Numata, M.
Osaka J. Math.
8 (1971), 447-451

ON THE z-NILPOTENT LENGTH OF ;-SOLVABLE
GROUPS

Minoru NUMATA

(Received March 11, 1971)

1. Introduction

In this paper, G is always a finite group. 'The Fitting subgroup F(G) of
G is the uniquely determined maximal normal subgroup. If G is solvable, we
have the following normal series:

1 = FY(G)4F{G) - 4F(G) = G,
Fi*(G)|F{(G) = F(G|F(G)).

The length s of this series is called the nilpotent length of G.
The purpose of this paper is to prove

Theorem 1. The nilpotent length of a finite solvable group G is at most one
plus the number of G-comjugate classes of the family of mnon-normal maximal
subgroups of G.

This result will be extended for z-solvable groups. Let 7 be a set of prime
numbers and 7’ the complement of 7 in the set of all the prime numbers. We
say that a number z belongs to = if # is divisible only by primes in z. A group
G is called z-group if the order of G belongs to z. A group G is z-separable if
every composition factor of G is either z-group or z’-group, and G is z-solvable
if every composition factor is either z’-group or p-group for some prime p belon-
ging to #. A group G is called z-nilpotent if G has a normal p-complement for
all pin . Let F,(G) be the uniquely determined maximal normal z-nilpotent

subgroup of G. If G is =-solvable, then we have the following normal series
of G:

1 = FYG) AFXG) - 4FG),
F*Y(G)[FYG) = F«(GIFYG)).

The length s of this normal series is called the z-nilpotent length of G. 'Then
we have

Theorem 2. The n-nilpotent length of a =m-solvable group G is at most
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one plus the number of G-conjugate classes of the family of non-normal maximal
subgroups of G whose indices belong to r.

As a corollary we have

Corollary. The n-length of a m-solvable group is at most ome plus the
number of G-conjugate classes of the family of non-normal maximal subgroups of G
whose indices belong to .

At the last we shall show that these inequalities are best possible.

Notation. Let G be a finite group and X, Y the subsets of G. We use
the following notation.

Z(G) : center of G
Ng(X) : normalizer of X in G
®(G) : intersection of all the maximal subgroups of G

<X,Y)>: subgroup of G generated by X, Y
Ce(X) : centralizer of X in G

[X,Y] : comutator subgroup of X and Y
GF(p) : finite field of p elements

| X | : number of the elements of X

2. Proofs of the theorems

Proof of Theorem 1. We shall prove the theorem by induction on the
number of G-conjugate classes of the family of non-normal maximal subgroups
of G. For the case that every maximal subgroup of G is normal in G, Theorem
1 is trivial ([1]; p. 260). Suppose there exists a non-normal maximal subgroup
of G. This means that G is not nilpotent ([1]; p. 260). We shall show that
A(G)Z=F(G), where A(G) is the intersection of all the non-normal maximal
subgroups of G. Since A(G/®(G))=A(G)/®P(G) and F(G|®(G))=F(G)/®(G)
([11; p- 270), we may suppose ®(G)=1. Therefore A(G)=Z(G) ([1]; p. 276).
If Z(G)=A(G)=F(G), then F(G)=>Cq(F(G))=G ([1]; p- 277). It contradicts
the assumption of non-nilpotency of G. Since A(G)Z=F(G), the number of
G|F(G)-conjugate classes of the family of non-normal maximal subgroups of
G|F(G) is strictly less than that of G. Hence by induction, we can complete
the proof.

To prove Theorem 2, we need the following lemmas

Lemma 1. G is w-nilpotent if and only if every maximal subgroup of G,
whose index belongs to =, is normal in G and G is n-separable.

Proof of Lemma 1. Let G be z-nilpotent. Then from the definition there
exists a z’-Hall subgroup R of G which is normal in G and G/R is nilpotent.
The order of G/R belongs to z. Thus G is =-separable. Any maximal
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subgroup M of G, whose index belongs to =, contains R. The image of M
under the natural homomorphism G—G/R is maximal in G/R. Since G/R is
nilpotent, it must be normal in G/R, and M is also normal in G. Let us prove
the “if”’ part. Since G is w-separable, G possesses a z’-Hall subgroup R ([2];
p- 229). If the normalizer Ng(R) of R in G is smaller than G, then there exists
a maximal subgroup M such that No(R)<M<G and Ng(M)=M ([2]; p- 230).
It contradicts the assumption M is normal in G. Thus Ng(R)=G, namely R is
normal in G. Let L/R be a maximal subgroup of G/R. Then L is maximal in
G whose index in G belongs to z. From the assumption, L is normal in G,
and L/R is also normal in G/R. Thus G/R is nilpotent and is z-nilpotent.

Lemma 2. Let G be n-separable, then the index of any maximal subgroup of
G belongs to m or n'.

Proot. Let M be a maximal subgroup of G. Regard G/ N M* as the
£EG

permutation group on the left cosets of G by M. Then this permutation group
is primitive and its degree is equal to the index of M in G. Since the minimal

normal subgroup of G/ N M¥ is transitive, the index of M divides the order of
€@

the minimal normal subgroup of G/ N M, which belongs to = or n’. Thus
£E6

Lemma 2 is proved.

Proof of Theorem 2. We shall prove by induction on the number of
G-conjugate classes of the family of non-normal maximal subgroups of G whose
indices in G belong to #. For the case that every maximal subgroup of G,
whose index belongs to 7, is normal in G, it is trivial from Lemma 1. Suppose
there exists a non-normal maximal subgroup of G whose index belongs to .
We shall show that A.(G)Z2F.(G), where A.(G) is the intersection of all non-
normal maximal subgroups whose indices belong to z. First of all, let R be a
n’-Hall subgroup of F,(G), then R is a characteristic subgroup of F.(G), therefore
R is normal in G. Since G is z-separable, Sylow-theorem holds for the #’-Hall
subgroups of G. Therefore A(G)>R. Since F(G/R)=F.(G)/R and A.(G/R)
=AL(G)[R, we may suppose that R=1. Inaddition, A,(G/®(G))=A(G)/P(G)
and F(G|®(G))=F.(G)/®(G) ([1]; p. 689). Thus we may suppose that ®(G)
=1. Then F.(G) is a z-group, therefore F(G)<A.(G). On the other hand
A(G)=AG)N Ax(G) from Lemma 2. Therefore A,(G)>F,(G) if and only
if A(G)=F(G). If A(G)=F.(G), then Z(G)=A(G)>F.(G). Set M|F(G) a
minimal normal subgroup of G/F,(G). We shall show that M is a normal 7=-
nilpotent subgroup of G. At first, let M/F,(G) be a z-group. Since G/F.(G) is
n-solvable, M|/F,(G) is abelian. Therefore, [M, M]<F.(G) and 1=[F.(G), M]
>[[M, M], M]. Thus M is nilpotent, especially, M is z-nilpotent. On the
other hand, let M/F,(G) be a z’-group. 'Then there exists a z’-Hall subgroup
S of M such that M=F,(G)S and F,(G)NS=1. From F(G)<Z(G), we have
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M=F,(G)xS. Therefore M is z-nilpotent by the nilpotency of F.(G). This
is a contradiction. Thus we can show that A.(G)Z2F.(G). From ALG)
2 F.(G), the number of G/F.(G)-conjugate classes of the family of non-normal
maximal subgroups of G/F,(G), whose indices in G/F,(G) belong to =, is strictly
less than that of G. Thus by induction Theorem 2 is proved.

3. Example

Theorem 3. For any n there exists a finite solvable group G such that the
nilpotent length of G is equal to n and the number of G-conjugate classes of the
family of non-normal maximal subgroups of G is equal to n—1.

Proof. The existence of the finite solvable groups satisfying the conditions
of Theorem 3 is easily proved from the construction of z-solvable groups sat-
isfying the conditions of Theorem 4.

Theorem 4. For any n and any =, there exists a m-solvable group G such
that the m-nilpotent length of G is equal to n and the number of G-conjugate classes
of the family of non-normal maximal subgroups of G, whose indices belong to r,
is equal to n—1.

Construction

G,: |G1|=P1,P1€7F

T,: G, possesses a faithful irreducible representation on GF(q,), ¢,€7’.
Therefore we can construct 7,=G,Q,, the semidirect product of G, and
O, which is the elementary abelian group of the order ¢i*, for some I,, and
then Q, is a unique minimal normal subgroup of 7.
For n>2, we construct G, and T, as below.

G,: T,_, possesses a faithful irreducible representation on GF(p,), p,E =, for
the sake of the uniqueness of the minimal normal subgroup of T,_,.
Therefore, we can construct G,=T,_,P,, the semidirect product of T,
and P, which is the elementary abelian group of the order pi'», for some
m,, and then P, is a unique minimal normal subgroup of G,,.

»: G, possesses a faithful irreducible representation on GF(q,), ¢,n’, for
the sake of the uniqueness of the minimal normal subgroup of G,.
Therefore, we can construct 7,=G,0Q,, the semidirect product of G, and
O, which is the elementary abelian group of the order g¢i», for some [,
and then Q, is a unique minimal normal subgroup of T,.

Proof. We shall show by induction on 7 that G, satisfies the conditions of
Theorem 4. It is trivial that the z-nilpotent length of G, is equal to #.

Since a maximal subgroup of G, containing P,, whose index belongs to =,
contains Q,_,P, and G,/Q,_,P, is isomorphic to G,_,, the number of G,-
conjugate classes of the family of non-normal maximal subgroups, which have
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indices belonging to 7 and contain P,, is equal to #—1 by induction hypothesis.
Now T,_, is maximal in G, and not normal in G,. We shall show that any
maximal subgroup M of G, which does not contain P, is conjugate to T,_,.
Now G,=MP, and MNP,=1. M is isomorphic to G,/P,. Let N be a mini-
mal normal subgroup of M. Then NP,=Q,_,P,. By Zassenhaus theorem
Né¢=Q,_,, for some gQ,_,P,. Therefore M4>N¢=Q,_,, then M¢=T,_,.
For if M®+T,_,, then Q,_ D<M* T, >=G. This is the contradiction.
Thus, the number of G,-conjugate classes of the family of non-normal maximal
subgroups of G,, whose indices belong to =, is equal to n—1.
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