Numata, M. Osaka J. Math. 8 (1971), 447-451

ON THE π-NILPOTENT LENGTH OF π-SOLVABLE GROUPS

MINORU NUMATA

(Received March 11, 1971)

1. Introduction

In this paper, G is always a finite group. The *Fitting subgroup F(G)* of *G* is the uniquely determined maximal normal subgroup. If *G* is solvable, we have the following normal series:

$$
1 = F^0(G) \langle F^1(G) \langle \cdots \langle F^s(G) = G,
$$

$$
F^{i+1}(G)/F^i(G) = F(G/F^i(G)).
$$

The length s of this series is called the *nilpotent length* of G.

The purpose of this paper is to prove

Theorem 1. *The nilpotent length of a finite solvable group G is at most one plus the number of G-conjugate classes of the family of non-normal maximal subgroups of* G.

This result will be extended for π -solvable groups. Let π be a set of prime numbers and π' the complement of π in the set of all the prime numbers. We say that a number *n* belongs to π if *n* is divisible only by primes in π . A group *G* is called π -group if the order of *G* belongs to π . A group *G* is π -separable if every composition factor of G is either π -group or π '-group, and G is π -solvable if every composition factor is either π' -group or p -group for some prime p belonging to π . A group *G* is called π -nilpotent if *G* has a normal ϕ -complement for all p in π . Let $F_{\pi}(G)$ be the uniquely determined maximal normal π -nilpotent subgroup of *G*. If *G* is π -solvable, then we have the following normal series of *G:*

$$
\begin{aligned} 1&=F^{\mathfrak{a}}_{\pi}(G)\!\triangleleft\!F^1_{\pi}(G)\!\triangleleft\!\cdots\!\triangleleft\!F^s_{\pi}(G)\,,\\ F^{i+1}_{\pi}(G)/\!F^i_{\pi}(G)&=F_{\pi}(G/F^i_{\pi}(G))\,. \end{aligned}
$$

The length *s* of this normal series is called the *π-nilpotent length* of G. Then we have

Theorem 2 *The π-nilpotent length of a π-solvable group G is at most*

one plus the number of G-conjugate classes of the family of non-normal maximal subgroups of G whose indices belong to π.

As a corollary we have

Corollary. *The π-length of a π-solvable group is at most one plus the number of G-conjugate classes of the family of non-normal maximal subgroups of G whose indices belong to π.*

At the last we shall show that these inequalities are best possible.

Notation. Let G be a finite group and *X, Y* the subsets of G. We use the following notation.

2. Proofs of the theorems

Proof of Theorem 1. We shall prove the theorem by induction on the number of G-conjugate classes of the family of non-normal maximal subgroups of *G.* For the case that every maximal subgroup of *G* is normal in G, Theorem 1 is trivial ([1]; p. 260). Suppose there exists a non-normal maximal subgroup of G. This means that G is not nilpotent ([1]; p. 260). We shall show that $\Delta(G) \geq F(G)$, where $\Delta(G)$ is the intersection of all the non-normal maximal subgroups of G. Since $\Delta(G/\Phi(G)) = \Delta(G)/\Phi(G)$ and $F(G/\Phi(G)) = F(G)/\Phi(G)$ ([1]; p. 270), we may suppose $\Phi(G)=1$. Therefore $\Delta(G)=Z(G)$ ([1]; p. 276). If $Z(G) = \Delta(G) \geq F(G)$, then $F(G) \geq C_G(F(G)) = G$ ([1]; p. 277). It contradicts the assumption of non-nilpotency of G. Since $\Delta(G)\not\geq F(G)$, the number of $G/F(G)$ -conjugate classes of the family of non-normal maximal subgroups of $G/F(G)$ is strictly less than that of G . Hence by induction, we can complete the proof.

To prove Theorem 2, we need the following lemmas

Lemma 1. *G is π-nilpotent if and only if every maximal subgroup of G, whose index belongs to* π , *is normal in* G and G is π -separable.

Proof of Lemma 1. Let G be π -nilpotent. Then from the definition there exists a π' -Hall subgroup R of G which is normal in G and G/R is nilpotent. The order of G/R belongs to π . Thus G is π -separable. Any maximal

subgroup *M* of G, whose index belongs to *π,* contains *R.* The image of *M* under the natural homomorphism $G\rightarrow G/R$ is maximal in G/R . Since G/R is nilpotent, it must be normal in *G/R,* and *M* is also normal in G. Let us prove the "if" part. Since *G* is π -separable, *G* possesses a π' -Hall subgroup *R* ([2]; p. 229). If the normalizer $N_G(R)$ of R in G is smaller than G , then there exists a maximal subgroup M such that $N_G(R) \leq M < G$ and $N_G(M) = M$ ([2]; p. 230). It contradicts the assumption M is normal in G . Thus $N_G(R)=G$, namely R is normal in G. Let *L/R* be a maximal subgroup of *G/R.* Then L is maximal in G whose index in G belongs to π . From the assumption, L is normal in G, and L/R is also normal in G/R . Thus G/R is nilpotent and is π -nilpotent.

Lemma 2. Let G be π -separable, then the index of any maximal subgroup of *G* belongs to π or π' .

Proof. Let M be a maximal subgroup of G. Regard $G/\bigcap M^g$ as the permutation group on the left cosets of G by *M.* Then this permutation group is primitive and its degree is equal to the index of *M* in G. Since the minimal normal subgroup of *Gj* Π *M⁸* is transitive, the index of *M* divides the order of the minimal normal subgroup of $G/\bigcap_{g\in G}M^g$, which belongs to π or π' . Thus Lemma 2 is proved.

Proof of Theorem 2. We shall prove by induction on the number of G-conjugate classes of the family of non-normal maximal subgroups of G whose indices in G belong to π . For the case that every maximal subgroup of G, whose index belongs to π , is normal in G, it is trivial from Lemma 1. Suppose there exists a non-normal maximal subgroup of G whose index belongs to *π.* We shall show that $\Delta_{\alpha}(G)\not\supseteq F_{\alpha}(G)$, where $\Delta_{\alpha}(G)$ is the intersection of all nonnormal maximal subgroups whose indices belong to π . First of all, let R be a π' -Hall subgroup of $F_{\pi}(G)$, then R is a characteristic subgroup of $F_{\pi}(G)$, therefore *R* is normal in G. Since G is π -separable, Sylow-theorem holds for the π' -Hall subgroups of G. Therefore $\Delta_{\pi}(G) \geq R$. Since $F_{\pi}(G/R) = F_{\pi}(G)/R$ and $\Delta_{\pi}(G/R)$ $=\Delta_\pi(G)/R,$ we may suppose that $R=1.$ In addition, $\Delta_\pi(G/\Phi(G))=\Delta_\pi(G)/\Phi(G)$ and $F_{\pi}(G/\Phi(G))=F_{\pi}(G)/\Phi(G)$ ([1]; p. 689). Thus we may suppose that $\Phi(G)$ $= 1.$ Then $F_{\pi}(G)$ is a π -group, therefore $F_{\pi}(G) \leq \Delta_{\pi'}(G)$. On the other hand $\Delta(G) = \Delta_{\pi}(G) \cap \Delta_{\pi'}(G)$ from Lemma 2. Therefore $\Delta_{\pi}(G) \geq F_{\pi}(G)$ if and only if $\Delta(G)\geq F_{\pi}(G)$. If $\Delta(G)\geq F_{\pi}(G)$, then $Z(G)=\Delta(G)\geq F_{\pi}(G)$. Set $M/F_{\pi}(G)$ a minimal normal subgroup of $G/F_\pi(G)$. We shall show that M is a normal π nilpotent subgroup of G. At first, let $M/F_{\pi}(G)$ be a π -group. Since $G/F_{\pi}(G)$ is π -solvable, $M/F_{\pi}(G)$ is abelian. Therefore, $[M, M] \leq F_{\pi}(G)$ and $1 = [F_{\pi}(G), M]$ \geq [[*M*, *M*], *M*]. Thus *M* is nilpotent, especially, *M* is π -nilpotent. On the other hand, let $M/F_{\tau}(G)$ be a π' -group. Then there exists a π' -Hall subgroup. *S* of *M* such that $M = F_*(G)S$ and $F_*(G) \cap S = 1$. From $F_*(G) \leq Z(G)$, we have 450 M. NUMATA

 $M = F_*(G) \times S$. Therefore *M* is π -nilpotent by the nilpotency of $F_*(G)$. This is a contradiction. Thus we can show that $\Delta_{\pi}(G)\not\equiv F_{\pi}(G)$. From $\Delta_{\pi}(G)$ $\geq F_*(G)$, the number of $G/F_*(G)$ -conjugate classes of the family of non-normal maximal subgroups of $G/F_\pi(G)$, whose indices in $G/F_\pi(G)$ belong to π , is strictly less than that of G. Thus by induction Theorem 2 is proved.

3. Example

Theorem 3. *For any n there exists a finite solvable group G such that the nilpotent length of G is equal to n and the number of G-conjugate classes of the family of non-normal maximal subgroups of G is equal to n*— 1.

Proof. The existence of the finite solvable groups satisfying the conditions of Theorem 3 is easily proved from the construction of π -solvable groups satisfying the conditions of Theorem 4.

Theorem 4. For any n and any π , there exists a π -solvable group G such *that the π-nilpotent length of G is equal to n and the number of G-conjugate classes of the family of non-normal maximal subgroups of G, whose indices belong to π, is equal to n*—1.

Construction

 $G_i: \quad |G_i| = p_i, p_i \in \pi$

- *T*₁: *G*₁ possesses a faithful irreducible representation on $GF(q_1)$, $q_1 \in \pi'$. Therefore we can construct $T_1 = G_1 Q_1$, the semidirect product of G_1 and Q _{*x*} which is the elementary abelian group of the order q ^{*1*}^{*1*}, for some l _{*1}*, and</sub> then Q_i is a unique minimal normal subgroup of T_i . For $n \geqslant 2$, we construct G_n and T_n as below.
- G_n : : T_{n-1} possesses a faithful irreducible representation on $GF(p_n)$, $p_n \in \pi$, for the sake of the uniqueness of the minimal normal subgroup of T_{n-1} . Therefore, we can construct $G_n = T_{n-1}P_n$, the semidirect product of T_n and P_n which is the elementary abelian group of the order p_n^m , for some m_n , and then P_n is a unique minimal normal subgroup of G_n .
- *Tn :* G_n possesses a faithful irreducible representation on $GF(q_n)$, $q_n \in \pi'$, for the sake of the uniqueness of the minimal normal subgroup of *Gⁿ .* Therefore, we can construct $T_n = G_n Q_n$, the semidirect product of G_n and Q_n which is the elementary abelian group of the order $q_n^{\iota_n}$, for some l_n , and then *Qⁿ* is a unique minimal normal subgroup of *Tⁿ .*

Proof. We shall show by induction on *n* that G_n satisfies the conditions of Theorem 4. It is trivial that the π -nilpotent length of G_n is equal to *n*.

Since a maximal subgroup of G_n containing P_n , whose index belongs to π , contains $Q_{n-1}P_n$ and $G_n/Q_{n-1}P_n$ is isomorphic to G_{n-1} , the number of G_n conjugate classes of the family of non-normal maximal subgroups, which have

indices belonging to π and contain P_n , is equal to $n-1$ by induction hypothesis. Now T_{n-1} is maximal in G_n and not normal in G_n . We shall show that any maximal subgroup M of G_n which does not contain P_n is conjugate to T_{n-1} . Now $G_n = MP_n$ and $M \cap P_n = 1$. *M* is isomorphic to G_n/P_n . Let *N* be a minimal normal subgroup of *M.* Then *NPn=Qn_1Pⁿ .* By Zassenhaus theorem $N^g = Q_{n-1}$, for some $g \in Q_{n-1}P_n$. Therefore $M^g \triangleright N^g = Q_{n-1}$, then $M^g = T_{n-1}$. For if $M^g \neq T_{n-1}$, then $Q_{n-1} \triangleright \langle M^g, T_{n-1} \rangle = G$. This is the contradiction. Thus, the number of G_n -conjugate classes of the family of non-normal maximal subgroups of G_n , whose indices belong to π , is equal to $n-1$.

OSAKA UNIVERSITY

References

- [1] B. Huppert: Endliche Gruppen, Springer-Verlag, Berlin, 1967.
- [2] D. Gorenstein: Finite Groups, Harper's Series, Harper and Row, New Yorl. 1968.