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Let R be any commutative ring, U and M arbitrary R-modules. We call
that (M, B, U) is a bilinear R-module if B: M x M — U: (x, y) W= B(x, y) is
a bilinear form, i.e. B(x, —) and B(—, y) are in Homg(M, U) for every x and y
in M. Furthermore, we call that (M, ¢, U) is quadratic R-module if g: M —U
is a quadratic form, i.e. g(rx)=r°q(x) for all r€R, x&M, and B;: MXM—U
defined by B,(x, y)=g(x+y)—q(x) —q(y) for x, y=M is a bilinear form. In
this paper, we study about automorphisms p of (M, B, U) which satisfy B(p(x),
p(¥))=B(x, y) for all x, y in M, for some commutative ring R and some R-module
U, and study about Witt ring W(R) and W(R)-module W(U) for a finitely generated
projective rank one R-module U.

In §1, for non-degenerated symmetric bilinear R-module (M, B, U) we
define a non-singular element and a symmetry which are generalizations of or-
dinary senses. Under some condition on U, we give some generalization of the
classical theorem that the orthogonal group is generated by symmetries, if 2 is
inversible in R and M is generated by orthogonal non-singular elements. In
§2, analogously to [2], we can construct the theory of quadratic modules
(M, g, U) and Witt group W(U) for U in Pic(R), where Pic(R) is a category
whose objects consist of finitly generated projective rank one R-modules and
whose morphisms are R-isomorphisms. Then we shall show that W(U) is a
W(R)-module, and if there exists ¥ in Pic(R) such that V ® gV =~ U then W(U)
is a free W(R)-module with rank one. In §3, as supplementary result of [3],
we study the structure of W(R) over a complete Noetherian local ring with
finite residue field of characteristic +2. Throughout this paper, we assume that
every ring is commutative ring with unit element and every module is unitary.

1. Automorphism of bilinear module

Let R be any commutative ring and U an arbitrary R-module. A bilinear
R-module M=(M, B, U) is called non-degenerated if the homomorphism M —
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Homg(M, U); x W~—> B(x, —) is R-isomorphism, where B(x, —) is the R-
homomorphism M —U;y W\~ B(x, y). And, if B(x, y)=B(y, x) for every x
y in M, then we call it symmetric bilinear R-module.

Proposition 1.1. Let M=(M, B, U) be any bilinear R-module, and x an
element in M. A cyclic sub-bilinear R-module (Rx, B|Rx, U) is non-degenerated
if and only if it satisfies that (0: x)p=(0: B(x, x))g and (0: (0: B(x, x))r)v
=RB(x, x), where (0: x)g={rER: rx=0} and (0: a)y={y< U: ay=0} for x in
M or U and ideal a of R.

Proof. Let 6: Rx—>Hompg(Rx, U) be the homomorphism defined by rx
W\ B(rx, —)|Rx. We can show easily that 6 is a monomorphism if and
only if (0: B(x, x))rC(0: x)gr, and @ is an epimorphism if and only if
(0: (0: x)g)ycRB(x, x).> Since, in general, (0: B(x, x)g)r2(0: x)r and
(0: (0: B(x, x)g)y D RB(x, x), therefore we have that # is isomorphism if and
only if (0: B(x, x))g=(0: %) and (0: (0: B(x, x))z)y=RB(x, x).

DrriNiTION. Let M=(M, B, U) be any bilinear R-module. An element
x in M is called a non-singular element if it satisfies B(x, M)=RB(x, x), where

B(x, M)={B(x, y): ye M}.

Remark 1.1. If M=(M, B, U) is an arbitrary bilinear R-module, then an
element x of M is non-singular if and only if M=Rx+(Rx)‘, where (Rx)*:
={yeM: B(x, y)=0}. If (M, B, U) is non-degenerated, then non-singular
element x satisfies (0: x),=(0: (B(x, x))g. Furthermore, if (M, B, U) is non-
degenerated symmetric bilinear R-module, then the following conditions are
equivalent:

1) =« is a non-singular element.

2) M=Rx®D(Rx)".

3) (Rwx, B|Rx, U) is non-degenerated.

Lemma 1.1. Let (M, B, U) be a non-degenerated symmetric bilinear R-
module. If x is a non-singular element, then it satisfies (0: (0: B(x, M))g)u
=B(x, M).

Proof. It is easy from Proposition 1.1. and Remark 1.1.

DeriNiTION. Let M=(M, B, U) be a non-degenerated symmetric bilinear
R-module. For any non-singular element x in M, we can define an R-automor-
phism p, of (M, B, U) as follows: For every element y in M, p,(y)=y—2r,x,

1) 6 is monomorphism>B(rx, Rx) =0 implies r&(0: x)g>(0: B(x, x))rC(0: x)r.

0 is epimoprhismZZfor any f €EHomg(Rx, U) (=Hompg(R/(#: %)g, U)), there exists
rxERx such that f(sx)=B(rx, sx) for all s&€ RZfor any u& U(=Homg(R. U)) such that
(0: x)r u=0, there exists rER such that u=B(rx, x)=7B(x, x)>(0: (0: x)r)v C RB(x, x).
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where 7, is an element of R such that B(x, y)=r,B(x, x) in B(x, M)=RB(x, x).
It is well defined, because we have (0: x)r=(0: B(x, x))r from Remark 1.1,
therefore 7,x is determined by y. p, is called symmetry. Then it is easy to see
that

1) p, is an R-automorphism of M such that B(p,(y), p.(2))=B(y, 2) for
every ¥,z in M,

2) pi=1I, pu(x)=—x and p,|(Rx)*=I.

Lemma 1.2. Let M=(M, B, U) be a non-degenerated symmetric bilinear
R-module, and suppose 2 is inversible in R. If x and y are non-singular elements
such that B(x, x)=DB(y, y) and B(x-+y, x-+y)=0, then there exists a symmetry p
such that p(y)==x.

Proof. Since B(x, x)=B(y,y) and B(x+y, x+y)=0, we have 0
=B(x+y, x+y)=2(B(x, x)-+B(x, y)), thatis, B(x, x)=—DB(x, y). On the other
hand, B(x—y, x—y)=2(B(x, x)— B(x, y))=4B(x, x), and B(y, M)=RB(y, y)=
RB(x, x)=B(x, M), hence B(x—y, M)c B(x, M)+B(y, M)=B(x, M)=RB(x, x)
=RB(x—y, x—y). Therefore, x—y is a non-singular element, and we can define

—1
= Ja—2)
1
=4, where 7,B(x—y, x—y)=B(x—y, y)=B(, y)—B(y, y)=—-Bx—y, x—y).
Now, we assume the following condition:

(%) For every non zero element u in U, there exists an idempotent e in R
such that Ru>eU 0.

a symmetry p=p,_,, which satisfies pxﬁy(y)zy—Zry(x—y):y—2<

Lemma 1.3. Let M=(M, B, U) be a non-degenerated symmetric bilinear
R-module satisfying the condition (x), and suppose 2 is inversible in R. Then there
exists a non ero non-singular element.

Proof. Since (M, B, U) is non-degenerated, there exists an element x=+0
such that B(x, x)+0. By the condition (*) there exists an idempotent e in R
such that RB(x, x)DeU 0. Put x'=ex, then we have RB(x’, x")=B(x', M)
=eU, therefore x’ is a non zero non-singular element in M.

We suppose the following stronger condition in the next proposition:

(xx%) For every non zero element u in U, there exists an idempotent e in R
such that Ru=eU.

Lemma 14. Let M=(M, B, U) be a non-degenerated symmetric bilinear
R-module, and suppose 2 is inversible in R. If x and y are non-singular elements
of M such that B(x, x)=B(y, y) and RB(x+y, x+y)=eU =0 for some idempotent
ein R, then there exists an automorphism = of (M, B, U) such that =(y)=x and
7 is a product of symmetries.

Proof. By the assumption, there exists an idempotent e==0 in R such that R
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B(x+y, x+y)=eU 0. We put x'=ex, y'=ey, and x"=(1—e)x, y"=(1—e)y.
Then x"#0 and y'=0 are non-singular elements, and RB(x'+7y’, x'+y")=eU 0.
If x"=£0 (so that y”"=0), then x” and y” are also non-singular elements and
B(x"+y", x"+y")=(1—e)B(x+y, x+y)=0. By Lemma 1.2, ¥” — " is anon-
singular element and the symmetry p,»_, satisfies p,_y/(y")=x". Since y’ is
in (R(x"—y"))*, we have p,_,/(y')=y’. On the other hand, R B(x'+7y’, x'+y")
=eU=B(x"+y’', M), therefore x'+y’ is non-singular and p,/.,(y" )=y —2ry
(" 4+y")=y'—(x'+y')=—=a". Therefore p,sop,/1y(y)=x'. Since x" is in (Rx)*
and in (R(x'4y"))t, prsopr+y(2”)=x". Therefore p,rop,.yopr_y(y)=
px’opx'+y’°px”—v”(y),+ Pz’ © P4y ° Px”—y”(y”):px’ ° Px'+y'(y’)+Px/ ° Px'+y'(x”):
x'4a"=x. Accordingly, m=p,s0p,s,op,~_, is the automrphism demanded in
this lemma.

Proposition 1.2. Let M=(M, B, U) be a non-degenerated symmetric bilinear
R-module satisfying the condition (xx), and suppose 2 is inversible in R. If x and
y are non-singular elements in M such that B(x, x)=B(y,y), then there exists an
automorphism 7 of (M, B, U) such that n(y)=x and = is a product of symmetries.
Furthermore, if M is generated by a finite number of orthogonal elements, i.e.
M=37.1Rx;, B(x;, x ;)=0 for i= j, then the group of all automorphism of (M,
B, U), (it is denoted by O(M, B, U)={w< Autx(M): B(r(x)r, (v))=DB(x, y)for
all x, ye M}), is generated by symmetries of (M, B, U).

Proof. The first part is obtained by Lemma 1.2 and Lemma 1.4. We
suppose that M=2>Y;_,Rx;, B(x;, x;)=0 for i< j, and hence, x,, ---x, are non-
singular elements. Let 7= be any element in O(M, B, U). Using the first part
of this proposition for x, and z(x,), we have an automorphism =, of (M, B, U)
such that 7 oz(x,)=x, and =, is a product of symmetries. Repeating for x, and
n,om(x,), we have =, such that 7,0z, ox(x,)=x, and =, is a product of symmetries.
Furthermore, since 0=B(x,, x,)=B(r,on(x,), =, om(x,))=B(x, , m,o7(x,)), form the
construction of 7, we have =,(x,)=x,, therefore =,om, om(x,)=x,, Thus, repeating
these, we obtain automorphisms =, =,, -*, #, of (M, B, U) such that
T yOTy_ 0w om(%;)=x; for =1, 2, -+, n, and =, +--, m, are products of sym-
metries, Therefore z=n7 ory o+ oz is a product of symmetries of (M, B, U).

We consider the specisl case that R is a commutative Von Neumann reg-
ular ring, i.e. every principal ideal is generated by an idempotent, and U=R.
Then form Proposition 1.2 we have easily

Theorem 1.1. Let R be a commutative Von Neumann regular ring, and
(M, B)=(M, B, R) a non-degenerated symmetric bilinear R-module, and suppose
2 is inversible in R. If x and y are non-singular elements in (M, B, R) such that
B(x, x)=B(y, y), then there exists an automorphism n of (M, B, U) such that
n(y)=x, and 7 is a product of symmetries. ~Furthermore, if M is generated by a
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finite number of orthogonal elements, then the group O(M, B) is generated by
symmetries.

Proposition 1.3. Let (M, B, U) be a non-degenerated symmetric bilinear R-
module satisfying the condition (%), and suppose 2 is inversible. If (M, B, U)
has maximum (or minimum) condition for non-degenerated sub-bilinear R-modules,
then M is generated by a finite number of orthogonal non-singular elements and
O(M, B, U) is generated by symmetries.

To prove the proposition we are necessary the following lemma:

Lemma 1.5. Let (M, B, U) be a non-degenerated bilinear R-module. If N
is an R-submodule of M such that N is a direct summand of M, then N*={ysM:
B(y, N)=0} is also direct summand of M. If (N, B|N, U) is non-degenerated
sub-bilinear R-module, then M=N PN+, and (N1, BN+, U) is also non-
degenerated.

Proof. The proof is obtained similarly to the proofs of Lemma (2.1) and
Lemma (2.2) in [1].

Proof of Proposition 1.3. By Lemma 1.3, there exists a non zero non-
singular element x,, and by Renark 1.1 (Rx,, B|Rx,, U) is non-degenerate.
Therefore, by Lemma 1.5 we have M=Rx,P(Rx,)* and ((Rx,)*, B|(Rx,)*, U)
is also non-degenerated, and inductively we have orthogonal non-singular
elements x,, x,, --, but by the maximum (or minimum) condition for non-
degenerated sub-bilinear R-modules we have a finite number of orthogonal non-
singular elements x,, x,, *--, ¥, such that M=Rx,+ Rx,+---+Rx,. Thus, we
have the proof of the first part. We shall show the second part. Let = be any
element of O(M, B, U). By Lemma 1.3, there is a non-singular element x,,
then M=Rux,D(Rx,)*, and Rx, and (Rx,)" are non-degenerate. If B(x,+n(x,),
x,+7(x,))=0, then by Lemma 1.2 there exists symmetry 7, such that ,(=(x,))
=x,, therefore =, on((Rx)Y)=(Rx,)* and m,om|Rx,=1. If B(x,+=(x,),
x,+7(x,)) 0, then by the condition () there exists an idempotent e in R such
that RB(x,+n(x,), %+=(x))DeU=+0. We put xi=ex,, then we have R
B(x1+n(x1), x1+m(x{))=eU 0, and x{ is also non zero non-singular element
in M. Therefore, M=Rx{@®(Rx{)* and by Lemma 1.4 there exists an
automorphism =, of (M, B, U) such that =, (=(x]))=x1 and =, is a product of
symmetries. Accordingly, for non-degenerated sub-module ((Rx1)', B|(Rx1)*, U)
we have 7, oz((Rx])*)=(Rx{)!, and z oz | Rxj=1. Since (M, B, U) has maximum
(or mnimum) condition for non-degenerated sub-bilinear R-modules, we have a
finite number of automorphisms =,, =,, **+, =,, of (M, B, U) such that =,or,_,
o---ox or=1, that is, z=ni'o, «--ox,', and 7; is a product of symmetries for
every i. We copmlete the proof.
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2. Witt group and Witt ring

Let R be any commutative ring, and U an arbirtary R-module. Then we
can construct the Witt group W(U) which is a module over the Witt ring W(R).
In this section, we shall study about W(R)-module W(U). For an R-module M,
(M, g, U) is called quadratic R-module, if g: M—U is a map satisfying the
following conditions:

1) g(rx)=r’q(x) for every r€R and x& M, and

2) Bg: MXM—U; By(x, y)=q(x+y)—q(x)—q(»), », yEM, is a bilinear

form.

It is called that (M, ¢, U) is non-degenerated if (M, B,, U) is non-degenerated.

Lemma 2.1. If (P, q, U) is non-degenerated quadratic R-module such that
P is a finitely generated projective faithful R-module, then U is a finitely generated
projective rank one R-module.

Proof. Since (P, g, U) is non-degenerated and P is finitely generated
projective, we have P~Homg(P, U)~Hompg(P, R)Q U as R-module. Further-
more, since P is finitely generated projective and faithful, by Propostion 6.1. in
p- 37, [2], so is also U. Since rank(P)=rank(Homg(P, R)), we have rank(U)
=1.

From now, we consider all non-degenerated quadratic R-module (P, ¢, U)
such that P is finitely generated projective R-module. By Lemma 2.1. we may
assume that U is finitely generated projective rank one R-module. We denote
by Pic(U) a category whcih object is finitely generaged projective rank one R-
moduee and morphism is R-isomprphism.

We shall give analogous definitions and lemmas to [2] for quadratic R-
module (M, g, U) with U in Pic(R).”

(2.1) Definition, H(M, U)=(M SHomg(M, U), g,, U) is called hyperbolic
quadratic R-module, if g,: M @Homg(M, U)—U is defined by g,(x+f)=f(x)
for x& M and f € Homg(M, U).

If U is in Pic(R), then the following lemmas are proved similarly to ones in
[2].

(2.2) H(M, U) is non-degenerated if and only if M is U-reflexive, i.e. ¥: M —
Homg(Homg(M, U), U) defined by W(x)(f)=f(x) for feHomg(M, U),
x< M, is isomorphism.

(2.3) Let (M, g, U) be a quadratic R-module. If M is a projective R-module,
then there exists a bilinear form B: M x M —U such that B(x, x)=q(x) for
every x in M.

(2.4) If (M, g, U) is a non-degenerated quadratic R-module, then M is U-refl-

2) A part of these definitions and lemmas is due to Prof. A. Micali, I studied from his
seminar at Universidad de Rosario. I should like to express here my thanks to him.
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exive, and so is also direct summand of M. If P is a finitely generated pro-
jective R-module, then P is U-reflexive for every U in Pic(R).

(2.5) Definition. For quadratic R-modules (M, ¢, U) and (M’, g, U’),
(f, &): (M, g, Uy—(M', ¢’, U’) is called homomorphism of quadratic R-module
(M, ¢q, U)to (M', ¢', U"), if f: M—M’ and g: U—U’ are R-homomorphism
such that the following diagram is commutative;

X
MXML-—];M'XM'

lq p lq’

u — U

If f is an isomomorphism and g=I, (U=U’), then (f, I): (M, ¢, U)—
(M', ¢, U) is called isomorphism, and denote it by (M, ¢, U)y~(M’, ¢’, U).

(2.6) Let (M, g, U) be a non-degenerated quadratic R-module, and M, a total
isotropic R-submodule, i.e. ¢(M,)=0, such that M, is a direct summand of M.

Put A={N: R-submodule such that M=N M f,'}, then we have that the map
N—Homg(M,, U); x W~ By(x, —)|M, is an R-isomorphism for every N in
A. If M is a projective R-module, then there exists a total isotropic R-
submodule N,, i.e. g(IN,)=0, in A, and we have (M,DN,, q|M,HN,, U)~
H(M,, U). Therefore, if (M, g, U) is a non-degenerated quadratic R-module
such that M is projective R-module and there exists a total isotropic R-submodule
M, such that M =M and M, is a direct summand of M, then (M, ¢, U) is
hyperbolic and (M, ¢, U)y~H(M,, U).

(2.7) If (P, ¢, U) is a non-degenerated quadratic R-module such that P is pro-
jective R-module, then we have (P, gq, U)| (P, —q, U)y~H(P, U), where
(P, ¢, U)L(P', ¢, U)=(P®P', (¢.Lq), U) and (L q)x®)=g(x)+'(y) for
xPysPPP.

(2.8) Definition. Let U and U’ be in Pic(R), and (P, ¢, U) and (P’, ¢’, U’)
any quadratic R-modules. We can define the product (P, g, U)Q(P’, ¢’, U’)
=(PQgrP’, q®¢’, URRU’) as follows;

4®q': PQrP'->U®rU’; ¢®q'(20-1%:Q%1)=2377.19(x,) @4’ (x7)
+20is jBaze (2:Qx7, x,;Qx)) for >W_1x;Qx} in PQP’, where
B,gy=B,QBy; (PQrP)X(P'QrP')— URRU'.

(29) Let U and U’ be in Pic(R). If (P, g, U) and (P’, ¢’, U’) are non-
degenerated quadratic R-module such that P and P’ are finitely generated pro-
jective R-modules, then (P, ¢, U)Q(P’, ¢’, U’) is also non-degenerated quadratic
R-module. Furthermore, if P” is a finitely generated projective R-module and
U" in Pic(R), then we have (P, g, U)QH(P", U")~H(PQgrP", URQrU").
Now, we suppose that the following natural isomorphisms in Pic(R) regard
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as identies I: UQrU -U'QrU; xQyWM>yRx, (UQRU)QU"—
UQr(UQrU"); (xQy)Q2W— xQ(yR2), URrR—U; xQr W xr, RQ R
—=R; rQs WA rs, UQrU*—R; xQ f W\~ f(x), -+- etc., where U*=Homg(U, R).
Then, for each U in Pic(R) we can construct an abelian group W(U) as follows:
Let Qua(U) be the set of all isomorphic classes of non-degenerated quadratic R-
modules (P, ¢, U) such that P is finitely generated projective R-module. Qua(U)
makes an abelian semigroup with peration | such that, [(P, ¢, U)]_L [(P’, ¢, U")]
=[(P, ¢, U)1(P', ¢', U')], where [ ] denotes an isomorphic class. Let H(U)
={[H(P, U)] in Qua(U): P is finitely generated projective R-module}. Then
H(U) is a sub semi-group of Qua(U), and Qua(U) has an equivalence relation
~ defined by a~B<3vy, s€H(U), vl a=5108. We denote the quotient
Qua(U)/~ by W(U), then W(U) is also abelian semi-group with operation
+induced by . But, by (2.7), W(U) makes an additive group. W/(U) is
called Witt group over U. On the other hand, the product @ of quadratic R-
modules induces a product, that is, for U, U’ in Pic(R), Qua(U)X Qua(U")
—Qua(URRU'); ([P, ¢, U)), [(P', ¢, UN=I(P, ¢ U)R(PF', ¢, U')] induces
a product W(U)x W(U")—=W(U QgU’) by (2.9). We denote this product by-,
then for ac W(U), Be W(U’) and ye W(U"), we have a-B€ W(U ® gU’) and
(a:B)-vy=a+(B-v)in WURRU'QU").

Therefore, we have that W(R) is a commutative ring, it is called Witt ring,
and we have easily

Lemma 2.1. Let U and U’ be in Pic(R). Then, W(U) is W(R)-module,
W(U)- WU YCcW(UQgrU’), and W(U)- W(U *) is an ideal of W(R), where U*
=Homg(U, R). If f: U-U'" is isomorphism in Pic(R), then f induces an
W(R)-isomorphism W(f): W(U)—W(U') defined by [(P, q, U)]—[(P, f°q, U")].

From now, we assume that the commutative ring R has inverse element of
2. Then W(R) has unit element [(R, ¢;, R)] defined by q,(x)=—‘;l):xz for every x in

R, and W(U) is unitary W(R)-module for every U in Pic(R).

Lemma 2.2. Let U and V be in Pic(R) such that V @gV ~U in Pic(R).
Then, any R-isomorphism ®: V Q pV — U satisfies D(xQ y)=D(yRx) for every
x,yimmV.

Proof. We can easily check that homomorphism k: VQzV—-U is well
defined by A(x® y)=P(*® y)—D(yRQ«) for xQy in V@ V. For any maximal
ideal p of R, we consider localization by p hy: (V QgV),~U,. But, (V®zV),
=V, QryVp=RoQgreRyv for some veV,, therefore hy(xQ y)=hy(roQr'v)
=@ (rvQr'v)—Dy(r'vQr)=0 for every x=rv, y=r'v in V,=Rpw. Accord-
ingly, since s,=0 for every maximal ideal p of R, we have h=0.

Theorem 2.1. If U is in Pic(R) such that there exists V in Pic(R) and
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V®gV ~U in Pic(R), then Witt group W(U) is a free W(R)-module with rank one.
Proof. Let®: V'® RV—> U be an R-isomorphism, and (V, g, U) a quadratic
R-module defined by q(x)-—@(x@x) for x in V. By Lemma 2.1, By(x, y)

=q(x+y)—q(x)— q(y)——(¢(x®y)+c1>(y®x)) ®(x®7y). We shall show that

(V, ¢, U) is non- degenerated Let 8: V—-Homg(V, U) be a homomorphism
defined by §(x)=B,(x, —)=®(xQ —). Then, we have the following commuta-
tive diagram;

IQ®
VARV @V 2% pr@.U

lﬂ@l v
RQpV=V —— Homg(V, U),

where p: V*® V2 R; fQx— f(x), and v: V*@ pUHomg(V, U); v(fQy)(x)

=f(x)y for x&V, ye U and feV*. Because, since V is a finitely generated
projective rank one R-module, there exist f;, f,, **- f, in V*=Homg(V, R) and
Xy, Xy, +** X, in V such that x=217_, fi(x)x; for all x in V, and by [4] we have
SVi-1fix;)=rank(V)=1. Therefore, for any x in V, in we have vo(I Q@®)o
(7' ®I)(x) =vo(I® P)o(n™* @ I)(2-1fi(%:) ® %) = vo(I Q PYZ]7-1f; @ %:Q %)
=v(QN1-1fi®@P(x;®x)). But for any y in V, »(ON.1fiQD(x;Qx)(y)
=21 fi(9)P(x: Q%) =D -1 fi( ¥)%:Qx)=D(yRQ«x), therefore we have
vo(I @®)o(p'®I)=0. Since, v, IQ®P, and w®I are R-isomorphisms,
therefore 6 is an isomorphism, that is, (V, g, U) is non-degenerated. Siminarly,

we have a non-degenerated quadratic R-module (V'*, ¢*, U*) defined by ¢*(2)
g

=5 P~ *(2Q2) for z& V*=Hompg(V, R), where @ *: V*Q V' *—>U* is dual
of @ ': U=V QgV, ie. D*(fQR2)=fRgod " for fQgeV*QrV*. Then
we have (V, ¢, U)Q(V*, ¢*, U*)=~(R, q;, R), by the identification U® U *
=R; x® f=f(x), that is, for (V, ¢, U)Q(V*, ¢*, U¥)=(VQrV*, ¢Rg*,
U ®rU*), we have commutative diagram

£
e+ 120 Ug LU+

K [
R -, R,

Because, ¢®¢*(2]:y: ®g£:)=2214(y:) ® ¢*(g:)+ 2i<;Bo(¥:i» y,-)®B’q"(g,- s &5)
=22,.iq>(y’. ®y:) ®l¢_1*(é’i Qi)+ 2i<;D(1: Qy,;) R P *(£:Q¢)

=2V <I> ‘*(g,®g)(¢(y.®y))+2,<, 1*(gs®gf)(<1>(y,®yj))=Z;—12—(g.~(y,-))’
+2,<,g.(y N8 (yi)=— (2 84y:))=q::gd(y:) for 2y:®g;, in VRV*
Therefore we have [[V* * UXI-[V, ¢, Ull=I[[V, ¢ UNI-[[V*, ¢*, U*]]
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=[[R, q;, R]]=I in W(R). Accordingly, W(U)- W(U*)=W(R) and W(U)-
[[V* g¢* U*]]=W(R), therefore W(U)=W(R)-[[V, ¢, U]] is rank one free
W(R)-module. We have the proof of Theorem.

We leave here the following question: Is W(U) always a finitely generated
projective rank one W(R)-module or 0 for every U in Pic(R)?

3. Some example of Witt ring

In [3], we studied the structure of Witt rings in the special case over local
rings. In this section, we give some supplementary result of [3]. In this section,
we suppose that R is commutative ring such that 2 is inversible in R. We denote
by U(R) the group of all inversible elements in R, and U(R)®={r*: r& U(R)}.
Put U(R)=U(R)/U(R)®. We consider the group ring Z[U(R)] of the group
U(R) over the integers Z. We denote by H(R) the principal ideal of Z[U(R)]
generated by —1+41 in Z[U(R)], where @ denotes a coset of U(R)/U(R)®
containing a for ac U(R). We put A(R)=Z[U(R)]/H(R). If R is local ring,
the ring A(R) has the following properties (see [3]):

(3.1) There exists a ring epimorphism ©: A(R)—W(R).

(3.2) If —1isasquare element in R, then A(R) is Z/(2)-algebra and is local
ring with maximal ideal m such that »’=0 for every x in m and A(R)/m~Z/(2)
as Z/(2)-algebra.

(3.3) If —1is not square element in R, then A(R)~Z[H], where H is a sub
group of U(R) such that U(R)=H X (—1).

(3.4) If U(R) has only two elements, i.e. U(R)={1, @}, then we have that

a) if —1 is a square element in R, then ©: A(R)—W/(R) is ring isomor-
phism, and W(R)~A(R)~Z|(2)[(a)]=Z[(2)-1+Z|(2)-a, therefore 1 is unit
element of A(R) and the maximal ideal is m={0, 1+a},

b) if —1 is not square element in R, then A(R)~Z and ker®C4Z.

Now, we consider a case where R is complete Noetherian local ring with
finite residue field. Let R be a Noetherian local ring with maximal ideal p
such that 2€Ep and R/p is a finite field.

Lemma 3.1. Let R be as above. Then the group U(R[p™)=U(R/p")|
U(R|[p™)® has only two elements for every n=1, 2, ---.

Proof. We consider the group epimorphism f: U(R/p™)— U(R/p*)®; x—Z°.
Then we have ker f={—1, 1}. Because, for any acker f, a*=1 (mod p”), hence
a=1 (mod p) or a=—1 (mod p), i.e. a=p,+1 or a=p,—1 for some p; in p,
i=1, 2. Therefore a®>=(p;+1)=pi+2p,+1=1 (mod p*), hence p;(p,£2)=0
(mod p”). Since 2&p, p,+2 is unit in R, hence p,=p”, that is, a=p;£1=+1
(mod p”). Since R is Noetherian and R/p is finite field, therefore R/p” is
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Artinian, and so R/p” is finite ring for every integer n>0. Thus, U(R/p") is
finite group and [U(R/p"): U(R/p™)®]=2.

Proposition 3.1. Let R be a Noetherian local ring with maximal ideal p
such that 2¢£p and Ry is a finite field. Then, the completion R of R by p-topology
has the following properties;

1) UR)=U(R)/UR)® has only two elements, and

2) —1 s a square element in R if and only if —1 is a square element in R[Yp.

Proof. Letf,,, be the canonical epimorphism R/p*"—R/p™ for n>m. Since
R=lim R/y"={(@,, @,, -, @, -*) € 1 RIP": [, (@)=, for every n>m},

therefore U(R)=lim U(R/y™), and the product in U(IAQ) is a-B=/(ab,, ab,, )

for a=(a@,, @,, -) and B=(b,, by, +-)in U(R). We have that a=(a,, @) is a
square element in U(ﬁ) if and only if @, is a square element in U(R/p") for every
n=1, 2, ---. If a,is square in U(R/p"), then @;=f, /@,) is also square in U(R/p*)
for every 0<<¢<mn. Therefore a=(a,, a,, :*+) is not a square element in U(ﬁ) if
and only if there exists a positive integer z such that @, is not a square element in
U(R|p*) for every k>n. If a=(a,, @,, +--) and B8=(d,, b,, ---) are not square
elements in U(R), then there exists a positive integer m such that @; and b; are
not square element in U(R/p) for every i >m. But, by Lemma 3.1, @;b,=ab;
is a square elements in U(R/p’) for everyi>m. Therefore o+ must be a square
element in U(I@) Accordingly, we have that U(Ié): U(IA@)/ U(I@)‘z’ has only
two elements. Furthermore, if a=(a,, @,,**) is not square element in U(ﬁ),
then there exists the minimum positive integer & such that @; is not square
element in U(R/p’) for every i=k. Let B=(b,, b,, ---) be not square element in
U(Ié) such that b; is not square element in U(R/p?) for every i>1.> Then a8
=(a@0b,, ab,, +) is a square clement in U(R), therefore &, is square element in
U(R[y’) for every i>1, hence by Lemma 3.1 we have k=1. Accordingly,
a=(a,, a,, ) is not square element in U(R) if and only if &, is not square
element in U(R/p). Thus, we complete the proof.

From (3.1), ---, (3.4) and Proposition 3.1, we have easily
Theorem 3.1. Let R be a Noetherian complete local ring with maximal ideal
p such that 2&p and R[p is a finite field. Then we have that

1) if —1is a square element in R|[p, then the Witt ring W(R) is a group ring
of a cyclic group of order 2 over Z|(2).

3) There exitts such element £ in U(Ié). Let b be an element of R such that b is
not square element in R/p, and f;: R—R[p’ the canonical epimorphism f;(x)=%Z<R/y¢ for
xER,i=1,2,---. Put b;=fi(b). Then f=(b;, b, -++) is in U(Ié‘), and &; is not square in
U (R]y?) for every i=1.
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2) if —1is not square element in R[p, then the Witt ring W(R) is isomorphic
to Z|(n), where n is a multiple of 4.
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