], Pro-
position 2, 7. Hence, S, is right artinian.

Proposition 1. Let A be a quasi-injective object in A. Then the following
statements are equivalent.

1) S, s left noetherian.

2) A is artinian with respect to annihilator sub-objects. (cf. [13] and [3]).

Proof. 1)—2). It is clear. 2)—1). The set of all finitely generated left
ideals in S, is noetherian from 2) and Lemma 1. Hence, S, is left noetherian.

Corollary. Let A be a quasi-injective object in A. If A is artinian and
noetherian with respect to annihilator sub-objects, then S , is left artinian.

Proof. S, is semi-primary by Theorem 1 and left noetherian by Proposi-
tion 1. Therefore, S, is left artinian.

2. In cases of modules

In this section, we assume that a ring R has the identity element and every
right R-module is unitary.

Proposition 2. Let M be a quasi-injective right R-module and S=Homp
(M, M). Then M is noetherian as a left S-module if and only if M is noetherian
with respect to annihilator submodules for sub-sets in R.

Proof. We assume the later condition in the proposition. Then R is
artinian with respect to annihilator right ideals for sub-sets in M. Let T be an
S-submodule in M. - We take a minimal one 7(71") among 7(T*), where T* runs
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through all finitely generated S-submodules in 7. Let # be any element in T
Then 7(St+T")=r(T") by the minimality of 7”. Hence, St++T'=T" by [9],
Theorem 2. 1.

Corollary 1. Let R be a right artinian ring and M a quasi-injective right
R-module. Then M is a noetherian S-module. Furthermore, if M is artinian
(or moetherian) as R-modules, then S is left artinian and M has a finite composition
length as S-modules.

Proof. The first part is clear. If M is artinian, then S is left noetherian
by Proposition 1. Let J be the Jacobson radical of S. Then J*M=]"*'M for
some n. Since M is S-noetherian, J"M=0. Hence, J”"=0 and S is semi-
primary, since S/J is a regular ring in the sense of Von Neumann, (see [4]).
Therefore, S is left artinian. The last part is clear from the above and the first
part.

Corollary 2. ([2]). Let R be a right noetherian and self-injective as a
right R-module. Then R is left and right artinian (QF-ring).

Proof. R is a projective injective right R-module. Hence, R is right
artinian by Corollary to Theorem 1. Therefore, R is left artinian by the above
corollary.

According to Azumaya [1], we define a weakly distinguished R-module T as
follows: for any R-submodules T,D T, in T such that T,/T, is R-irreducible,
Homg(T,/T,, T)=0. It is clear that if T is an R-cogenerator, then T is weakly
distinguished. Furthermore, if T is quasi-injective, T is weakly distinguished if
and only if (T,)S(T,) for any R-submodules 7,27, or equivalently, 7/(T")=
T’ for any R-submodule 7" of T, (cf. [1], Proposition 6).

Lemma 3. Let M be a right R-quasi-injective and noetherian with respect
to annihilator R-submodules for sub-sets in S, where S=Hompg(M, M). We
assume that S satisfies a condition : for any left ideals | and U in S

(%) r(INY) = r(O4r().
Then S is left artinian.

Proof. Since S is semi-primary, S contains the non-zero left socle T, say
T=>1l;, where ls are minimal left ideals. Put L,= 3 Pl,. Then
i j2i

LOSL,DOL,>-+ and r(L,)Cr(L,)Cr(L,)<---. Hence, r(L,)=7(L,,,) for some n
by the assumption. We assume L,+0. Then L,=1,®L,,,, r(L,)<r(l,) and

M=r(1,N Ly,.,)=r(1,)+7(Ly,,), which is a contradiction. Hence, T= Emj Pl

=1

Put M,=r(T), Since T is finitely generated, {(M,)=T by Lemma 1. Further-
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more, T is a two-sided ideal and hence, M, is a left S-module, which
implies M, is a quasi-injective R-module by [9], Theorem 1.2. Put S,=
Hompg(M,, M,). Then we have a natural epimorphism @ of S to S, with
Ker ¢=I(M,)=T and hence, M, is noetherian with respect to annihilator R-
submodules. Put T, the left socle of S,, say T,= >} P1,;2 where [,,D T and

[,=1;/T is irreducible. Then M,=r(T)=r(l,sN L,,)=r(l;s)+7(L,). Hence,
we know from the same argument in the above that T',= Zm] @L,;. Repeating

this we have a series of ideals SOT,D7T,_D---DT,D0 such that T,/T;_, is
the left socle of S/T;_, which has a finite composition length. Now S is semi-
primary and hence, N""CT;, where N*'%=0 and N”"=0. Therefore, S is left
artinian.

Theorem 2. Let M be R-weakly distinguished and quasi-injective and
S=Hompg(M, M). Then the following two conditions are equivalent.

1) S is left noetherian.

2) M is artinian as an R-module.
And 1) or 2) implies

3) M is S-injective.
Furthermore, if M is noetherian with respect to annihilator submodules for sub-sets in
S, then 3) implies 1) and 2) and S is left artinian and M is R-noetherian.

Proof. 1)—2). Itis clear from the remark before Lemma 3. 2)—1). It
is clear from Proposition 1. 1)—3). We assume that S is left noetherian. Let
[, [, be left ideals in S. Then 7(l,)+7(L))=&(,)N &)=L NL, by Corollary
to Lemma 1. Hence, r(l,)47(l,)=r(I,N1,) by the above remark. Now, we
shall show by the induction on the number of generators of left ideals in .S that
M satisfies the Bear’s condition, (it is essentially due to [8]). Let I=Sx, Then
{xM)=Is(x)={y| €S, yx=0} and r(ls(x))2xM. Hence, r(ls(x))=xM. Let
f be an element in Homg(l, M), then f(x)=r(ls(x))=xM. Hence, there exists
m in M such that f(x)=xm. Let [= i}} Sx; and [,= E:Sxi. From an exact
sequence: 0—1,—I[-=1/[, 2 Sx,/(Sx,N1)—0, we have the exact sequence:

Homg(L,, M) < Homg(l, M)« Homs(l/,1, M) “Z Homg (Sx,/(Sx, 1), M) <0,

Let f be in Homg (I, M). Then there exists m in M such that f(x)=xm for
x<l, by the hypothesis of the induction. We define an element f,, in
Homg(l, M) by setting f,,(¥)=xm for xl. Then g=f—f, €Homg(/l,, M).
Since Homg(Sx,, M)<Homg(Sx,/Sx,N1,, M) is monomorphic, there exists m’
in M such that g(p~'(sx,))=sx,m’, where sx, means a residue class of sx, in
Sx,/(Sx,N1,). Hence, m'r(Sx,N)=r(Sx,)+r(l,). Let m'=m,+m,, m
r(x,), mycr(l,) and define f,, as above. Then for any x=ux+x, inl(x,€
L, x,€8x,), g(x)=g(p~\(x,))=x,m'=x,m,=f, (x). Therefore, f=f,.p, 3)—>1).
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Let M be S-injective and I, [, be left ideals in S. Then we have an exact
sequence: 0<—Homg(S/(I,N1,), M)« Homg(S/l,, M)PHomg(S/l,, M), which
means that M satisfies the condition (x). Hence, S is left artinian from Lemma
3. The last part is clear, since S is artinian by Theorem 1.

Corollary. Let M and S be as in Theorem 2. If M is R-artinian, then
any S-R bi-submodule N of M is S|I(N)-injective.

Proof. Let N be an S-R submodule of M. Then N=rl(N) and [(N) is
a two-sided ideal in S. Put S=S/I(N). Then S—Homg(N, N)and N satisfies
the same conditions as M by [9], Theorem 1.1. Hence, N is S-injective by
Theorem 2.

Theorem 3. Let M be an S-R bi-module such that Homg(M, M)=S and
Homg(M, M)=R. Furthermore, we assume that M is S- and R-injective,
respectively. Then the following two statements are equivalent.

1) M is R-noetherian,

2) S is left artinian.

And 1) or 2) implies that M is R-artinian. Thus, if M is R- and S-noetherian or if
R and S are right and left artinian, respectively, then M gives us a duality between
the category of finitely generated right R-modules and the category of finitely
generated left S-modules in the sense of Morita.

Proof. 1)—2). Since S satisfies the condition (%) of Lemma 3, S is left
artinian. 2)—1). It is obtained by Corollary to Proposition 2. Now, we as-
sume 1) or 2). Let T be an R-submodule, then T=r/(T) by [9], Theorem
2.1. Hence, M is R-artinian, since S is left noetherian. The last part is clear
from [11], Theorem 6. 3, v.

ReEmMARK. Let M and S be as the first half in Theorem 2. Then the
injectivity of M as an S-module does not imply the fact that S is left noetherian.
Furthermore, if R is commutative, then a fact that M is R-noetherian implies that
M is R-artinian, (see Proposition 2 in [7]). However, the converse is not true in
general.

Finally, we shall give an example of injective noetherian but not artinian
modules. Let K be a field and I=Z" U« the set of indices, where Z* is the
set of positive integers. Let R be the ring of upper tri-angular matrices over K
with indices /, (« is the last index and «-column consists of all column finite).
Let e;; be matrix units in R and put M=e,,R. Then M~Homg(Re,,, Ke,,).
Hence, M is R-injective. It is clear that M is R-noetherian but not R-artinian.
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