ON CENTRALIZERS IN SEPARABLE EXTENSIONS II

Kozo SUGANO

(Received February 9, 1971)

0. The aim of this paper is to improve and generalize some results of the author's previous paper [8]. Therefore, all notations and terminologies are same as those in [7] and [8]. In [8] the author studied some commutor theory of H-separable extension $\Lambda|\Gamma$ in the case where $\Lambda{\cong}\Gamma{\otimes}_c\Delta$ with $\Delta(=V_{\Lambda}(\Gamma))$ central separable over *C* and *C*=the center of Λ =the center of Γ,and in the case where Λ is left or right Γ -*f. g.* (finitely generated) projective and Λ | Γ satisfies the following condition (*)

- (*) 1) A is an H-separable extension of Γ such that ${}_{\Gamma}\Gamma_{\Gamma} \langle \bigoplus_{\Gamma} \Lambda_{\Gamma}$
	- 2) $V_A(\Gamma) = C'$, where C' is the center of Γ .

(See Theorem 1.2, Corollary 1.4 and Theorem 1.3 [8]). In case $\Lambda | \Gamma$ satisfies the condition (*) 1), Λ is left Γ -*f. g.* projective if and only if Λ is right Γ -*f. g.* projective by Corollary 2 [9], hence we shall simply say that Λ is *T-f g.* pro jective in this case. We note also that the condition (*) implies that $V_A(C') = \Gamma$ by Proposition 1.2 [7]. In this paper, we shall consider the case where Λ is left or right *T-f. g.* projective and Λ is an H-separable extension of Γ, and shall prove that there exists a one to one correspondence between the class of sub rings *B* of Λ which is separable extensions of Γ and $_B B_B \langle \bigoplus_B \Lambda_B$ and the class of separable C-subalgebras of Δ (Theorem 1). From this theorem, Corollary 1.4 and a more beautiful result than Thoerem 1.3 [8] follows.

1. To obtain our main results we need the next lemma which appears in [6].

Lemma 1 (Corollary 1.2 [6]). Let A be a ring, M a left A-module, $\Omega = End$ (A/M) and $E=End(M_{\Omega})$. Then if M is A-f. g. projective, $E \otimes_A M \simeq M$ as $E-\Omega$ *module by the map:* $e \otimes m \rightarrow e m$ *for* $e \in E$ *and* $m \in M$.

Proof. Since *M* is *A-f. g.* projective, we have natural isomorphisms

$$
E \otimes_A M = \text{Hom}(M_{\Omega}, M_{\Omega}) \otimes_A M \simeq \text{Hom}(\text{Hom}(A M, A M)_{\Omega}, M_{\Omega})
$$

= Hom($\Omega_{\Omega}, M_{\Omega}$) $\simeq M$

as $E-\Omega$ -module. The composition of the above isomorphisms is the required one.

For rings $\Gamma \subset B \subset \Lambda$, we shall say that $B \otimes_{\Gamma} \Lambda \rightarrow \Lambda$ splits if the map of $B \otimes_{\Gamma} \Lambda$ to Λ such that $b \otimes x \rightarrow bx$ for $b \in B$ and $x \in \Lambda$ splits as $B-\Lambda$ -map. We also need Proposition 2.3 [8]. This proposition can be improved as follows

Proposition 1. *Let A be an H-separable extension of* Γ. *Then for any intermediate ring B between* Γ *and* Λ *such that* $_B B_{\Gamma} \langle \bigoplus_B \Lambda_{\Gamma}$ *and* $B \otimes_{\Gamma} \Lambda \rightarrow \Lambda$ *splits,* $_D D\langle \oplus_D \Delta$ and $D\otimes_C \Delta \!\to\! \Delta$ splits, where $D\!\!=\!V_\Lambda\!(B)$. Conversely for any C s ubalgebra D of Δ such that $_D D\langle \oplus_D \Delta$ and $D \otimes_C \Delta \to \Delta$ splits, $_B B_{\Gamma} \langle \oplus_B \Lambda_{\Gamma}$ and $B\otimes_{\Gamma}\Lambda \rightarrow \Lambda$ *splits, where* $B=V_A(D)$.

Proof. The first part of this proposition have been proved in Proposition 2.3 [8]. Hence we need to prove only the second part without assuming that *B* is right Γ -*f. g.* projective. Suppose that *D* is a *C*-subalgebra of Δ such that $D\otimes_{\bm{C}}\!\Delta \!\!\rightarrow\!\! \Delta$ splits. Then $B\!\!=\!V_{\Lambda}(D)\!\!\cong\!\mathrm{Hom}({_D\Delta_\Delta},\ _D\Lambda_{\Delta})\!\big\langle\oplus\mathrm{Hom}({_DD}\otimes_{\bm{C}}\!\Delta_\Delta},\ _D\Lambda_{\Delta}$ $\cong V_A(C)$ as $B-V_A(\Delta)$ -module. Hence $_BB_F \leq B_B\Lambda_F$. Then, since Λ is Hseparable over Γ and $_B B_{\Gamma} \langle \bigoplus_B \Lambda_{\Gamma}$, we have a $B-\Lambda$ -isomorphism η of $B \otimes_{\Gamma} \Lambda$ to $\text{Hom}_{p,\Delta}$, $_{p}\Lambda$) such that $n(b\otimes x)(d)=bdx$ for $b\in B$, $d\in D$ and $x\in \Lambda$ by Proposition 1.3 [7]. Hence, we have a commutative diagram of $B-\Lambda$ -maps

$$
B \otimes_{\Gamma} \Lambda \longrightarrow \text{Hom}({}_{D}\Delta, { }_{D}\Lambda)
$$

$$
\downarrow \qquad \qquad i_*
$$

$$
\Lambda \qquad \longrightarrow \text{Hom}({}_{D}D, { }_{D}\Lambda)
$$

where *j* is the natural isomorphism and i_* is the one induced by the inclusion map *i*: $D \subset \Delta$. Then if $_D D \langle \bigoplus_D \Delta, i_* \ B - \Lambda$ -splits and $B \otimes_{\Gamma} \Lambda \rightarrow \Lambda$ splits.

Let Λ be a semisimple R -algebra in the sense of A. Hattori [2], that is, Λ is a weakly semisimple extension of $R \cdot 1$ in the sense of [3]. Then every finitely generated Λ -module which is R -projective is Λ -projective, and by Proposition 4.1 [1] if Σ is a finitely generated projective R-algebra which contains $\Lambda, \Lambda \langle \bigoplus_{\Lambda} \Sigma$ and $\Lambda_{\Lambda}(\oplus \Sigma_{\Lambda})$. It is also well known that a separable algebra is a semisimple algebra.

Proposition 2. *Let A be an H-separable extension of* Γ. *If* (1) *D is a separable C–subalgebra of* Δ *, or if (2)* Δ *is a separable C–algebra (e. g., if* $_1\Gamma_f\zeta\bigoplus_r\Lambda_r$) and D is a semisimple C–subalgebra of Δ , then V _A $(V$ _A $(D))$ =D, ${}_BB$ _T \triangleleft \oplus ${}_B$ A_T and $B\otimes_{\Gamma}\Lambda \rightarrow \Lambda$ *splits, where* $B = V_{\Lambda}(D)$.

Proof. Suppose (1). Then since $D \otimes_c D \rightarrow D$ splits as $D-D$ -map, $D \otimes_c \Delta$ $\rightarrow \Delta$ splits as *D*- Δ -map. Suppose (2). Then $D \otimes C \Delta \rightarrow \Delta$ splits as *D*- C -map, since *D* is *C*-semisimple. Then $D \otimes_{\mathcal{C}} \Delta \rightarrow \Delta$ splits as *D*- Δ -map, since Δ is *C*separable. Thus in both cases, $D \otimes_C \Delta \rightarrow \Delta$ splits and $pD \otimes D \Delta$. The latter

follows from Proposition 4.1 [1], since *D* is *C*-semisimple and Δ is *C-f.g.* projective. Then $B \otimes_{\Gamma} \Lambda \to \Lambda$ splits and $_B B_{\Gamma} \langle \bigoplus_B \Lambda_{\Gamma}$ by Proposition 1. Hence Λ is H-separable over *B* by Proposition 2.2 [8]. Let $D'=V_A(B)$. Then there exists a ring isomorphism $\eta: D' \otimes_{C} \Lambda^{0} \to \text{End}({}_{B}\Lambda)$ such that $\eta(d \otimes x^{0})(\gamma) = dyx$ for $x, y \in \Lambda$, $d \in D'$ (see Proposition 3.3 [5]). Then $D' \otimes_{C} \Lambda^{\circ}$ is the double centralizer of a left Z)® cΛ°-module Λ, since *B=Έnd(DA^A).* While *D®CA-^A* splits, since $D\otimes_{c}\Delta \rightarrow \Delta$ splits. This implies that Λ is left $D\otimes_{c}\Lambda^{0}$ -*f. g.* projective. Then by lemma 1, $(D' \otimes_{\mathcal{C}} \Lambda^0) \otimes_{D \otimes_{\mathcal{A}} \Lambda^0} \Lambda \simeq \Lambda$, hence $D' \otimes_{D} \Lambda^0 \simeq \Lambda$. This isomorphism is given by $d \otimes x \rightarrow dx$ for $d \in D'$, $x \in \Lambda$. Then for every $d \in D'$, $d \otimes 1 = 1 \otimes d$ in $D' \otimes_D \Lambda$, since both are mapped to *d* by this isomorphism. On the other hand, since Λ is *H*-separable over *B*, *D'* is *C-f.g.* projective, and *D'* is right *D-f.g.* projective, since *D* is *C*-semisimple. Hence $D' \otimes_D D' \subset D' \otimes_D \Lambda$, and $d \otimes 1 =$ $1 \otimes d$ in $D' \otimes_D D'$ for every $d \in D'$. Since $_D D' \oplus_D D',$ $D' = D \oplus A$ for some left D-submodule *A* of *D'* and $D' \otimes_D D' = D' \otimes_D \overline{D \oplus D' \otimes_D A}$. Let *x* be an arbitrary element of *D'* and $x=d+a$ for $d \in D$, and $a \in A$. Then $D' \otimes_p D' \ni x \otimes 1 = 1 \otimes x$ $= 1 \otimes d + 1 \otimes a$, and $1 \otimes a = 0$, $x \otimes 1 = 1 \otimes d$. Thus $x = d \in D$. Thus $D' = D$. *Thus* $D = V_A(V_A(D)).$

The next proposition is a generalization of Proposition 1.5 [8].

Proposition 3. *Let A be an arbitrary R-algebra which is R-f. g. projective. Then for any separable R-subalgebra* Γ *of A,* Γ *is a T-Y-dίrect summand of* Λ.

Proof. Since Γ is R-separable, there exists $\Sigma r_i \otimes s_i \in (\Gamma \otimes_C \Gamma)^{\Gamma}$ such that $r_i s_i = 1$. While, since Γ is *R*-semisimple, ${}_{\Gamma} \Gamma \langle \bigoplus_{\Gamma} \Lambda$. Let *p* be the left Γ projedtion of Λ to Γ . Then the map p^* of Λ to Γ such that $p^*(x) = \sum p(xr_i)s_i$ for $x \in \Lambda$ is a Γ - Γ -map, and $p^*(r) = \Sigma p(rr_i)s_i = \Sigma rr_i s_i = r$ for every $r \in \Gamma$. Thus ${}_{\Gamma}\Gamma_{\Gamma}\!\!\big\langle \oplus_{\Gamma}\!\Lambda_{\Gamma}.$

Now we are ready to get our main theorem.

Theorem 1. *Let A be an H-separable extension of* Γ. *Then if A is left or right* Γ –f. g. projective, there exists a one to one correspondence $V: A \rightsquigarrow V_{\Lambda}(A)$ *such that* V^2 *= identity between the class of separable extensions B of* Γ *such that* $_{B}B_{B}$ $\langle \oplus_{B}\Lambda_{B}$ and the class of C-separable subalgebras of Δ .

Proof. Let *D* be an arbitrary separable *C*-subalgebra of Δ and $B=V_A(D)$. Then $_B B_{\Gamma} \langle \bigoplus_B \Lambda_{\Gamma}$ and $V_{\Lambda}(B) = D$. This and Corollary 1.3 [8] imply that *B* is separable over Γ, since *B* is left or right Γ-f. g. projective and $_DD_D\langle \bigoplus_D\Delta_D \cdot$ $B_B B_B \langle \bigoplus_B \Lambda_B$ follows from $B_B \langle \bigoplus_B \Lambda_{\Gamma}$ and the separability of *B* over Γ. On the other hand, if *B* is a separable extension of Γ such that $_B B_B \left(\bigoplus_B \Lambda_B, \text{ then}$ $D=V_A(B)$ is a separable C-algebra and $V_A(V_A(B))=B$ by Proposition 1.4 [8].

Corollary 1. Let Λ be an H-separable extension of Γ with the condition (*) *of* §0. Then if Λ is Γ -f. g. projective, there exists a one to one correspondence

468 K. SUGANO

 $V\colon A \leftrightsquigarrow V_{\Lambda}(A)$ such that V^2 $=$ identity between the class of subrings of Λ which *are H-separable extensions of* Γ *and the class of separable C-subalgebras of C. In this case V corresponds each H-separable extension of* Γ *to its center.*

Proof. Let *B* be any ring with $\Gamma \subset B \subset \Lambda$. Then $V_A(B) \subset V_A(\Gamma) = C'$ hence the center of $B=V_B(B)=B\cap V_A(B)=V_A(B)$. On the other hand, by Propositions 1.8 and 1.9 *B* is H-separable over Γ, if and only if $_B B_B \le \bigoplus_B \Lambda_B$. Thus the assertion follows from Theorem 1.

REMARK. Ring extension $\Lambda | \Gamma$ which satisfy the condition (*) and such that Λ is Γ -*f. g.* projective really exists. Let Λ be a central separable *C*-algebra and Γ a C-separable subalgebra with its center $C' \neq C$. Then Λ is H-separable over Γ, ${}_{\Gamma}\Gamma_{\Gamma}\langle\bigoplus_{\Gamma}\Lambda_{\Gamma}$ and Λ is Γ-*f. g.* projective. Let $\Lambda'=V_{\Lambda}(C')$. Then $\Lambda|\Lambda'$ satisfy the condition (*) by Proposition 1.3 [8].

In [10] we considered ring extension $\Lambda | \Gamma$ which satisfy the following condition (f) .

- (#) (1) A is a separable extension of Γ such that $V_A(\Gamma) = C$.
	- (2) A is Γ -centrally projective (i.e., ${}_{\Gamma}\Lambda_{\Gamma}(\bigoplus \Gamma(\bigoplus \cdots \bigoplus \Gamma)_{\Gamma})$.

And we proved that if $\Lambda | \Gamma$ satisfy the condition (#), there exist one to one correspondences U and V between the class $\mathfrak A$ of separable extensions B of Γ such that $_B B_B \langle \oplus_B \Lambda_B$ and the class $\mathfrak B$ of separable C' –subalgebras of C , defined by *V*: $B \vee B \cap C$ and *U*: $R \vee \rightarrow R\Gamma$ for $B \in \mathfrak{A}$ and $R \in \mathfrak{B}$, with $UV=1\mathfrak{A}$ and $VU=1$ ^g (Theorem 8 [10]).

Let a ring extension $\Lambda | \Gamma$ satisfy the condition (*) of §0. Then $\Omega = [\text{End}_{(\Gamma} \Lambda)]^{\circ}$ $=C' \otimes_{C} \Lambda$ and C' is a commutative C-separable algebra and $C-f$. g. projective. Then clearly, the center of $\Omega = C' = V_{\Omega}(\Lambda)$, and $\Omega | \Lambda$ satisfies the condition (#). Let $\mathfrak A$ be the class of separable extensions Σ of Λ such that ${}_{\Sigma}\Sigma_{\Sigma}\langle \bigoplus_{\Sigma}\Omega_{\Sigma}$, $\mathfrak B$ the class of separable C-subalgebras of C', and let U and V be such that $U(R) = R\Lambda$ for $R \in \mathcal{B}$ and $V(\Sigma) = \Sigma \cap C'$ for $\Sigma \in \mathcal{X}$. Then by Theorem 8 [10], *U* and *V* provide one to one correspondences between $\mathfrak A$ and $\mathfrak B$ with $UV=1\mathfrak A$ and $VU=1\mathfrak A$. Furthermore, let $\mathfrak G$ be the class of subrings of Λ which are H-separable extensions of Γ. Then by Corollary 1 we have.

Proposition 4. *Let a ring extension A * Γ *satisfy the condition* (#) *and A be Y*-f. g. projective. Then if we define $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} as above, the correspondences $W: \mathfrak{A} \wedge \rightarrow \mathfrak{C}$ such that $W(\Sigma) = V_{\Lambda}(\Sigma \cap (C' \otimes 1))$ for $\Sigma \in \mathfrak{A}$ and $T: \mathfrak{C} \wedge \rightarrow \mathfrak{A}$ such *that* $T(B)=End(_{B}\Lambda)$ for $B\in\mathfrak{C}$ are one to one with $WT=1$ & and $TW=1$.

Proof. For $B \in \mathfrak{C}$, $V_A(B) \otimes_C \Lambda = \text{End}_{B}(\Lambda)$. *Then by Corollary 1 and* Theorem 8[10], $TW=1\mathfrak{A}$ and $WT=1\mathfrak{B}$.

HOKKAIDO UNIVERSITY

References

- **[1] S. Endo and Y. Watanabe:** *The centers of semisimple algebras over a commutative ring,* Nagoya Math. J. 30 (1967), 285-293.
- **[2] A. Hattori:** *Semisimple algebras over a commutative ring,* **J. Math. Soc. Japan** 15 (1963), **404-419.**
- **[3] K. Hirata and K. Sugano:** *On semisimple extensions and separable extensions over non commutative rings,* J. Math. Soc. Japan, 18 (1966), 360-373.
- **[4] K. Hirata:** *Some types of separable extensions of rings,* **Nagoya Math. J. 33 (1968),** 107-116.
- **[5] K. Hirata:** *Separable extensions and centralizers of rings,* **Nagoya Math. J. 35** (1969), 31-45.
- [6] K. Morita: *Localizations in categories of modulues,* Math. Z. **114** (1970), 121-144.
- **[7] K. Sugano:** *Note on semisimple extensions and separable extensions,* **Osaka J. Math.** 4 (1967), 265-270.
- **[8] K. Sugano:** *On centralizers in separable extensions,* **Osaka J. Math. 7 (1970), 29-** 40.
- **[9] K. Sugano:** *Separable extensions and Frobenius extensions,* **Osaka J. Math. 7** (1970), 291-299.
- **[10] K. Sugano:** *Note on separability of endomorphism rings,* **J. Fac. Sci. Hokkaido** Univ. 21 (1971), 196-208.
- [11] H. Tominaga and T. Nagahara: Galois Theory of Simple Rings, Okayama Math. Lectures, Okayama, 1970.