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0. The aim of this paper is to improve and generalize some results of the
author's previous paper [8]. Therefore, all notations and terminologies are same
as those in [7] and [8]. In [8] the author studied some commutor theory of
H-separable extension Λ | Γ in the case where Λ ^ Γ ® C Δ with Δ(= VA(T)) central
separable over C and C=the center of Λ=the center of Γ,and in the case where
Λ is left or right Γ-/. g. (finitely generated) projective and Λ | Γ satisfies the
following condition (*)

(*) 1) Λ is an H-separable extension of Γ such that ΓΓΓ<(θrΛr

2) VA(Γ)=C\ where C" is the center of Γ.

(See Theorem 1.2, Corollary 1.4 and Theorem 1.3 [8]). In case Λ |Γ satisfies
the condition (*) 1), Λ is left Γ-/. g. projective if and only if Λ is right Γ-/. g.
projective by Corollary 2 [9], hence we shall simply say that Λ is T-f g. pro-
jective in this case. We note also that the condition (*) implies that VA(C/)=T
by Proposition 1.2 [7]. In this paper, we shall consider the case where Λ is left
or right T-f. g. projective and Λ is an H-separable extension of Γ, and shall
prove that there exists a one to one correspondence between the class of sub-
rings B of Λ which is separable extensions of Γ and BBB(®B^B and the class of
separable C-subalgebras of Δ (Theorem 1). From this theorem, Corollary 1.4
and a more beautiful result than Thoerem 1.3 [8] follows.

1. To obtain our main results we need the next lemma which appears in
[6].

Lemma 1 (Corollary 1.2 [6]). Let A be a ring, Ma left A-module, Ω,=End
(AM) and E=End(MΩ). Then if M is A-f. g. projective, E®AM^M as E-Cl-
module by the map: e®m->em for e^E and

Proof. Since M is A-f. g. projective, we have natural isomorphisms

( Λ M , ΛM)Q, MQ)
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as 2?-f2-module. The composition of the above isomorphisms is the required
one.

For rings Γ c B c Λ , we shall say that B®ΓA-*A splits if the map of B®ΓA
to Λ such that b®x-^bx for b^B and x^A splits as .B-Λ-map. We also need
Proposition 2.3 [8]. This proposition can be improved as follows

Proposition 1. Let A be an H-separable extension of Γ. Then for any

intermediate ring B between Γ and A such that BBΓζ(BBAΓ and B®ΓA->A splits,

DD((BDA and D®CA-^A splits, where D=VA(B). Conversely for any C-

subalgebra D of A such that D Z)<φ D Δ and D®CA->A splits, BBΓζξBBAΓ and

B®ΓA-^A splits, where B= VA(D).

Proof. The first part of this proposition have been proved in Proposition
2.3 [8]. Hence we need to prove only the second part without assuming that B
is right T-f g. projective. Suppose that D is a C-subalgebra of Δ such that
D ® C Δ ^ Δ splits. Then B= FΛ(Z))^Hom(DΔΔ, DΛΔ)<ΘHom(DD<g)cΔΔ, DAJ
~V*(C) as 5-ΓΛ(Δ)-module. Hence B £ Γ < θ β Λ Γ . Then, since Λ is H-
separable over Γ and BBΓζξBBAΓ, we have a 5-Λ-isomorphism η of B®ΓA to
Hom(Z)Δ, ^Λ) such that η{b®x){d)=bdx for b^B, d(=D and Λ G Λ by Proposi-
tion 1.3 [7]. Hence, we have a commutative diagram of Z?-Λ-maps

> Hom(DΔ, DA)

i
Λ — τ ( )

J

where j is the natural isomorphism and i* is the one induced by the inclusion
map i: D c Δ . Then if DD(Q)DA, i* 5-Λ-sρlits and B®ΓA-*A splits.

Let Λ be a semisimple i?-algebra in the sense of A. Hattori [2], that is, Λ is
a weakly semisimple extension of i? l in the sense of [3]. Then every finitely
generated Λ-module which is i?-projective is Λ-projective, and by Proposition
4.1 [1] if Σ is a finitely generated projective i?-algebra which contains Λ, Λ Λ < Θ Λ Σ

and Λ Λ < 0 Σ Λ . It is also well known that a separable algebra is a semisimple
algebra.

Proposition 2. Let A be an H-separable extension of Γ. If (1) D is a
separable C-subalgebra of A, or if (2) A is a separable C-algebra (e. g., if V Γ X Φ Γ Λ Γ )

and D is a semisimple C-subalgebra of A, then VA(VA(D))=D, BBT<®BAΓ and
B®VA-+A splits, where B= VA(D).

Proof. Suppose (1). Then since D®CD->D splits as D-Z)-map, D®CA
-^A splits as D-A-map. Suppose (2). Then D®CA->A splits as Z)-C-map,
since D is C-semisimple. Then D®CA->A splits as D-Δ-map, since Δ is in-
separable. Thus in both cases, D®CA->A splits and PD((BDA. The latter
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follows from Proposition 4.1 [1], since D is C-semisimple and Δ is C-f.g.
projective. Then B®ΓA^A splits and β 5 Γ ( θ β Λ Γ by Proposition 1. Hence Λ
is H-separable over B by Proposition 2.2 [8]. Let D'=VA(B). Then there
exists a ring isomorphism η: D' ® cA°—>Έnd(BA) such that η(d ® x°)(y)=dyx for
Λ J E Λ ^ G D ' (see Proposition 3.3 [5]). Then D'®CA° is the double centralizer
of a left Z)® cΛ°-module Λ, since B=Έnd(DAA). While D®CA-^A splits, since
D®CA-+A splits. This implies that Λ is left D®cA°-f g. projective. Then
by lemma 1, (Df ® CA

0)® D®oA*A^ A, hence D'®DA°^A. This isomorphism is
given by d®x-*dx for d(=D\ χ(=A. Then for every d<E:Df, d®\ = \®d in
D'®DA, since both are mapped to d by this isomorphism. On the other hand,
since Λ is //-separable over B> Df is C-f.g. projective, and Όr is right D-f.g.
projective, since D is C-semisimple. Hence D'®DD'czD'®DA, and d®l =
l®d in D'®DDf for every d<=D'. Since DD<®DD\ Df=D®A for some left
Z>-submodule A of Ώf and D'®DD'=D'®DD®D'®DA. Let x be an arbitrary
element of U and x=d+a for J e D , and a^A. Then D'®DD'^x®l = l®x
= l®d+l®a, and l®a = Oy x®l = l®d. Thus x = d(ΞD. Thus D' = D.
Thus D=VA(VA(D)).

The next proposition is a generalization of Proposition 1.5 [8].

Proposition 3. Let A be an arbitrary R-algebra which is R-f. g. projective.
Then for any separable R-subalgebra Γ of A, Γ is a T-Y-dίrect summand of Λ.

Proof. Since Γ is jR-separable, there exists Ί,ri®si^{Y®cΓ)v such that
Έίrisi=l. While, since Γ is i?-semisimρle, ΓΓ<φΓΛ. Let p be the left Γ-
projedtion of Λ to Γ. Then the map p* of Λ to Γ such that p*(x)=Σp(xri)si

for x e Λ is a Γ-Γ-map, and p*(r)=yΣp(rri)si=Έ<rrisi=r for every rGΓ. Thus
Γ. Γ

Now we are ready to get our main theorem.

Theorem 1. Let A be an H-separable extension of Γ. Then if A is left or
right T-f g. projective, there exists a one to one correspondence V: A \Λ/V—* VA(A)
such that V2—identity between the class of separable extensions B of Y such that
BBB((BBAB and the class of C-separable subalgebras of Δ.

Proof. Let D be an arbitrary separable C-subalgebra of Δ and B= VA(D).
Then BBΓ<®BAΓ and VA(B)=D. This and Corollary 1.3 [8] imply that B is
separable over Γ, since B is left or right T-fg. projective and ̂ ^ Θ ^ Δ ^
βBβζ^βAβ follows from BBΓζ(BBAΓ and the separability of B over Γ. On the
other hand, if B is a separable extension of Γ such that BBB(Q)BABf then
D=VA(B) is a separable C-algebra and VA(VA(B))=B by Proposition 1.4 [8].

Corollary 1. Let A be an H-separable extension of Y with the condition (*)
of §0. Then if A is Y-f g. projective, there exists a one to one correspondence
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V: AΛ/\Γ> VA(A) such that V2=identity between the class of subrings of A which

are H-separable extensions of Γ and the class of separable C-subalgebras of C.

In this case V corresponds each H-separable extension of Γ to its center.

Proof. Let B be any ring with ΓcJScΛ. Then VA(B)(zVA(T)=C <
hence the center of B=VB(B)=Bf\ VA(B)=VA(B). On the other hand, by
Propositions 1.8 and 1.9 B is H-separable over Γ, if and only if BBB^B^B-

Thus the assertion follows from Theorem 1.

REMARK. Ring extension Λ | Γ which satisfy the condition (*) and such that
Λ is T-f. g. projective really exists. Let Λ be a central separable C-algebra and
Γ a C-separable subalgebra with its center C ' Φ C Then Λ is H-separable over
Γ, rΓr<θrΛΓ and Λ is T-f. g. projective. Let Λ '= VA(C). Then Λ|Λ'
satisfy the condition (*) by Proposition 1.3 [8].

In [10] we considered ring extension Λ| Γ which satisfy the following condi-
tion (fl).

(#) (1) Λ is a separable extension of Γ such that VA(T)=C.
(2) Λ is Γ-centrally projective (i.e., Γ Λ Γ <θr(ΓΘ ΘΓ)Γ).

And we proved that if Λ | Γ satisfy the condition (#), there exist one to one cor-
respondences U and V between the class SI of separable extensions B of Γ such
that BBB(Q)BAB and the class 35 of separable C'-subalgebras of C, defined by
V: BWv->BΓlC and U: i?wv->i?r for B<= SI and i?e35, with UV=hn and
VU=lf8 (Theorem 8 [10]).

Let a ring extension Λ | Γ satisfy the condition (*) of §0. Then Ω = [End(ΓΛ)]°
= C<S)CΛ and C is a commutative C-separable algebra and C-f. g. projective.
Then clearly, the center of Cl=C/=VΩ(A), and Ω|Λ satisfies the condition (#).
Let Si be the class of separable extensions Σ of Λ such that S Σ Σ ^ Φ ^ Ω S ) 35 the
class of separable C-subalgebras of C , and let £/and V be such that U(R)—RA
for Λ<=35 and F ( Σ H Σ n C for Σ e SI. Then by Theorem 8 [10], U and V
provide one to one correspondences between SI and 95 with UV= hn and VU= 1«8.
Furthermore, let © be the class of subrings of Λ which are H-separable extensions
of Γ. Then by Corollary 1 we have.

Proposition 4. Let a ring extension A \ Γ satisfy the condition (#) and A be
Y-f. g. projective. Then if we define Si, 35 and K as above, the correspondences
W: SI ΛV> & such that ϊΓ(Σ)=Γ Δ (ΣΠ(C / ®l))/or ΣeSl and T: © NΛ/W SI such
that T(B)=End(BA)for δ e K are one to one with WT=\® and TW=l%.

Proof. For £<=(£, VA(B)®cA=Έnd(BA). Then by Corollary 1 and
Theorem 8[10], TW=hn and WT=H.
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