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1. Introduction

In this note we will determine all doubly transitive permutation representa-

tions of the projective special linear groups PSL(n> q) over the finite field Fq.

Our main result (Theorem 1) asserts that these are all well known ones, namely

Theorem l If the group G=PSL(n, q) is reperesented as a faithful doubly

transitive permutation group on a set Ω, |Ω| =m, then (G, Ω) is isomorphic with

one of the members in the following list:

I) G acts on the set Ω of points of the (n—\)-dimensional projective space over

Fq\ Q?(n—\, q)y m=(qn—l)l(q—l), via the natural action.

II) G acts on the set Ω of hyperplanes of S{n—1, q) via the natural action,

III) G=PSL(2, 5) (^Λ), m=5.

IV) G=PSL(2y 7) (G*PSL(3, 2)), m=7.

V) G=PSL(2, 9) (»i ί β ), in=6.

VI) G=PSL(2, 11), in = 1 1 .

VII) G=PSL(3y 2) (^PSL(2, 7)), m=8.

VIII) G=PSL(4, 2) (»Λ)> w=8.

For n=2, Theorem 1 has been given by E. Galois, L. E. Dickson and

others (cf B. Huppert [4]). Furthermore, for n=3y or also for particular

pairs of (ny q) provided nf q are small the result above might have been proved

by making use of the classifications of the maximal subgroups due to H.H.

Mitchell [7], R.E. Hartley [3] and others.

Recently N. Ito [5] classified all premutation representations of the group

PSL(n, q) whose degrees are prime numbers. On the other hand, T. Tsuzuku

[10] has shown that, if a finite simple group of Lie type has a primitive permuta-

tion representation whose degree is relatively prime to the characteristic of

the basic field, then the stabilizer of a point must be a maximal parablilc sub-

group. (This was also obtained independently by J. Tits). Especially Tsuzuku
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has shown that, if PSL(ny q) is repersented as a doubly transitive perumtation
group whose degree is relatively prime to qy then this permutation group must
be either the case (I) or (II) in Theorem 1.

Nevertheless, it seems to the author that Theorem 1 has not yet been given
in such a general form as was stated above as Theorem 1.

The outline of the proof of Theorem 1 is as follows: to begin with, it is
shown that if n > 4 and qn~2Xmy then the case (I) or (II) must hold. The proof
depends heavily on a theorem of F.C. Piper [8 and 9] which characterizes the
group PSL(n, q) from a geometric view point.

Next we show that m— 1 is bounded by a fixed value depending only on q
and n, say (qn— l)^"1—1)/(?— 1). Then we determine irreducible characters
φ of G=PSL(n, q) which satisfy the conditions

1) φ(l)^(qn—l)(^n~1—1)/(<7—1)>

φ(l) being the degree of the character φ. There, we are deeply indebted to the
well-known construction of irreducible characters of the group GL(ny q) by
J.A. Green [2].

Suppose now that τz>4 and qn~2\m. Since G is doubly transitive, G must
have an irreducible character φ satisfying the above conditions (1) and (2).
However we can easily show that, there exists no such irreducible character
φ for τz>5, and so there exists no such doubly transitive permutation repre-
sentation of G. Finally we will make some further observations for m<4, and
complete the proof of Theorem 1.

Our method is rather unrefined, because of its heavy dependence on other
papers (especially on [2], [8] and [9]). Thus it is far from self-containedness.
Therefore it is desirable to give a simple proof of Theorem 1 without using the
character theory of GL(ny q).

We use the following notation: let G be a permutation group on a set Ω,
and let, Δ c Ω then GΔ (resp. GCΔ)) denotes the pointwise (resp.setwise) stabilizer
of Δ. Moreover let Δ be invariant by G, then GΔ denotes the constituent of G
on Δ. Moreover let us set G C Δ ) =(G ( Δ ) )

Δ .

2. A review of a theorem of Piper. Proof of Theorem 1 for the
case n > 4 and qn~2Xm

A projective space is defined as a system of points and lines (i.e., subsets
of points) connected by axioms of incidence in the usual way (see, for example,
O. Veblen and J.W. Young [11]).

We dentote by 9?{dy q) the ^-dimensional projective space defined over a
finite field Fq with q elements, and denote by P (resp. L) the set of points
(resp. lines) in ίP(rf, q).
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A system S of points P' and lines L' is said to be a subspace of Sid, q), if
P ' c P a n d any line Z'eZ/ is contained in some line / G I , and if P' and L'
themselves form a projective space. A subspace S is said to be complete, if
/ G I ' implies / G L . Note that every complete subspace is a subspace of 3>(d, q)
naturally induced from a linear subspace of the (rf-fl)-dimensional vector space
over Fq defining S(d, q), and vice versa.

A collineation of i?(ί/, q) is a permutation of the points which transforms
every three collinear points onto three collinear points, and this is equivalent to
say that a collineation is a permutation of the complete subspaces preserving
their dimension and incidence.

A collineation σ of £P(rf, q) is said to be an elation, if it fixes every point on
a fixed hyperplane (called an axis of σ) and every hyperplane through a fixed
point (called center of σ) lying on the hyperplane and fixes no other points or
hpyerplanes. Let π be a collineation group of £P(d, q), and let there exist two
elations in π which have same axis and distinct centers, then the line joining the
two centers is called an axis line for π.

In [8, 9] F.C. Piper proved the following theorem.

Theorem of Piper. Let π be a collineation group of j? (d, q) such that (i)
π fixes no subspace of 3?{d, q), (ii) some hyperplane is the axis of elations in π for
more than one centers. Then either π contains the little projective group PSL(d+1, q),
or (d, <7)=(2, 4) and π^A6 or S6.

We will prove the following lemma which is a slight extension of Theorem
of Piper.

Lemma 1. Let a proper subgroup π of PSL(d-\-l, q) (rf> 3), regarded as a
collineation group of £P(</, q), fix no complete subspace of 3?(d, q) (rf>3), and let
some axis has more than one center, then π fixes the subspace S consisting of all the
elation centers and the axis lines for π. Moreover, S is a desarguesian projective
space of dimension d defined over Fqr with (q/Y=q for some j ^ 2.

Proof. By examining the proof of the theorem of Piper in [8 and 9], we can
easily see that π fixes the subspace S consisting of all the elation centers and
the axis lines for π. Therefore we have only to prove the latter assertion that
S^9?{d, q') with (qf)j=q for some j > 2. Since π fixes no complete subspace,
the complete subspace generated by S in 9?(d, q) is 9?(dy q) itself. So we have
dim S^d, because there exist d-\-\ points of S which are in general position in
ί?(d, q) and these d-\-1 points are of course in general position in S. Thus S is
desarugesian, since dim *?></> 3. Next we will show that dim S <rf. Let Hw

be an axis for π. Then Sf]Hcl:> is clearly a subspace of S, and moreover
is a complete subspace, since every line in S meets the complete subspace
according to Lemma 3 in [8] and Remark 4 in [9]. (Note that the conclusion



440 E. BANNAI

of Lemma 3 in [8] and Remark 4 in [9] are both valid under the assumption of
our Lemma 1.) Thus we have dim S<dim ( S Π i / α ) ) + l . Now there exists
an axis i/ ( 2 ) for π such that HCΌ^HwΓ\Hc2:>j according to an extension of
Lemma 5 in [8]. (Note that the conclusion of Lemma 5 in [8] is valid for
zr under the assumption of this lemma. Especially this is valid even if q is
even.) Thus S ί l i ϊ ( 1 ) n i ϊ ( 2 ) is a complete subspace of SΓ\HC1\ and we have
d i m ( 5 n i / c l ) ) < d i m ( 5 n ^ c υ Π i / C 2 ) ) + l by Lemma 3 in [8] and Remark 4 in
[9], since every line in Sf]Hw meets the complete subspace S Π HCΌ Γl i/c2).
Thus, there exists inductively for *=3, 4, •••, d— 1 an axis i / c o for π such that
S Π Hw Π ••• Π Hα) is a complete subspace of S Π Hw Π ••• Π i/ ( t~ υ by Lemma 5
in [8], and we have

by Lemma 3 in [8] and Remark4 in [9]. Clearly d i m ( 5 n # c υ n ίΊ i ϊ c r f ~ υ )<l .
Hence, we have dim5 f<J, and so we have dim S=d. Let S^9?(d,q'). We
have obviously from the existence of an elation, q'\q (q'$q). Now we can
assume that qf is not a prime. Let 1<=L be an axis line. Then PSL(d+l, q)a:>l:>

is a subgroup of PGL(2, #), the group of projective collineations of the projective
line /, and so πcn is a subgroup of PGL(2, q). While πUCiS:> is a subgroup of
PGL(2, g') B y Result 1 in [8] together with Lemma 5 in [8] τr α n S ) is transitive
on S Π /, and the classification of subgroups of PGL(2, qf) shows that either
πans^PSL(2, qf) or #=even and τr α n S ) is the dihedral group of order 2 ( ^ + 1 )2 ).
Since \πans:>\ must divide |PGL(2, q)\, we have (q'y=qίor somej, owing to
the classification of subgroups of PGL(2, q). Hence we completed the proof of
Lemma 1.

Lemma 2. Let H be a subgroup of index m of G=PSL(n, q) with
and let qn~2Xm. Then Hfixes some complete subspace of 3?(n—l, q).

(This is a generalization of the result concerning PSL(n, q) in [11]. The
result of this lemma may have an independent interest.)

/I a2.~an\

Proof. Let x=\ . \^GL(n, q) with some #t φ0, then the collinea-

\ o Ί /
tion x of 3?(n— 1, q) is an elation with the axis Hn_1={x1J •••, xn); x^Fg, ^ = 0 } ,
and the center (0, a2, •••, an). And the Sylow's theorem shows that H contains
two elations with the same axis and distinct centers. (Note that a Sylow
/>-subgroup of some conjugate of H is contained in the group of upper triangular
unipotent matrices (i.e., a Sylow ̂ -subgroup of G) and the index of the Sylow

1) See the notation at the end of Section 1.
2) Cf. D.G. Higman and J.E. McLaughlin, Rank 3 subgroups of finite symplectic and

unitary groups, Lemma 1, page 179.
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/>-subgroup of the conjugate subgroup of H in the upper triangular unipotent
matrices is not divisible by qn~2, and that the Sylow ̂ -subgroup of the conjugate
subgroup of H (hence the conjugate subgroup of H) contains two such elations
with the axis Hn_Γ) Let us assume that H fixes no complete subspace of 3?(d, q).
Then, by Lemma 1, H fixes the subspace S, and we have \H\ = \HS\ \HS\.
But Hs is not divisible by p> because the set of the fixed points by an element of
order p of PSL(n> q) is contained in some hyperplane and S is not contained in
any hyperplane. While, since every element of PSL(n, q) which fixes the sub-
space S induces a collineation of 5, (because, since S is a subspace, any three
collinear points in S is transformed onto three collinear points) Hs is regared
as a subgroup of the full collineation group PΓL(n, q') of S. But clearly
|PΓL(rc, #')| is not divisible by q'.q'wx*-1). Therefore index m is divisible by
^ f l c n"υ / 2/(^ / ^/ ( w / 2 χ M~1 ))>^w~2, but this is a contradication and the lemma is proved.

Proof of Theorem 1 for the case « > 4 and qn~2Xm. Let rc>4 and qn~2Xm.
Then by Lemma 2, the stabilizer H of a point of Ω, must fix some complete
subspace of ίP(w—1, q). Since H is maximal in G, i/is the subgroup consisting
of all elements of G which fix an r-dimentional complete subspace of £P(n— 1, q),
and it is well known that the number of orbits of H on Ω (i.e., the rank of the
permutation group (G, fl)) is equal to min{2-f-r, n-\-ί—r}. Especially this is
equal to 2 if and only if r=Q or r=n—1, hence the assertion is proved.

3. A bound of the degree m

Lemma 3. Let a finite group G be doubly transitive on a set Ω, \Ω\=m,
then for each non-identity element of G, there exist at least m—\ elements of G which
are conjugate to the element.

(This in the Lemma 1 in Ed. Maillet [6], However we repeat the proof for
completeness.)

Proof. Let a non-identity element x of G be expressed as a cyclic permut-
ation on the set Ω as follows:

x = (a, by •••) •••, a, J E Ω ,

where the cycle containing a is of length greater than 1. Since G is doubly
transitive on Ω, GΛ, the stabilizer of a point flGί), is transitive on the set Ω— {a},
hence for every b^Ω—{a} (i=s, •••, m—Y) there exists an elementy {eG a such
that byi = bi. B u t ^ 1 ^ (Z=l, •••, tn—1) are all distinct from each other, and
the assertion is proved.

Lemma 4. Under the assumption of Theorem I, we have m—ί^(qn—ί)

Proof. The number of elements of PSL(n, q) which are conjugate to a
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fixed elation is <(qn—l)(qn~1—l)j(q—ί)y hence we have the sasertion by
Lemma 3.

4. Characters of the group GL(ny q). Proof of Theorem 1 for the
case re>5 and qn2\m

Let G=PSL(n, q) be doubly transitive on a set Ω, |Ω =my and let us assume
that w > 4 and qn~2\m. Then G has the irreducible character φλ such that
<p1(x)=I(x)—l (x^G) where I denotes the permutation character of (G, Ω).

Now we will determine which irreducible character φ of G satisfy the
following two conditions (1) and (2).

2) ?»

Clearly, from our assumption and Lemma 4, the irreducible character φ1

must satisfy the conditions (1) and (2).
As is obvious from the theorem of Clifford, for any irreducible character

φ of G=PSL(ny q)y there is associated some irreducible character X of GL(ny q)
such that

a

where a\(n, q—\).

(Note that PGL(ny q) is a factor group of GL(ny q) and that PSL(ny q) is
a normal subgroup of PGL(n, q) such that the factor group PGL(n, q)jPSL(n, q)
is a cyclic group of order (ny q—1)).

As the first step of the determination of irreducible characters of G satisfy-
ing the conditions (1) and (2), we will determine which irreducible character X
of GL(n, q) with τz>4 satisfy the following two conditions,
10 % ( 1 ) < ( ^ - 1 ) ( ^ - _ 1 ) ,
2) %(1) is prime to q.

Clearly, if X is an irreducible character of GL(ny q) associated to an irredu-
cible character of G satisfying the conditions (1) and (2), then X satisfies the
conditions (V) and (27).

Owing to J.A. Green [2], we have the following lemma.

Lemma 5. Let X be an ίrredubcile character of GL(n, q) whose degree

%(1) is prime to q, then there exists a partition of n, nx-\-n2-\ \-nr—ny positive

integers s£ and v{ such that sivi=ni ( i = l , •• ,f) and sΓsimplexes ka:>(i=ίy * , r ) ,
and we have

3) In this notation we understand that if the right hand side is a negative character then χ
is ( — 1) multiple of the negative character.
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Moreover,

where ψ / ( ? ) = ( ί

/ - l ) ( ί / - 1 - l ) ( ? - l ) .
(For the notation and the proof of the lemma, see [2], especially Lemma

2.7, Lemma 7.4 and Theorem 13 in [2].)
Using Lemma 5, we can get the following lemma. Since the proof is

straightforward and easy, we omit it.

L e m m a 6. If an irredίcuble character X of GL{ny q) with n^4 satisfies the

conditions (1') and (2f), then one of the following cases occurs.

(Here we may assume that n1^n2^-" <τzn, and that ί,Όy, if n{=nj and
i^j. Here we omit the parameter ka:> of/^°[ϋ, ]. The srsimplexes kβ:> must
be suitably chosen. Especially, if q=2, then'the cases 1°) 2°), 4°), 13°) and 16°)
do not occur, because there exists only one 1-simplex if q=2, see [2].)

2°) X=/1[2]o/I[»-
3°) %=/ 2 [ l]o/ 1 [ w -
4°) X=/1[l]o/I[l]o
5°) w = 4 , %=/ 4 [l],
6°) »=4, X=/2[2],
7°) »=4, %=/1[l]o
8°) «=4, %=/2[l]°/2[l], %(l)=(? 3 +? 2 +?+ l)( ί 2 +?+l)(?-1)7(9+1)
9°) »=4, %=/1[2]°/2[l],

10°) n=5, and g=2, X=
11°) B = 5 , χ=/1[l]o/ ί[2],
12°) n=5, X=/1[2]o/,[l],
13°) »=5, X=/1[l]o/1[2]o

14°) «=6, X=/ f[3],
15°) «=6, X=/,[2],
16°) »=6, %=/1[3]o

17°) »=8 and ? = 2 , %=/2[4], X ( l ) = ( ? τ - l ) ( ? ί - l ) ( ί 3 - l ) ( ? -

Using Lemma 6 together with the following easily verified Remark, we
have the next Lemma 7.

REMARK. Let f(x) be a polynomial with integral coefficients such that

/(0)=l (resp./(0)= — 1). If—/(<?)+1, where a\(q—l), is an integer and is

divisible by q, then cc=q—1 (resp. # = 1 ) .
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L e m m a 7. If φ is an irreducible character of G=PSL(n, q) satisfying the
conditions (1) and (2), then one of the following cases occurs.

i) n = 4, φ{l) = {q2jrϊ)(q2jr-q-\-\)(q— 1), the associated character X of φ is
I1[2]ol2[\]anda=\
ϋ) n=4, φ(l)=q3—l, the associated character X of φ is 72[2] and a=q—l.

iii) w = 4, 9>(l) = ( ? 2 + l ) ( ? 2 + ? H - l ) ( ί — 1), the associated character X of φ is
I2[l]ol2[l]anda=q-l.

Proof. Let X be an irreducible character of GL(n> q) associated to φ. Then,
X is one of the characters (1°)^(17°) in Lemma 6. Let us assume that for
X the case (1°) or (2°) holds. Then a=q—\ by the above Remark, and

qn~2X( — %(l)+l)> since τz>4 and q Φ 2. But this contradicts the assump-

tion that φ satisfies the condition (2). Let us assume that for X the case (3°) of

Lemma 6 holds. Then a=ί, and qn (~X(l)+l) if and and only if w=4,

hence the case (i) holds. By the similar argument we can easily show that only
the cases (ii) and (iii) hold, if one of the cases (4°)~(17°) of Lemma 6 holds for X.

Proof of Theorem 1 for the case n > 5 and qn~2\m. This case does not occur,
because by Lemma 7, there exists no irreducible character φ of G satisfying the
conditions (1) and (2).

5. Proof of Theorem 1 for the case n < 4

The case n=4. Let n=4, then we may assume that (f \ m. By Lemma 7,
we have either m=qz(q3-\-q— 1) (q being arbitrary) or m=q3 (q=2> 3 or 5). The
first case is impossible, since it is easily verified that m does not divide the order
of G.

(1) Let q=2 (m=8). Then this case does occur because P5L(4, 2)^A8

and doubly transitive on 8 points. Therefore the case (VIII) in Theorem 1
holds. Uniqueness of doubly transitive permutation representation of P*SL(4, 2)
on 8 points is clear.

(2) Let q=3 (m=27). Let H be the stabilizer of a point in Ω. Obviously,
G contains a subgroup K which is isomorphic to PSp(4> 3). But according to
L.E. Dickson [1], PSp(4, 3) is represented as a permutation group on 27 points,
and is not represented on less than 27 points if the action is nontrivial. More-
over we have that the minimal degree (=class) of PSp(4, 3) on the 27 points is
12. But the result of W.A. Manning (cf. [12], page 43) on permutation groups
of small minimal degrees shows that PSL(4, 3) is not represented as a doubly
transitive permutation group on 27 points. Hence, this case does not occur.

(3) Let q=5 (m=l25). Let H be the stabilizer of a point in Ω. Obvi-
ously, G contains a subgroup K which is isomorphic to PSp(4, 5). We have
\K: KΠH\ = \KH\I\H\ < \H:G\=125. But according to L.E. Dickson [1],
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PSp(4, 5) contains no proper subgroup whose index is not greater than 125

(this also due to C. Jordan). Hence H3K, but this is a contracdition, since

\2SX\G:K\.

The case n=3. Let n=3. If m is prime to q, then owing to the Theorem

of F.C. Piper [8 and 9], the case (I) or (II) of Theorem 1 hold. Let us assume

that m is not prime to q. If q=2, G=PSL(3, 2)^PSL(2, 7) and it has a doubly

transitive permutation representation on 8 points, and has no other doubly

transitive permutation representation of even degree. Uniqueness of doubly

transitive representations on 8 points is clear. Let qφ2, then the same methods

as previous section shows that the degree of φ1 must be either 7 (for #=4), 28

(for q=4), q3— 1 (q being arbitrary), 15 (for q=4). But according to H.H.

Mitchell [7] and R.W. Hartley [3], there exist no subgroups of index 8 (for q=4),

29 (for q=4 ), 16 (for q=4) and q3 (for arbitrarily q). This is a contradiction.

The assertion of Theorem 1 for w=2 is well known, and we omit the proof.

Thus, we completed the proof of Theorem 1.
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