ON CENTRALIZERS IN SEPARABLE EXTENSIONS II

Kozo SUGANO

(Received February 9, 1971)

- 0. The aim of this paper is to improve and generalize some results of the author's previous paper [8]. Therefore, all notations and terminologies are same as those in [7] and [8]. In [8] the author studied some commutor theory of H-separable extension $\Lambda \mid \Gamma$ in the case where $\Lambda \cong \Gamma \otimes_C \Delta$ with $\Delta (=V_{\Lambda}(\Gamma))$ central separable over C and C=the center of Λ =the center of Γ , and in the case where Λ is left or right Γ -f. g. (finitely generated) projective and $\Lambda \mid \Gamma$ satisfies the following condition (*)
 - (*) 1) Λ is an H-separable extension of Γ such that $_{\Gamma}\Gamma_{\Gamma} \leftarrow \oplus_{\Gamma}\Lambda_{\Gamma}$.
 - 2) $V_{\Lambda}(\Gamma) = C'$, where C' is the center of Γ .

(See Theorem 1.2, Corollary 1.4 and Theorem 1.3 [8]). In case $\Lambda \mid \Gamma$ satisfies the condition (*) 1), Λ is left Γ -f. g. projective if and only if Λ is right Γ -f. g. projective by Corollary 2 [9], hence we shall simply say that Λ is Γ -f. g. projective in this case. We note also that the condition (*) implies that $V_{\Lambda}(C') = \Gamma$ by Proposition 1.2 [7]. In this paper, we shall consider the case where Λ is left or right Γ -f. g. projective and Λ is an H-separable extension of Γ , and shall prove that there exists a one to one correspondence between the class of subrings B of Λ which is separable extensions of Γ and ${}_{B}B_{R} \oplus {}_{B}\Lambda_{B}$ and the class of separable C-subalgebras of Δ (Theorem 1). From this theorem, Corollary 1.4 and a more beautiful result than Thoerem 1.3 [8] follows.

1. To obtain our main results we need the next lemma which appears in [6].

Lemma 1 (Corollary 1.2 [6]). Let A be a ring, M a left A-module, $\Omega = End$ $({}_{A}M)$ and $E = End(M_{\Omega})$. Then if M is A-f. g. projective, $E \otimes_{A} M \cong M$ as $E-\Omega$ -module by the map: $e \otimes m \rightarrow em$ for $e \in E$ and $m \in M$.

Proof. Since M is A-f. g. projective, we have natural isomorphisms

$$E \otimes_A M = \operatorname{Hom}(M_{\Omega}, M_{\Omega}) \otimes_A M \cong \operatorname{Hom}(\operatorname{Hom}(_A M, _A M)_{\Omega}, M_{\Omega})$$

= $\operatorname{Hom}(\Omega_{\Omega}, M_{\Omega}) \cong M$

466 K. Sugano

as $E-\Omega$ -module. The composition of the above isomorphisms is the required one.

For rings $\Gamma \subset B \subset \Lambda$, we shall say that $B \otimes_{\Gamma} \Lambda \to \Lambda$ splits if the map of $B \otimes_{\Gamma} \Lambda$ to Λ such that $b \otimes x \to bx$ for $b \in B$ and $x \in \Lambda$ splits as $B - \Lambda$ -map. We also need Proposition 2.3 [8]. This proposition can be improved as follows

Proof. The first part of this proposition have been proved in Proposition 2.3 [8]. Hence we need to prove only the second part without assuming that B is right $\Gamma - f$. g. projective. Suppose that D is a C-subalgebra of Δ such that $D \otimes_C \Delta \to \Delta$ splits. Then $B = V_{\Lambda}(D) \cong \operatorname{Hom}(_D \Delta_{\Delta}, _D \Lambda_{\Delta}) \subset \operatorname{Hom}(_D D \otimes_C \Delta_{\Delta}, _D \Lambda_{\Delta}) \cong V_{\Lambda}(C)$ as $B - V_{\Lambda}(\Delta)$ -module. Hence $_B B_{\Gamma} \subset _B \Lambda_{\Gamma}$. Then, since Λ is H-separable over Γ and $_B B_{\Gamma} \subset _B \Lambda_{\Gamma}$, we have a $B - \Lambda$ -isomorphism η of $B \otimes_{\Gamma} \Lambda$ to $\operatorname{Hom}(_D \Delta, _D \Lambda)$ such that $\eta(b \otimes x)(d) = b dx$ for $b \in B$, $d \in D$ and $x \in \Lambda$ by Proposition 1.3 [7]. Hence, we have a commutative diagram of $B - \Lambda$ -maps

$$\begin{array}{ccc}
B \otimes_{\Gamma} \Lambda & \longrightarrow & \operatorname{Hom}(_{D} \Delta, _{D} \Lambda) \\
\downarrow & & \downarrow i_{*} \\
\Lambda & \longrightarrow & \operatorname{Hom}(_{D} D, _{D} \Lambda)
\end{array}$$

where j is the natural isomorphism and i_* is the one induced by the inclusion map $i: D \subset \Delta$. Then if ${}_D D \subset \Delta$, $i_* B - \Lambda$ -splits and $B \otimes_{\Gamma} \Lambda \to \Lambda$ splits.

Let Λ be a semisimple R-algebra in the sense of Λ . Hattori [2], that is, Λ is a weakly semisimple extension of $R \cdot 1$ in the sense of [3]. Then every finitely generated Λ -module which is R-projective is Λ -projective, and by Proposition 4.1 [1] if Σ is a finitely generated projective R-algebra which contains Λ , $_{\Lambda}\Lambda < \oplus_{\Lambda}\Sigma$ and $\Lambda_{\Lambda} < \oplus_{\Sigma}\Lambda$. It is also well known that a separable algebra is a semisimple algebra.

Proposition 2. Let Λ be an H-separable extension of Γ . If (1) D is a separable C-subalgebra of Δ , or if (2) Δ is a separable C-algebra (e. g., if $_{\Gamma}\Gamma_{\Gamma} < \oplus_{\Gamma}\Lambda_{\Gamma}$) and D is a semisimple C-subalgebra of Δ , then $V_{\Lambda}(V_{\Lambda}(D)) = D$, $_{B}B_{\Gamma} < \oplus_{B}\Lambda_{\Gamma}$ and $B \otimes_{\Gamma}\Lambda \rightarrow \Lambda$ splits, where $B = V_{\Lambda}(D)$.

Proof. Suppose (1). Then since $D \otimes_{\mathcal{C}} D \to D$ splits as D-D-map, $D \otimes_{\mathcal{C}} \Delta \to \Delta$ splits as $D-\Delta$ -map. Suppose (2). Then $D \otimes_{\mathcal{C}} \Delta \to \Delta$ splits as D-C-map, since D is C-semisimple. Then $D \otimes_{\mathcal{C}} \Delta \to \Delta$ splits as $D-\Delta$ -map, since Δ is C-separable. Thus in both cases, $D \otimes_{\mathcal{C}} \Delta \to \Delta$ splits and $D \otimes_{\mathcal{C}} \Delta \to \Delta$. The latter

follows from Proposition 4.1 [1], since D is C-semisimple and Δ is C-f. g. projective. Then $B \otimes_{\Gamma} \Lambda \to \Lambda$ splits and ${}_{B}B_{\Gamma} \langle \bigoplus_{B} \Lambda_{\Gamma}$ by Proposition 1. Hence Λ is H-separable over B by Proposition 2.2 [8]. Let $D'=V_{\Lambda}(B)$. exists a ring isomorphism $\eta: D' \otimes_C \Lambda^0 \to \operatorname{End}({}_B \Lambda)$ such that $\eta(d \otimes x^0)(y) = dyx$ for $x, y \in \Lambda, d \in D'$ (see Proposition 3.3 [5]). Then $D' \otimes_{C} \Lambda^{0}$ is the double centralizer of a left $D \otimes_C \Lambda^0$ -module Λ , since $B = \operatorname{End}({}_D \Lambda_{\Lambda})$. While $D \otimes_C \Lambda \to \Lambda$ splits, since $D \otimes_{\mathbf{C}} \Delta \to \Delta$ splits. This implies that Λ is left $D \otimes_{\mathbf{C}} \Lambda^0 - f$. g. projective. by lemma 1, $(D' \otimes_C \Lambda^0) \otimes_{D \otimes_{\sigma} \Lambda^0} \Lambda \cong \Lambda$, hence $D' \otimes_D \Lambda^0 \cong \Lambda$. This isomorphism is given by $d \otimes x \rightarrow dx$ for $d \in D'$, $x \in \Lambda$. Then for every $d \in D'$, $d \otimes 1 = 1 \otimes d$ in $D' \otimes_{D} \Lambda$, since both are mapped to d by this isomorphism. On the other hand, since Λ is H-separable over B, D' is C-f.g. projective, and D' is right D-f.g. projective, since D is C-semisimple. Hence $D' \otimes_D D' \subset D' \otimes_D \Lambda$, and $d \otimes 1 =$ $1 \otimes d$ in $D' \otimes_{\mathcal{D}} D'$ for every $d \in D'$. Since ${}_{\mathcal{D}} D \otimes_{\mathcal{D}} D'$, $D' = D \oplus A$ for some left D-submodule A of D' and $D' \otimes_D D' = D' \otimes_D D \oplus D' \otimes_D A$. Let x be an arbitrary element of D' and x=d+a for $d \in D$, and $a \in A$. Then $D' \otimes_D D' \ni x \otimes 1 = 1 \otimes x$ $=1\otimes d+1\otimes a$, and $1\otimes a=0$, $x\otimes 1=1\otimes d$. Thus $x=d\in D$. Thus D'=D. Thus $D = V_{\Lambda}(V_{\Lambda}(D))$.

The next proposition is a generalization of Proposition 1.5 [8].

Proposition 3. Let Λ be an arbitrary R-algebra which is R-f. g. projective. Then for any separable R-subalgebra Γ of Λ , Γ is a Γ - Γ -direct summand of Λ .

Now we are ready to get our main theorem.

Theorem 1. Let Λ be an H-separable extension of Γ . Then if Λ is left or right Γ -f. g. projective, there exists a one to one correspondence $V: A \bowtie V_{\Lambda}(A)$ such that V^2 =identity between the class of separable extensions B of Γ such that ${}_BB_B \langle \bigoplus_B \Lambda_B$ and the class of C-separable subalgebras of Δ .

Proof. Let D be an arbitrary separable C-subalgebra of Δ and $B = V_{\Lambda}(D)$. Then ${}_BB_{\Gamma} \langle \bigoplus_B \Lambda_{\Gamma}$ and $V_{\Lambda}(B) = D$. This and Corollary 1.3 [8] imply that B is separable over Γ , since B is left or right $\Gamma - f$. g. projective and ${}_DD_{\Gamma} \langle \bigoplus_D \Delta_{\Gamma} \cdot {}_BB_{R} \langle \bigoplus_B \Lambda_B \rangle$ follows from ${}_BB_{\Gamma} \langle \bigoplus_B \Lambda_{\Gamma} \rangle$ and the separability of B over Γ . On the other hand, if B is a separable extension of Γ such that ${}_BB_{R} \langle \bigoplus_B \Lambda_B \rangle$, then $D = V_{\Lambda}(B)$ is a separable C-algebra and $V_{\Lambda}(V_{\Lambda}(B)) = B$ by Proposition 1.4 [8].

Corollary 1. Let Λ be an H-separable extension of Γ with the condition (*) of §0. Then if Λ is Γ -f. g. projective, there exists a one to one correspondence

 $V: A \rightsquigarrow V_{\Lambda}(A)$ such that V^2 =identity between the class of subrings of Λ which are H-separable extensions of Γ and the class of separable C-subalgebras of C'. In this case V corresponds each H-separable extension of Γ to its center.

Proof. Let B be any ring with $\Gamma \subset B \subset \Lambda$. Then $V_{\Lambda}(B) \subset V_{\Lambda}(\Gamma) = C' \subset B$, hence the center of $B = V_B(B) = B \cap V_{\Lambda}(B) = V_{\Lambda}(B)$. On the other hand, by Propositions 1.8 and 1.9 B is H-separable over Γ , if and only if ${}_BB_B \subset \oplus_B \Lambda_B$. Thus the assertion follows from Theorem 1.

REMARK. Ring extension $\Lambda \mid \Gamma$ which satisfy the condition (*) and such that Λ is $\Gamma - f$. g. projective really exists. Let Λ be a central separable C-algebra and Γ a C-separable subalgebra with its center $C' \neq C$. Then Λ is H-separable over Γ , ${}_{\Gamma}\Gamma {}_{\Gamma} \langle \bigoplus_{\Gamma} \Lambda_{\Gamma}$ and Λ is $\Gamma - f$. g. projective. Let $\Lambda' = V_{\Lambda}(C')$. Then $\Lambda \mid \Lambda'$ satisfy the condition (*) by Proposition 1.3 [8].

In [10] we considered ring extension $\Lambda | \Gamma$ which satisfy the following condition (#).

- (#) (1) Λ is a separable extension of Γ such that $V_{\Lambda}(\Gamma) = C$.
 - (2) Λ is Γ -centrally projective (i.e., $_{\Gamma}\Lambda_{\Gamma} \langle \bigoplus_{\Gamma} (\Gamma \oplus \cdots \oplus \Gamma)_{\Gamma} \rangle$.

And we proved that if $\Lambda | \Gamma$ satisfy the condition (\sharp) , there exist one to one correspondences U and V between the class $\mathfrak A$ of separable extensions B of Γ such that ${}_BB_B \langle \bigoplus_B \Lambda_B$ and the class $\mathfrak B$ of separable C'-subalgebras of C, defined by $V: B \bowtie B \cap C$ and $U: R \bowtie R\Gamma$ for $B \in \mathfrak A$ and $R \in \mathfrak B$, with $UV = 1\mathfrak A$ and $VU = 1\mathfrak B$ (Theorem 8 [10]).

Let a ring extension $\Lambda \mid \Gamma$ satisfy the condition (*) of §0. Then $\Omega = [\operatorname{End}(_{\Gamma}\Lambda)]^0 = C' \otimes_C \Lambda$ and C' is a commutative C-separable algebra and C-f. g. projective. Then clearly, the center of $\Omega = C' = V_{\Omega}(\Lambda)$, and $\Omega \mid \Lambda$ satisfies the condition (\sharp). Let $\mathfrak A$ be the class of separable extensions Σ of Λ such that ${}_{\Sigma}\Sigma_{\Sigma} \otimes {}_{\Sigma}\Sigma_{\Sigma} \otimes {}_{\Sigma}\Sigma_{\Sigma}$. $\mathfrak B$ the class of separable C-subalgebras of C', and let U and V be such that $U(R) = R\Lambda$ for $R \in \mathfrak B$ and $V(\Sigma) = \Sigma \cap C'$ for $\Sigma \in \mathfrak A$. Then by Theorem 8 [10], U and V provide one to one correspondences between $\mathfrak A$ and $\mathfrak B$ with $UV = 1\mathfrak A$ and $VU = 1\mathfrak B$. Furthermore, let $\mathfrak C$ be the class of subrings of Λ which are H-separable extensions of Γ . Then by Corollary 1 we have.

Proposition 4. Let a ring extension $\Lambda \mid \Gamma$ satisfy the condition (*) and Λ be Γ -f. g. projective. Then if we define \mathfrak{A} , \mathfrak{B} and \mathfrak{C} as above, the correspondences $W: \mathfrak{A} \bowtie \mathfrak{C}$ such that $W(\Sigma) = V_{\Lambda}(\Sigma \cap (C' \otimes 1))$ for $\Sigma \in \mathfrak{A}$ and $T: \mathfrak{C} \bowtie \mathfrak{A}$ such that $T(B) = End(B\Lambda)$ for $B \in \mathfrak{C}$ are one to one with $WT = 1 \otimes A$ and $TW = 1 \otimes A$.

Proof. For $B \in \mathbb{C}$, $V_{\Lambda}(B) \otimes_{C} \Lambda = \operatorname{End}_{B} \Lambda$. Then by Corollary 1 and Theorem 8[10], $TW = 1\mathfrak{A}$ and $WT = 1\mathfrak{E}$.

HOKKAIDO UNIVERSITY

References

- [1] S. Endo and Y. Watanabe: The centers of semisimple algebras over a commutative ring, Nagoya Math. J. 30 (1967), 285-293.
- [2] A. Hattori: Semisimple algebras over a commutative ring, J. Math. Soc. Japan 15 (1963), 404-419.
- [3] K. Hirata and K. Sugano: On semisimple extensions and separable extensions over non commutative rings, J. Math. Soc. Japan, 18 (1966), 360-373.
- [4] K. Hirata: Some types of separable extensions of rings, Nagoya Math. J. 33 (1968), 107-116.
- [5] K. Hirata: Separable extensions and centralizers of rings, Nagoya Math. J. 35 (1969), 31-45.
- [6] K. Morita: Localizations in categories of modulues, Math. Z. 114 (1970), 121-144.
- [7] K. Sugano: Note on semisimple extensions and separable extensions, Osaka J. Math. 4 (1967), 265-270.
- [8] K. Sugano: On centralizers in separable extensions, Osaka J. Math. 7 (1970), 29-40.
- [9] K. Sugano: Separable extensions and Frobenius extensions, Osaka J. Math. 7 (1970), 291-299.
- [10] K. Sugano: Note on separability of endomorphism rings, J. Fac. Sci. Hokkaido Univ. 21 (1971), 196-208.
- [11] H. Tominaga and T. Nagahara: Galois Theory of Simple Rings, Okayama Math. Lectures, Okayama, 1970.