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1. Introduction

In [2], Browder has shown that there are an infinite number of distinct
semi-free S'-actions on homotopy (p-2¢)-spheres with S? as untwisted fixed
point set if (a) p+2¢=1 mod 4, p>1 and ¢>2, or if (b) p+2¢=7, 15 or 31,
p:odd, p>1 and ¢>1. As open questions, he has posed the followings:

(I)  What is the knot type of the fixed point set?

(II) In the cases where his theorem does not construct an infinite number
of semi-free S'-actions, are there in reality only a finite number?

In the present paper, we shall give partial answers on these questions as
follows. We shall construct semi-free S*-actions which have knotted fixed point
sets (see Theorem 2.1). As a corollary, we shall have that there are also an
infinite number of distinct semi-free S*-actions on the standard (p--2g)-sphere
S#+27 with knotted S? as fixed point set when p=3 mod 4 and 4¢=<p+3
(see Theorem 2.2).

2. Definitions, notations and statement of results

An action (M, @, G) is called semi-free if it is free outside the fixed point set,
i.e., there are two types of orbits, fixed points and G. Let ©, be the group of
homotopy n-spheres and 6, be the order of the group ©,. Let ©,(07) be the
subgroup consisting of those homotopy spheres which bound parallelizable mani-
folds and >} be the generator of ©,(97) due to Kervaire and Milnor [7] (see also
Milnor [9] and Kervaire [5]). D” and S”°' denote, respectively, the unit disk
and the unit sphere in euclidean n-space. When N is a submanifold of M, we
shall denote by »(N C M) the normal bundle of N in M. When a homotopy
sphere >'? imbedded in >}#**? bounds a manifold W?*! in >+?? such that the
normal bundle »(W?+'C 31#+%) is trivial, we say that 3? bounds a =-submanifold
W#+in 23#+2¢, In [9], Milnor has constructed a manifold W§* (k=2) which
satisfies: (1) W3* is parallelizable, (2) the index I(W§*) equals 8, (3) the boundary
0W3g* is the homotopy sphere >33/~ and (4) Wg* is (2k—1)-connected. Let us
denote by W*(I) for /& Z the manifold obtained by the boundary connected sum
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Wikh.--h W&* of I-copies of the manifold W&*. It is clear that the index I(W*(l))
equals 8. Then we shall have the following:

Theorem 2.1. There exists a semi-free S'-action on a homotopy sphere
D+ qith  fixed point  set (ﬁla,,ﬂ,.)-z‘,g, which bounds a n-submanifold
W1’+‘(:l=—__[:9p+2,-) in D+ for pE‘;Z(mod 4), p=7 and q=2.

Theorem 2.2. There are an infinite number of distinct semi-free S*-actions

on the standard (p-+2q)-sphere S?+*? with knotted S? as fixed point set for p=3
(mod 4), 4¢=<p+3 and ¢=2.

3. Proofs of theorems

Proof of Theorem 2.1. As is well-known, the homotopy sphere > can be
imbedded in S?*2 such that 3% bounds a z-submanifold W2** of index 8 in S?*2
(see Kervaire [6, Theorem 1 of Appendix] and Milnor [9]). Hence, by the natural
inclusion S?*2C.S?** we can embed 3% in S?*3 such that 34 bounds a =-
submanifold W3*! of index 8 in S?*3. Let a be a point of S°. Then it is easy
to prove that there is a diffeomorphism

[ 25X 8P —— 87X .S?

such that f(31% X a) bounds the z-submanifold W3%*! in D?+' x S* when we regard
S?x 8% as 9(D?+' x S?).
Let

Ey: S'— s D, op

be the classical Hopf bundle. Let i: S*— CP¥ be the inclusion of the 2-skeleton
of CP¥,thenitisclear that /' y=§, Letp,: S?XS*— S*andp,”: > %X S§*—§*
be projections. Since CP¥ is the 2N-skeleton of the Eilenberg MacLane complex
K(Z, 2), ip,f is homotopic to ip,” for N>p+2. Hence there exists a bundle
map

F:(@p,) Ex — () 'En
i.e., we have a bundle map
J?ipz'!fl — P&

Thus we obtain the following commutative diagram
> xS? —i» N

L
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where p: S?X §®— §2x .S? (resp. p': D% X S*— D% X S?) denotes the projection
of the bundle p,'£, (resp. p,"'£,). Set S¥H=>"xD*U D?*'x S°. It is easy

to prove that >?** is a homotopy sphere. Let (Z‘"“,f@ S*) be the semi-free
S'-action defined by

P8 (%, 9) = (v, gy)  for x€3%, yeD'
and

(g, (%, 3)) = (x, gy) for xeD*", yeS§*.

Now we prove that the fixed point set 3% x {0} of the action (3%, @, S*)
bounds a z-submanifold W, in >?**. Let p,: D?**x S*—.S? be the projection
and p: D?*'x 8*— D?** X §* be the projection of the bundle #,'£,. Since the
manifold W, is (p—1)/2-connected, the restriction of the bundle $,'&, to W, is
trivial, ie., p'(W,)=W,xS'. It is obvious by definition that p' (3% X a)
=>4 XS Letbbeapointof z7'(a)C.S®. Itfollowsfrom Lemma 2 of Browder
[1] (see also Browder and Levine [3]) that the diffeomorphism

F1p' ' xa): X 8t — f(Xuxa)x S*

is pseudo isotopic to a diffeomorphism sending > X b into

fEE X a)Xe (C f(Xuxa)x 8 = p~(f(Xk X a)))
where ¢ is a point of S'. Hence f(3¥%xb) bounds the submanifold ¥, in
Pi(W)=W,x S'. Since the normal bundle of W, in D?*'x S?® is isomorphic to
v(W,c W,x SY)YPv(W,cD?**x S?)

where W,c W,x S*, W,C D?**x S* are the embeddings defined above, W, has a
normal frame in D?*'xS° Let C:>% XI—>%XxD* be the embedding
defined by C(x, t)= (x, tb) for x&>'%, t=1. By making use of the embedding
C and the fact 3% xIUW,=W,, we have that the fixed point set > X {0}
bounds a z-submanifold W, in >?**=>" x D* U D?*'x S°.

Thus we have proved the following step 1 of{ induction.

Step. 1. There exists a semi-free S'-action (37", @, S*) with fixed point
set > 2 which bounds a z-submanifold W3*! in >7*4,

Step 2. Suppose there exists a semi-free S'-action (337**7, @, S') with
fixed point set (qﬁ 0 p2i) > % which bounds a z-submanifold W#*( qI:[l 0p42) 10
i=2 i=2

>*2 for g =2.
Then by the equivariant connected sum

22, @, SB-- #2272, SY)
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of @,,,-copies of (33?*%7, @, S*) we have the following
Lemma 3.1. There exists a semi-free S'-action (S?**?, ), S*) with fixed

point set ( f[ 0 p12:)* 2% which bounds a r-submanifold W**( ﬁ 054 2) tn SPH?,
i=2 i=2

According to Browder [2] there exists an equivariant diffeomorphism
fi( fI 0p12i) 2 X 8?71 —> 82 8?77 such that (( f[ 0p12) DX D* U D?*?
i=2 i=2 f
X 8%, Jr, 8) is equivalent to (S?*27, 4, S*) where the action ¥ is defined by

Fo (3) = (wgy)  for xe(Il0,..) 32 ye D

and
V(g (%, 9) = (v, gy) for xeD*, yeS* .

Since ( f[ 0p15) 25X D* U D?**x S9! is diffeomorphic to S?**?, we have the
followin,ggiemma (c.f. Lemnia 4.1 of Kawakubo [4]).

Lemma 3.2. As an equivariant diffeomorphism

Fi (L 0p0) SUex S0 — SPx 807,
we can choose one which can be extended to a diffeomorphism
F:( 1=1 0p0) S X DP? —> SPx D
Now we construct an equivariant diffeomorphism
F1 (I 0pen) X S, gy, 8) — (X S, g9, 87)

where the actions ¢, and ¢, are the obvious ones.
Let us denote by

(I 8p1) EX S X DF U (T Op1) X DX S, P, )
the differentiable S*-action defined by

@1(&7’ (x) Vs z)) = (x) F42) gz) for xE( ‘_l;.[z 0p+2i)'zz;[ ’

yeS* ', zeD?,
and

g
Py(g, (%, 3, 2)) = (%, gy, gz)  for xE(iISIZ 0 pi2i)" 2%
yeD, zeS8'.
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Let us denote by

(pr S29-1x D? ,LdJ SPXDMXSI, P,y Sl)
the similar differentiable S'-action. Since

(I 642 X 875 D* U (1 1) Siex DX ', @y, )

ia
(resp. (S?x 8?7 x D? hj S?x D% S, §,, SY))
is clearly equivalent to
((IL812) T2 X S, 1, S7)
(resp. (S?X S**, @,, SY)),
we use them confusedly. Let F,: ( ﬁ 0 p2)* D5 X D**— S? and F,: ( f[ 0 pi2i)
2% X D* — D* be the diﬁerentiabl::naps defined by -
(Fiw, 9), Filx, ) = Flx,3)  for x&( 1] 0pea) Tk,
yeD*,
then we construct an equivariant diffeomorphism
i I} 0p12i) 2 X S?0H —— SPx S
by '
bl I=I 0 p10i) DX S X D? = fxid
and
f(x, Y, B) = (Fl(x, 27ly), 2Fy(x, 27'y), z)
for xe( .=flz 0pi2) D%, yeD?, 28",
Lemma 3.3. fis well-defined and an equivariant diffeomorphism.

Proof of Lemma 3.3. First we shall prove that f is well-defined. Let
Fii (I 0pra) S X 8707 > 8% and f,: (11 ) T X 82— 820 be differ-
i=2 i=2
entiable maps defined by

(1@ I il ) = fimy)  for xe (10,00 Th, yeso-.
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Since f is equivariant, f,(x, gy)=f,(», ¥) and f(x, gy)=gf(x, y) for x=( 11 0 p12i)*

>z, yeS*. Hence, for x&( fl 0pi0i) 2, yEOD*=S8%"", 2 S", we have
=2

that Fi(x, 2”'y)=f,(x, 5'y)=/(x, ) and F,(x, 2"'y)=3f(x, ”y)=fx, ), i.e.,
f is well-defined. If we take F carefully, f becomes a differentiable map.

Secondly, we shall prove'that f is equivariant. Obviously f [( f[ 0pi2)°
i=2
D% XS x D? is equivariant. For x&( f[ 0p.20) > %, yED™, 28,
i=2

f(¢1(gr (x, ¥, 2)))
= f(x 2y, £2)
= (Fi(x, (¢2)7'gy), 82F(x, (82)7'gY); £2)
= (Fy(x, 27'y), gaFy(x, 2~ Y)s £7)
= @& (Fi(x, 27"y), 2Fy(x, 27y), 2))
= @& f(x’ Ys %)),

..€., J 1s equivariant.
Thirdly, we shall prove that f is a diffeomorphism. For this purpose, we

show that f has a differentiable inverse map. Let F,: S?x D*?—( IqI 0p12i)* 2
and F,: S?x D*?— D* be the differentiable maps defined by B
(Fy(x%, ), Fy(x, y)) = F(x,y) for x&S? yesD™.
Define a differentiable map
f: $2%824 — (11 0.0 T x 8™

by
f[ S?X S* ' xD* = f'xid
and

f(xr Ys z) = (Fl(x’ z—ly)’ ze(x’ z_ly)’ z)
for x=8?, yeD, zS'.

It is easy to prove by the same way as in the case of f that fis well-defined and
a differentiable map., It is clear that

?°f[( £120p+zi) S xS 'xD*=1id.

For x&( IqI 0p12i) 2, yED™, 287,
=2
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.?\ off (%, ¥, 2)
= J(F (% 579), F i, 57'9), )
= (Fy(Fy(x, 27), 37 (zFo(x, 37'9)), 2Fy(Fy(%, 279), 37 (5F o(%, 279))), %)
= (F(F\(x, 57%y), Fox, 27y)), sF(Fi(x, 27y), Fix, 27y)), 2)
= (% 2(7), #)
= (%, 2),
i.e., fof=identity.
Similarly we can prove that f 0?=identity. Hence f is a diffeomorphism.
This completes the proof of Lemma 3.3.

Set 23702 =( f[ Opi2i) 2 X D??*? Y DP*1x §?9* Tt is easy to prove
i=2 ?
that >*%9*% is a homotopy sphere. Then we construct a semi-free S'-action
(2p+2q+2, ¢ Sl) by
q
Pl (0 ) = (v, gy)  for x&(1I Op12) 2 yED***

and
P(g, (%, ¥)) = (x, gy) for xeD?", ye S+,

Since f is equivariant with respect to ¢, the above action is well-defined.

Regarding S?**7 as ( f[ 0pr2i) 25X D* U DP*'x S?971 and DPH29TE g5
=2 7
(11 0p.0)- D x DX D* U (DPF X S 1x D* U DA DX S,
i=2 f id
we obtain an embedding e: S?+?? — 3#+24+2 by jdentifying

( 1:[2 0pi2i) 2 X D*  with  ( ,.1;12 05125 S X D* x {0}

and
D?1x 8?27 with D?*'x S0 'x {0} .

It is clear that the embedding e is well-defined and equivariant with respect to Jr
and @ by definition, i.e., (S?*%9, 4, S*) is an invariant submanifold of (3 ?+29+2
P, SY). Since S?** is (p+2g—1)-connected, v(e(S?**7)CDP*9*?) is trivial and

since the normal bundle of e(W?*( [I 05.2:)) In 2”“‘”2 is isomorphic to
v(WPH( H 0p+2,)cS”“")@v(e(S”““)CZ“““)|e(W"+‘( II 05-2)), the normal
bundle u(e( WeHy( H 0p12))C 2 212*%) s trivial. Thus we have proved that
there exists a semi- free S*-action (332+*9+2, , S*) with fixed point set ( H 0p )

> which bounds a z-submanifold W?#*( H 0p10:) In D PH2IH2 completmg the

induction.
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This makes the proof of Theorem 2.1 complete.

Proof of Theorem 2.2. It follows from Theorem 2.1 that there exists a
semi-free S*-action (S?**%, @, S") with fixed point set the natural sphere S?
which bounds a z-submanifold of non zero index constructed by the equivariant
connected sum operation with itself. Denote by [(S?*%, ¢, S*) the action in-
duced by the equivariant connected sum

(8274, @, SN H(S***, @, S7)

of I-copies of (S?**?, @, S*). Because of the difference of the indices of the z-
submanifolds bounded by the fixed point sets, I(S?**?, @, S*) is not equivalent
to m(S?**9, @, S*) tor I&=m (see Levine [8 Theorem 6.7]). This completes the
proof of Theorem 2.2.
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