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Let R be any commutative ring, U and M arbitrary /^-modules. We call
that (M, 5, U) is a bilinear Λ-module if B: MxM-> U: (x, y) \ΛΛr» B(x, y) is
a bilinear form, i.e. B(x, —) and B(—, y) are in HomR(M, U) for every x and y
in M. Furthermore, we call that (M, q, U) is quadratic i?-module if q: M->U
is a quadratic form, i.e. q(rx)=r2q(x) for all r<=R, x<=M, and β^: MxM->U
defined by Bg(xy y)=q(x+y)—q(χ) —q(y) for x, y^M is a bilinear form. In
this paper, we study about automorphisms p of (M, B, U) which satisfy B(ρ(x),
p(y))=B(x, y) for all x, y in M, for some commutative ring R and some i?-module
U, and study about Witt ring W(R) and PF(i?)-module Ŵ( C/) for a finitely generated
protective rank one i?-module U.

In §1, for non-degenerated symmetric bilinear i?-module (M, By U) we
define a non-singular element and a symmetry which are generalizations of or-
dinary senses. Under some condition on U, we give some generalization of the
classical theorem that the orthogonal group is generated by symmetries, if 2 is
inversible in R and M is generated by orthogonal non-singular elements. In
§2, analogously to [2], we can construct the theory of quadratic modules
(M, q, U) and Witt group W(U) for U in Pic(R)y where Pic(R) is a category
whose objects consist of finitly generated projective rank one i?-modules and
whose morphisms are /^-isomorphisms. Then we shall show that W(U) is a
W(R)-moduley and if there exists V in Pic(R) such that F ^ F ^ t / t h e n W(U)
is a free W(R)-module with rank one. In §3, as supplementary result of [3],
we study the structure of W(R) over a complete Noetherian local ring with
finite residue field of characteristic =f=2. Throughout this paper, we assume that
every ring is commutative ring with unit element and every module is unitary.

1. Automorphism of bilinear module

Let R be any commutative ring and U an arbitrary i?-module. A bilinear
i?-module M=(M, B, U) is called non-degenerated if the homomorphism M-»
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Hom#(M, U); x \ΛΛr* B(xy —) is i?-isomorphism, where B(x, —) is the R-

homomorphism M-*U;y \ΛV̂  B(xy y). And, if B(xy y)=B(yy x) for every x

y in My then we call it symmetric bilinear i?-module.

Proposition 1.1. Let M=(M, B, U) be any bilinear R-module, and x an

element in M. A cyclic sub-bilinear R-module (Rxy B \ Rxy U) is non-degenerated

if and only if it satisfies that (0: x)R=(0: B(xy x))R and (0: (0: B(x, x))R)v

=RB(xy x)y where (0: x)R={r<=R: rx=0} and (0: a)u = {y^U: ay=0} for x in

M or U and ideal a of R.

Proof. Let θ: Rx-+HomR(Rxy U) be the homomorphism defined by rx

WW B(rx, — )\Rx. We can show easily that θ is a monomorphism if and

only if (0: B{xy #))^c(0: x)Ry and θ is an epimorphism if and only if

(0: (0: x)R)u(zRB(xy x).^ Since, in general, (0: B(xy x)R)RZD(0: x)R and

(0: (0: B(x, x)R)u'ΏRB(xy x)y therefore we have that θ is isomorphism if and

only if (0: B(xy x))R=(0: x)R and (0: (0: B(xy x))R)u=RB(x9 x).

DEFINITION. Let M=(My By U) be any bilinear i?-module. An element

x in M is called a non-singular element if it satisfies B(xy M)=RB(xy x)y where

B(x, M)={B(xy y):

REMARK 1.1. If M=(My B, U) is an arbitrary bilinear i?-module, then an

element x of M is non-singular if and only if M=Rx+(Rx)±

y where (i?x)x

={j/Gilί: B(xy y)=0}. If (My By U) is non-degenerated, then non-singular

elements satisfies (0: ^ ^ ^ ( O : (B(xy x))R. Furthermore, if (My B, U) is non-

degenerated symmetric bilinear jR-module, then the following conditions are

equivalent:

1) x is a non-singular element.

2) M=Rxφ(Rx)\

3) (Rx, B\Rxy U) is non-degenerated.

Lemma 1.1. Let (M, B, U) be a non-degenerated symmetric bilinear R-

module. If x is a non-singular element, then it satisfies (0: (0: B(xy M))R)V

=B(xy M).

Proof. It is easy from Proposition 1.1. and Remark 1.1.

DEFINITION. Let M=(My B, U) be a non-degenerated symmetric bilinear

i?-module. For any non-singular element x in M, we can define an i?-automor-

phism px of (M, B, U) as follows: For every element y in My ρx(y)=y—2ryx,

1) θ is monomorphisnrΰί!B(rΛ:, Rx)=0 implies r e ( 0 : X)R^Ϊ.(0: B(X, X))R(Z(0: X)R.
θ is epirαoprhism^tfor any / GHomR(Rx, U) (*HomjB(i?/(^: X)R, U)), there exists

rx^Rx such that f(sx)=B(rx, sx) for all s^R+lfor any u& U(^HomR(R. U)) such that
(0: x)R U=0, there exists r^R such that u=B(rx, x)=rB(x, x)^(0: (0: x)R)iτc:RB(x1 x).
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where ry is an element of R such that B(xy y)=ryB(xy x) in B(xy M)=RB(xy x).
It is well defined, because we have (0: χ)R=(0: B(xy x))R from Remark 1.1,
therefore ryx is determined by y. ρx is called symmetry. Then it is easy to see
that

1) ρx is an i?-automorphism of M such that B(px(y)y px(z))=B(yy z) for
every yyz in M,

2) pl=Iy Px(x)= -x and Px \ (Rx)±=I.

Lemma 1.2. Let M=(M, B, U) be a non-degenerated symmetric bilinear
R-module, and suppose 2 is ίnversίble in R. If x and y are non-singular elements
such that B(xy x)=B(y, y) and B(xJ

Γy, x-\-y)=0, then there exists a symmetry p
such that ρ(y)=x.

Proof. Since B(x, x)=B(y, y) and B(x+yy χ+y)=0, we have 0
=B(x+y, x+y)=2(B(xy x)+B( xy y))y that is, B(x9 x)=—B(x, y). On the other
hand, B(x—y, x—y)=2(B(x, x)-B(x, y))=4B(x, x), and B(y9 M)=RB(y, y)=
RB(xy x)=B(xy M), hence B(x-yy M)aB(xy M)+B(yy M)=B(xy M)=RB(xy x)
=RB(x—yy x— y). Therefore, x—y is a non-singular element, and we can define

a symmetry ρ=ρx_yy which satisfies px-y(y)=y—2ry(x—y)=y—2(~—)(x—y)
i ^ 2 /

=x, where ryB(x-y, x-y)=B(x-yy y)=B(xy y)-B(yyy)=-~B(x-yy x—y).

Now, we assume the following condition:
(*) For every non zero element u in U, there exists an idempotent e in R

such that RuZ)ell Φθ.

Lemma 1.3. Let M=(M, B, U) be a non-degenerated symmetric bilinear
R-module satisfying the condition (*), and suppose 2 is inversίble in R. Then there
exists a non zero non-singular element.

Proof. Since (My By U) is non-degenerated, there exists an element x
such that B(xy #)Φθ. By the condition (*) there exists an idempotent e in R
such that RB(x, x)Z)eU^0. Put xf=ex, then we have RB{x\ x')=B(x', M)
=eU, therefore x' is a non zero non-singular element in M.

We suppose the following stronger condition in the next proposition:
(**) For every non zero element u in U, there exists an idempotent e in R

such that Ru=eU.

Lemma 1.4. Let M=(M, B, U) be a non-degenerated symmetric bilinear
R-module, and suppose 2 is inversίble in R. If x and y are non-singular elements
of M such that B{x} x)=B(y, y) and RB(x+y, χ-\-y)=eU Φθ/or some idempotent
e in R, then there exists an automorphism π of (M, B, U) such that π{y)=x and
n is a product of symmetries.

Proof. By the assumption, there exists an idempotent e Φ 0 in R such that R
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B(x+yy x+y)=eUΦθ. We put x'=ex, y'=eyy and x"={\—e)xy y"={\—e)y.
ThenΛ 'ΦO andy'ΦO are non-singular elements, and RB(x'-\-y'y χr-\-y')=eU Φθ.
If / φ θ (so that y'φO), then #" and y" are also non-singular elements and
B(x"+y\ x"+y")=(\—e)B(x+yy χ+y)=0. By Lemma 1.2, * " - / ' is anon-
singular element and the symmetry px"-y" satisfies p * " - / ^ " ) " ^ " . Since y' is
in (/?(#"—y))"1* we have ρx"-y"(y')=y'- On the other hand, R B(x'-\-y'y x'+y')
=zeU=B(x'-\-y\ M)y therefore x'-\-y' is non-singular and px'+y'(y')=y'—2r'/
(x

f+y')=y'~(xf+y')=-χ'. Therefore ρx>°ρx'+y>{y')=xf. Since x" is in (Rx)1-
and in (R(x'+y'))\ px'°px'+y'(x")=x"'. Therefore ρx>°ρx'+y'°ρx"-y''(y)=

χ:"=:(χ;. Accordingly, 7r=ρx'opx/+y/opχ//_y// is the automrphism demanded in

this lemma.

Proposition 1.2. Lei M—{M, B, U) be α non-degenerαtedsymmetric bilinear
R-module satisfying the condition (**), and suppose 2 is inversίble in R. If x and
y are non-singular elements in M such that B(xy χ)=B(yy y), then there exists an
automorphism π of (M, B, U) such that π(y)=x and π is a product of symmetries.
Furthermore, if M is generated by a finite number of orthogonal elements, i.e.
M=^l=1Rxi, B(xίy Xj)=0 for i^j, then the group of all automorphism of (M,
B, U)y (it is denoted by O(M, B, U)={π^AutR(M): B(π(x)πy (y))=B(x, y)for
all x, y^M}), is generated by symmetries of (M, B, U).

Proof. The first part is obtained by Lemma 1.2 and Lemma 1.4. We
suppose that Λf—5J7=iifo, , B(xiy Xj)=0 for z'Φ/, and hence, xly - xn are non-
singular elements. Let π be any element in O(M, B, U). Using the first part
of this proposition for xx and π(x^)y we have an automorphism πx of (M, B, U)
such that π1o7t(χ^j=:χ1 and πx is a product of symmetries. Repeating for x2 and
πx°π(x^y we have τr2 such that π2oπ1°π(x2)=x2 and π2 is a product of symmetries.
Furthermore, since O ^ i ? ^ , x2)=B(π1°π(x^)y πλ°π(x^))=B(xiy ^ozφ^)), form the
construction of π2 we have π2(x1)=xiy therefore π2°π1°π(x1)=xiy Thus, repeating
these, we obtain automorphisms πly π2y •••, πn of (M, B, U) such that
πnoπn_1θ"'π1oπ(xi)=xi for z'=l, 2, •••, n, and πly •••, πn are products of sym-
metries, Therefore π=π:[1°π:[1°'~ oπΰ1 is a product of symmetries of (M, B, U).

We consider the specisl case that R is a commutative Von Neumann reg-
ular ring, i.e. every principal ideal is generated by an idempotent, and U=R.
Then form Proposition 1.2 we have easily

Theorem 1.1. Let R be a commutative Von Neumann regular ring, and
(M, B)=(M, B, R) a non-degenerated symmetric bilinear R-module, and suppose
2 is inversible in R. If x and y are non-singular elements in (M, B, R) such that
B(x, χ)=zB(y, y), then there exists an automorphism π of (M, B, U) such that

π(y)=χ) and π is a product of symmetries. Furthermore, if M is generated by a
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finite number of orthogonal elements, then the group O(M, B) is generated by
symmetries.

Proposition 1.3. Let (M, B, U) be a non-degenerated symmetric bilinear R-
module satisfying the condition (*), and suppose 2 is inversible. If (M, B, U)
has maximum {or minimum) condition for non-degenerated sub-bilinear R-modules,
then M is generated by a finite number of orthogonal non-singular elements and
O(M, B, U) is generated by symmetries.

To prove the proposition we are necessary the following lemma:

Lemma 1.5. Let (M, B, U) be a non-degenerated bilinear R-module. If N
is an R-submodule of M such that Nis a direct summand of M, then N±={y^M:
B(y, N)=0} is also direct summand of M. If (N, B\N, U) is non-degenerated
sub-bilinear R-module, then M=N®N±, and {N1-, B\N±, U) is also non-
degenerated.

Proof. The proof is obtained similarly to the proofs of Lemma (2.1) and
Lemma (2.2) in [1].

Proof of Proposition 1.3. By Lemma 1.3, there exists a non zero non-
singular element xly and by Renark 1.1 (Rxly B\Rxly U) is non-degenerate.
Therefore, by Lemma 1.5 we have M=Rx1®(Rx1)

± and ((Rx^, B^Rx^, U)
is also non-degenerated, and inductively we have orthogonal non-singular
elements xiy x2y •••, but by the maximum (or minimum) condition for non-
degenerated sub-bilinear i?-modules we have a finite number of orthogonal non-
singular elements xiy x2y •••, xn such that M=Rx1-\-Rx2-] \-Rxn. Thus, we
have the proof of the first part. We shall show the second part. Let π be any
element of O(M, B, U). By Lemma 1.3, there is a non-singular element xly

then M=Rx1(B(Rx1)\ and Rxx and (Rx^ are non-degenerate. If B(x1+π(x1)9

ΛJ1+7Γ(Λ:1))=0, then by Lemma 1.2 there exists symmetry πλ such that π^πfa))
=xiy therefore π1oπ((Rx1)

±)=(Rx1)
Λ- and π1o7t\Rχ1z=I% If B(xι-\-π(x1)y

ΛJ1-J-ZΓ(ΛJ1))ΦO, then by the condition (*) there exists an idempotent e in R such
that RB(x1

Jrπ(x1)y x^^x^ZDeUΦθ. We put x{=exly then we have R
B(xί-\-π(x{), xί-\-π(xι))=eUΦθ, and x[ is also non zero non-singular element
in M. Therefore, M=Rx{(B(Rx/

1)-L and by Lemma 1.4 there exists an
automorphism πx of (M, B, U) such that π1(π(x'1))=xί and πx is a product of
symmetries. Accordingly, for non-degenerated sub-module ((Rxi)1-, B \ (Rx[)J-y U)
we have π1oπ((Rxί)±)=(Rx/ι)±, and π^n \ Rx[=I. Since (M, B, U) has maximum
(or mnimum) condition for non-degenerated sub-bilinear i?-modules, we have a
finite number of automorphisms π19 π2y •••, πm of (M, B, U) such that 7ΐm°πm_1

o"'oπioπ=Iy that is, τr=7rΓ1o, •• o7r~
1, and π{ is a product of symmetries for

every i. We copmlete the proof.
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2. Witt group and Witt ring

Let R be any commutative ring, and U an arbirtary i?-module. Then we

can construct the Witt group W( U) which is a module over the Witt ring W(R).

In this section, we shall study about W(R)-module W(U). For an i?-module M,

(M, q, U) is called quadratic i?-module, if q: M-+U is a map satisfying the

following conditions:

1) q(rx)=r2q(x) for every r^R and x^M> and

2) Bq\ MxM-^U; Bq(x} y)=q(x+y)—q(x)—q(y)y x,y^M, is a bilinear

form.

It is called that (M, q, U) is non-degenerated if (M, Bq, U) is non-degenerated.

Lemma 2.1. If (P, q, U) is non-degenerated quadratic R-module such that

P is a finitely generated projective faithful R-module, then U is a finitely generated

projective rank one R-module.

Proof. Since (P, q, U) is non-degenerated and P is finitely generated

projective, we have P^HomR(P, U)^HomR(P, R)®RU as i?-module. Further-

more, since P is finitely generated projective and faithful, by Propostion 6.1. in

p. 37, [2], so is also U. Since rank(P)=rank(Homi?(P> R)), we have rank(£7)

= 1.

From now, we consider all non-degenerated quadratic i?-module (P, qs U)

such that P is finitely generated projective i?-module. By Lemma 2.1. we may

assume that U is finitely generated projective rank one i?-module. We denote

by Pic(U) a category whcih object is finitely generaged projective rank one R-

moduee and morphism is i?-isomprphism.

We shall give analogous definitions and lemmas to [2] for quadratic R-

module (My q, U) with U in Pic(R).2>

(2.1) Definition, H(M, U)=(M®HomR(M, U)y qh, U) is called hyperbolic

quadratic .R-module, if qh\ M0Hom#(M, U)-+U is defined by qh(x+f)=f(x)

forxeiM a n d / e H o m ^ M , U).

If U is in Pic(R)y then the following lemmas are proved similarly to ones in

[2].

(2.2) H(M, U) is non-degenerated if and only if Mis [/-reflexive, i.e. Ψ: M-+

Hom^Hom^M, [/), U) defined by Ψ(χ)(f)=f(χ) for /GHom 5 (M, [/),

x^My is isomorphism.

(2.3) Let (My qy U) be a quadratic i?-module. If Mis a projective i?-module,

then there exists a bilinear form B: MxM-^U such that B(x, x)=q(x) for

every x in M.

(2.4) If (My qf U) is a non-degenerated quadratic i?-module, then M is C/-refl-

2) A part of these definitions and lemmas is due to Prof. A. Micali, I studied from his
seminar at Universidad de Rosario. I should like to express here my thanks to him.
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exive, and so is also direct summand of M. If P is a finitely generated pro-
jective l?-module, then P is [/-reflexive for every U in Pic(R).
(2.5) Definition. For quadratic P-modules (My q, U) and (M'f q, t/'),
(/> S): (My q, U)-+(M'y q'y U') is called homomorphism of quadratic i?-module
(Λf, q, U) to (M'y q'y U'), if/: M->M' and £: E/->J7' are i?-homomorphism
such that the following diagram is commutative

fxf

U -£-• V

If / is an isomomorphism and g=I9 (U—U')y then (/, / ) : (Λf, qy U)->
(M'y q'y U) is called isomorphism, and denote it by (M, qy U)^(M'y q'y U).
(2.6) Let (My q9 U) be a non-degenerated quadratic i?-module, and Mo a total
isotropic i?-submodule, i.e. q(Mo)=Oy such that Mo is a direct summand of M.
Put A={N: i?-submodule such that M=NQ)MΌ}, then we have that the map
N->HomR(M0y U)\ x \̂ Γ̂̂  Bq(x, —)\M0 is an i?-isomorρhism for every N in
Δ. If M is a projective i?-module, then there exists a total isotropic R-
submodule N0J i.e. q(No)=09 in Δ, and we have (MoφiVo, q\M0®NQy U)^
H(MQy U). Therefore, if (M, qy U) is a non-degenerated quadratic i?-module
such that M is projective i?-module and there exists a total isotropic i?-submodule
Mo such that M^=M and Mo is a direct summand of M, then (Λf, g, U) is
hyperbolic and (M, q, U)~H(MOy U).

(2.7) If (P, #, Z7) is a non-degenerated quadratic i?-module such that P is pro-
jective i?-module, then we have (P, qf ?7)J_(P, —q9 U)^H(Py C7), where
(P, ϊ, [/)_L(P', ff', U)=(PφP'y (q±q')9 U) and

(2.8) Definition. Let C7 and U' be in P^(jR), and (P, j , C/) and (P', y', Z7')
any quadratic P-modules. We can define the product (P, qy U)®(P'y q'y U')
=(P®RP'y q®q'y U®RU') as follows;

': P®RP'->U®RU'; ) q ( )

<» Xj®Xj) for Σ?- i Λ ί® Λ ί m P®P', where

RP)x(Pf®RP')-> U®RU'.

(2.9) Let [/ and C/' be in Pic(R). If (P, ? , U) and (P', ?', J7') are non-
degenerated quadratic i?-module such that P and P' are finitely generated pro-
jective Λ-modules, then (P, qy U)®(P'y q'y U') is also non-degenerated quadratic
i?-module. Furthermore, if P" is a finitely generated projective i?-module and
U" in Pίc(R)y then we have (P, ί f U)®H(P"y U")^H(P®RP"y U®RU").

Now, we suppose that the following natural isomorphisms in Pic(R) regard
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as identies /: U®RU'->Uf®RU\ x®yH^^y®x, (U®RU')®RU"->
U®R(U'®RU");(x®y)®zWJ->x®(y®z)y U®RR-+U; x®r\N\r>xry R®RR
-^R\ r®s\NV>rs, U®RU*-*R\ x®f\Mr>f(x), ••• etc., where C/*=Hom2?(C/,Λ).
Then, for each U in Pic(R) we can construct an abelian group W(U) as follows:
Let Qua(U) be the set of all isomorphic classes of non-degenerated quadratic R-
modules (P, q, U) such that P is finitely generated projective P-module. Qua(U)
makes an abelian semigroup with peration J_ such that, [(P, q, U)] J_[(P', q\ U')]
= [(P, q, t/)J_(P', q\ U% where [ ] denotes an isomorphic class. Let U(U)
= {[H(P, U)] in Qua(U): P i s finitely generated projective i?-module}. Then
H(C7) is a sub semi-group of Qua(U), and Qua(U) has an equivalence relation
— defined by a~β^3y> δ<=H(t/), 7A_a=SΛ_β. We denote the quotient
Qua(U)/^ by W(U), then W(U) is also abelian semi-group with operation
+induced by J_. But, by (2.7), W(U) makes an additive group. W{U) is
called Witt group over U. On the other hand, the product ® of quadratic R-
modules induces a product, that is, for U, U' in Pic(R), Qua{U)xQua{U')
^Qua(U®RU'); ([P, q, U)], [(P\ q\ U')])-*[(P, qy U)®(P\ q\ U')] induces
a product W(U)xW(Uf)-»W(U®RU') by (2.9). We denote this product b y ,
then for a^W(U)f β^W{Uf) and jeίW(U")y we have a-β^W{U®RU') and
(a-β)-y=a-(β y) in W(U®RU'®RU").

Therefore, we have that W(R) is a commutative ring, it is called Witt ring,
and we have easily

Lemma 2.1. Let U and U' be in Pic{R). Then, W(U) is W(R)-module}

W(U) W(U')c:W(U®RU'), and W(U)-W(U*) is an ideal of W(R)y where [/*
=HomR(U, R). If f: U->U' is isomorphism in Pic{R), then f induces an
W(R)-isomorphism W(f): W(U)->W(U') defined by [(P, q, U)]-+[(P,f°q, U')].

From now, we assume that the commutative ring R has inverse element of

2. Then W(R) has unit element [(P, qz, R)] defined by qτ(x)=—x2 for every x in

R, and W(U) is unitary W(R)-module for every U in Pίc(R).

Lemma 2.2. Let U and V be in Pic(R) such that V®RV^U in Pic(R).
Then, any R-isomorphism Φ: V®RV->U satisfies Φ(x®y)=Φ(y®x) for every
xs y in V.

Proof. We can easily check that homomorphism h: V®RV-^U is well
defined by h(x®y)=Φ(x®y)—Φ(y®x) for x®y in V®RV. For any maximal
ideal \> of i?, we consider localization by p hp: {V®RV)^-^Up, But, (V®RV)p
=:V$®RpVp=:RpV®RpRpv for some ^ E F p , therefore hp(x®y)=hp(rv®r'v)
=Φp(rv®r'v)—Φp(r'v®r)=O for every x=rv, y = r'v in Vp=Rpv. Accord-
ingly, since hp=0 for every maximal ideal p of R, we have h=0.

Theorem 2.1. // U is in Pic(R) such that there exists V in Pic(R) and
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V®RV^Uin Pic(R)y then Witt group W{U) is a free W(Rymodule with rank one.

Proof. Let Φ: V®RV->Ube an i?-isomorphism, and (V, q, U) a quadratic

i?-module defined by q{x)=—Φ(x®x) for x in V. By Lemma 2.1, Bq{x> y)
1 ^

=q(x+y)—q(x)— q{y)=—(Φ{x®y)+Φ(y®x))=Φ(x®y). We shall show that

(F, q, U) is non-degenerated. Let θ: V-+HomR(V, U) be a homomorphism
defined by θ(x)=Bg(x> — )=Φ(x® —). Then, we have the following commuta-
tive diagram;

U
R

HomΛ(F, U),

where μ: V*®RV-£R;f®x^f(x), and v\ F*®*Z7^HomΛ(K, U); v{f®y){x)

=f(x)y for x^V, y^U and / G F * . Because, since V is a finitely generated
protective rank one i?-module, there exist fiyf2y ••• /n in V*=HomR(V, R) and
xly x2y ••* ff» in F such that x=^Σ%ifi(x)Xi for all Λ; in V, and by [4] we have

)=l. Therefore, for any x in V, in we have vo(I®φ)o

B u t f o r a n y y in ^
Φ(3;®Λ)> therefore we have

v°(I®Φ)°(μ~1®I)=θ. Since, v> I®Φy and μ®I are ^-isomorphisms,
therefore θ is an isomorphism, that is, (V, q, U) is non-degenerated. Siminarly,
we have a non-degenerated quadratic i?-module ( F * , ^*, Ϊ7*) defined by q*{z)
= -Lφ-i*(ar®ar) for ^ e Γ*-Hom Je(F, i?), where Φ" 1 * : Γ * ® ^ ^ * - ^ ^ * is dual

of Φ" 1 : U^V®RV, i.e. φ-1*(f®g)=f®goφ~i for / ® ^ G F % F * . Then
we have (F, g, ?7)®(F*, g*, ί7*)«(i?, g7, i?), by the identification U®RU*
=R; x®f=f(x), that is, for (V, g, t/)®(F*, g*,
U®RU*), we have commutative diagram

U®RU*

Because, ?®ί*(Σtfί®£*)=2Σ<ίO'ι)®?*(Λ)+Σί<A(j'<,

Φ(j ® J) ®Φ" 1 *(

φ- 1*(^®ί)(Φ(>'®3'))+Σφ- 1*(^®?)(Φ(j®J'))Σφ(^,®<ί,)(Φ(>,®3.))+Σ,<yφ(^,®i?y)(Φ(j,®J,))Σ,

(Σ
Therefore we have [[V*, q*, U*]] [[V, q, U]] = [[V, q, U]]-[[V*, q*, U*]]
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= [[R, ql9 K\]=I in W(R). Accordingly, W(U)-W(U*)=W(R) and W(U)
[[V*9 q*9 U*]]=W(R)9 therefore W(U)=W(R) [[V9 q, U]] is rank one free
HΓ(i?)-module. We have the proof of Theorem.

We leave here the following question: Is W(U) always a finitely generated
projective rank one W(R)-module or 0 for every U in Pic(R) ?

3. Some example of Witt ring

In [3], we studied the structure of Witt rings in the special case over local
rings. In this section, we give some supplementary result of [3]. In this section,
we suppose that R is commutative ring such that 2 is inversible in R. We denote
by U(R) the group of all inversible elements in R, and U{R)^={r2: rGΞ U(R)}.

Put U{R)=U(R)IU(RY2\ We consider the group ring Z[U(R)] of the group

U(R) over the integers Z. We denote by H(R) the principal ideal of Z[U(R)]

generated by ^ T + I in Z[U(R)]9 where a denotes a coset of U(R)IU(R)C2>

containing a for «G U(R). We put A(R)=Z\Ό(R)]jH(R). If R is local ring,

the ring A(R) has the following properties (see [3]):
(3.1) There exists a ring epimorphism Θ: A(R)^W(R).
(3.2) If —1 is a square element in R, then A(R) is Z/(2)-algebra and is local
ring with maximal ideal m such that x2=0 for every x in m and A(R)lm^ZI(2)
as Z/(2)-algebra.
(3.3) If —1 is not square element in R, then A(R)^Z[H], where H is a sub

group of U(R) such that U(R)=Hx (=T).

(3.4) If U(R) has only two elements, i.e. U(R)={1, ά}y then we have that
a) if —1 is a square element in R, then Θ: A(R)-*W(R) is ring isomor-

phism, and W(R)^A(R)^ZI(2)[(ά)]=ZI(2).l+ZI(2).ay therefore I is unit
element of A(R) and the maximal ideal is m={0, ϊ+<z},

b) if —1 is not square element in R, then A(R)^Z and kerθc4Z.
Now, we consider a case where R is complete Noetherian local ring with

finite residue field. Let R be a Noetherian local ring with maximal ideal p
such that 2<$t> and R/p is a finite field.

Lemma 3.1. Let R be as above. Then the group U{Rjpn)=U{Rlpn)j
has only two elements for every n=l, 2, •••.

Proof. We consider the group epimorphism /: U{Rjpn)-> U(Rlpn)C2> x-*x2.
Then we have ker / = { — ! , I}. Because, for any αeker/, a2 = l (mod pn), hence
a = ί (mod p) or a = — l (mod p), i.e. a^p^l or a=p2— 1 for some p{ in p,
f = l , 2. Therefore a2=(pi±l)2=p2

i±2pi+l = l (mod pn), hence pi(pi±2) = 0
(mod pn). Since 2φp, pt±2 is unit in Rf hence ̂ ^ p M , that is, a=p£± 1 = ± 1
(mod pΛ). Since i? is Noetherian and R/p is finite field, therefore R/pn is



BILINEAR MODULE AND WITT RING 495

Artinian, and so R/pn is finite ring for every integer n>0. Thus, U(Rlpn) is

finite group and [U(R/pn): U(R/pny2>]=2.

Proposition 3.1. Let R be a Noetherίan local ring with maximal ideal p

suck that 2&p and R/p is a finite field. Then, the completion ήofRby p-topology

has the following properties

1) U(k)= t/(2?)/£/(#)(2) has only two elements, and

2) — 1 is a square element in R if and only if — I is a square element in R/p.

Proof. L e t / M w be the canonical epimorphism Rjpn->Rlpm for n>m. Since

R=lim Rlpn={(άiy ΰ2y •••, ary •••) e ΠZ-1RlpH:ff,m(άH)=am for every n>m},

therefore U(R)=lim U(Rlpn), and the product in [/(/?) is a-β = (a1b1> a2b2y •••)

for a=(άly ά2y •••) and β=(bly b2y -~)'mU(R). We have that tf=(^, ά2y-~) is a

square element in U(R) if and only if άn is a square element in U(Rjpn) for every

w = l , 2, •••. If tfw is square in U{Rjpn), then ai=fni{a^) is also square in U{Rjpi)

for every 0 < / ^ w . Therefore « = ( « ! , ά2, •••) is not a square element in U(R) if

and only if there exists a positive integer n such that άk is not a square element in

U(R/pk) for every k>n. If a=(a19 a2, •••) and β=(blf b2, •••) are not square

elements in £/(i?), then there exists a positive integer m such that α t and 5, are

not square element in U(Rlpi) for every i>m. But, by Lemma 3.1, άibi=aibi

is a square elements in U(R/pi) for every j > m . Therefore a β must be a square

element in U(&). Accordingly, we have that Jjφ)=^U{R)IU(R)^ has only

two elements. Furthermore, if a=(άiy # 2 , ) is not square element in U(K),

then there exists the minimum positive integer k such that a{ is not square

element in [/(JR/p*) for every i^>k. Let β=(bly b2y •••) be not square element in

U(R) such that b{ is not square element in U{Rjpi) for every i > l . 3 ) Then a β

={aji)λ, ά2b2y •••) is a square element in £/(i?), therefore afii is square element in

U(R/pi) for every z > l , hence by Lemma 3.1 we have k=l. Accordingly,

a=(άly ά2y'~) is not square element in U(R) if and only if ax is not square

element in U(Rjp). Thus, we complete the proof.

From (3.1), •••, (3.4) and Proposition 3.1, we have easily

Theorem 3.1. Let R be a Noetherian complete local ring with maximal ideal

p such that 2 φ p and R/p is a finite field. Then we have that

1) if —ί is a square element in Rjp, then the Witt ring W(R) is a group ring

of a cyclic group of order 2 over Zj{2).

3) There exit ts such element β in U(R). Let b be an element of R such that b is
not square element in R/p, and /,-: R-^R/p* the canonical epimorphism fi(x)=x^Rlpi for

, ί = l, 2, •••. Put bi=fi(b). Then β=(bly b2, •••) is in U(R), and b{ is not square in
for every ί^ l .
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2) if — 1 is not square element in R/p, then the Witt ring W(R) is isomorphic

to Zj{ή), where n is a multiple of 4.
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