
Minami, H.
Osaka J. Math.
8 (1971), 243-250

THE REPRESENTATION RINGS OF ORTHOGONAL
GROUPS

HARUO MINAMI

(Received December 1, 1970)

1. In this work the author presents the representation rings of orthogonal
groups explicitely. As O(2n-\-\) is a direct product of SO(2n-\-\) and Z2,
R(O(2n+l)) is isomorphic to R(SO(2n+l))®R(Z2), where R(G) is the complex
representation ring of a compact Lie group G. But the situation about O(2n)
is somewhat different. We prove the following

Theorem 1. R(O(2n))^Z[X1ρ2ni •••, Xnρ2n, V2n] with two generating relations

XMp2nV2n=Xnp2n and vln=l, where \kρ2n denotes the k-th exterior power of the

standard representation ρ2n: O(2ή)->U(2ή) for &—1, 2, •••, n and η2n the deter-

minant representation which is of l-dimension.

I would like to express my gratitude to Professor S. Araki for many helpful
and encouraging discussions. Also I am much indebted to the reviewer of the
original form of this paper for helpful suggestions.

2. Let us summarize here Segal's results in §1, 2 of [3] and Clifford's
theorem [1],

Let G be a compact Lie group in this section. Segal introduced subgroups
of G such that they are cyclic and of finite index in their normalizers, which
are called Cartan subgroups, and proved that the number of the conjugacy
classes of these subgroups is finite and that
(2. 1) The restriction R(G) -» Σ s i?(S) is ίnjective, where S runs through the
representatives of conjugacy classes of Cartan subgroups of G ([3], p. 121).

Let i : H -> G be the inclusion of a closed subgroup of G. When we
regard R(H) as an i?(G)-module by the restriction £*: R(G)-^R(H)y we can
define a homomorphism ί*: R(H)-+R(G) of i?(G)-modules, which is called
the induced representation homomorphism. In particular, we have

(2 2) **(1) = Σ*>o(- 1)"[H\GIH, C)]
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where Hk(GjH, C) is the k-th cohomology group with complex coefficients of the
manifold G/H and becomes a G-module by the induced actions of left actions of G
on GjHfor each k>0, and we denote their isomorphism classes by the brackets ([3],
p. 119).

Let N be a normal closed subgroup of G and /: N-+G the inclusion of N.
By ®(G) and ®(iV) we denote the families of the equivalence classes of the
irreducible representations of G and N repsectively. If GjN is isomorphic to
Z2, then we can state Clifford's theorem as follows.
(2. 3) For any element p of © (G), we have

( i ) Ifpφpy, then i*peS)(iV), i*ρ=Ct(i*p) and i*i*(p)=p+pη,
(ii) If p=pη, there exists an element σ of 2)(iV) satisfying that i*ρ=σ-\-Cz(σ)>
σφCε(cr) and i*σ=p, and conversely for any element σ o/2)(iV)
(iii) If σφC ε(σ), then ίVG®(G), i^σ=ηi^σ and i*i*(σ)=σ+Cs(σ)>
(iv) If σ=Cζ(cr)> there exists an element p of ®(G) satisfying that i*cr=p-\-pη,
pή=pη and i*ρ=σ> where η is the l-dimensional representation of G defined by the
composition of the canonical l-dimensional non-trivial representation of GjN and the
natural projection from G to G/N, £ is an element of G such that SN generates
G/N and Cz(σ) is the representation of N defined by acting S~1h8 on the representa-
tion space of σ in stead of each element h of N.

3. We put

"1

1
-ij

= O(2n).

By [3], Prop. (1.5) and Proof of Prop. (1.2), we see that O(ln) has only two
Cartan subgroups

TSO(2n) and TSO(2n-2) X Z2

up to conjugacy, where TSO(m) denotes the standard maximal tours of SO(m)
and Z2 the group generated by S2n.

Next, let /: SO(2n)^>O{2ri) be the inclusion map. Then we obtain

(3.1) H(l)=l+η2n

from (2.2) since we can regard i*(l) as a group algebra of Z2 over C.
By R(SO(2n))z2 we denote a subalgebra of R{SO(2n)) consisting of invariant

elements under the conjugacy C?2n by 82n. Using the notation of [2] we get
the following lemma from Proof of Theorem 10.3 of [2], §13.
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Lemma 1. R(SO(2ή))z2 ^Z[\xp2n, - , Xnp2n] .

Put

Rn = Z[Vp2 r t, - , λ*p2 Λ, ^ 2 r t]/(λΛp 2 r t(^ 2 M-l), ηln-l).

We prove first the case n=l of Theorem 1.

Lemma 2. #(0(2)) ~ R1.

Proof. The relation ηl= 1 is easily seen from the definition of η2y and by

means of the injection (2.1) of R(O(2)) into R(S0(2)) 0 R(Z2) we see the relation

ρ2η2=ρ2 and that R1 is a subalgebra of R(O(2)).

When we restrict any irreducible representation of O(2) to *SO(2), (2.3) shows

that we have only two types. Let p be an irreducible representation of O(2).

When p is in the case of (2.3), (i), z*p is an irreducible representation of SΌ(2),

then it is of 1-dimension since SO(2) is abelian and also invariant under the

conjugcay Cg2. Therefore we get i*p=l and so \-\-η2— p+py2 from (3.1). This

shows that p is either η2 or 1. When p is in the case of (2.3), (ii), we have an

irreducible representation σ of 50(2) satisfying i*σ=p. So if we show that

every induced representation of SO(2) is contained in Rlt then we will finish the

proof.

Let a be the canonical 1-dimensional non-trivial representation of 5O(2).

Then we have

i*i*(a±m) = am+a~m

by (2.3), (iii) and

ί*(p2) = a+a-1

and from these formulae and (2.1), we can deduce the identities

P 2m SΓlw»—1 f2w»\ „* /irv±C2»w-
2 — 2 J * - 0 l f t j ^ * ^ α

- 2 ^ + 1 = ^ J Γ = o ( 2 γ l ) ^ ( α ±C2m + i -2Ao) #

Consequently we see inductively that i*(a±m) is contained in Rλ for all
q. e. d.

Lemma 3. Rn is a subalgebra of R(O(2n)) for n>2.

Proof. Consider the inclusion map j : SO(2n—2) X O(2)->O(2Λ).

; * : R(O(2n))->R(SO(2n-2)χO(2)), for w>2, is injective by (2.1) since
O(2n) and SO(2n—2)xO(2) have the same Cartan subgroups TSO(2ή) and
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TS0(2n—2) X Z2. Now it follows from Lemma 1 and Lemma 2 that the image
of j * is contained in the subalgebra R described by

R = Z[λV2rt_2, .", λ - 1 ^ , , p2,

Put ^ Λ - λ A ρ 2 M , ^'Λ = ί*(λAp2«), \<h<ny ys =

<$<//— 1 and # = ρ2. Then we have

j*(Xk) = yk+yk_xz+yk_2η2, k = 2, 3, •••, n - 1
(3 2)

since \2z=η2 and <yw,=
:>'2»-2-w for w=0, 1, •••, 2n—2. We know the relation

^np2nV2n=^np2n from the last formula of (3.2). Since the relation ηln= 1 is easily
seen, what we have to show is that no other generating relation exists.

Any element ξ of Rn can be written as follows:

where/, g^ Z[xly •••, ΛJΛ_X] and h^Z[xly •••, xH_ly xn]. Let us denote the restric-
tions of/, g and h to SO(2n) by/', #' and A' respectively. If f = 0 , then / ' + # '
+ ^ ' = 0 and so / ' + ^ / = 0 , x{hh

f=0 by Lemma 1. We have t h e n / + £ = 0 and
xnh=0. Thus we conclude that

Next we prove by induction on k that if f{η2n—1)=0 for /
1 ^k^n— 1, then / = 0 . In case of A=l, when we put/(jc1)=2«

Σ . δofl. j ί ^ - i ) = o

follows from (3.2) and zη2=z. Since there exists no relation between yx and η2

in R, a =0 for all /^0 and therefore f—0. Suppose that the assertion is as
stated for k<l. In case of k—l, put /=Σ£U/r*z where f.eZ[ΛJX , •••, «x?/_J,
O^i^Ny then we get

by considering the image of f(y2n—1)=0 by 7* and comparing the coefficient of
yf, because j*(xm)=ym+ym^z+ym_2η2y 2^m^n-ly by (3.2). Hence / ^ = 0
follows from the inductive hypothesis. Similarly /, = 0 is proved successively
for ί=0, 1, •••, iV—1 and so/=0. This completes the induction, q.e.d.

By p(my m—1) we denote the inclusion map O(m— l)-»O(m).

Lemma 4. p(2ny 2n-l)* (Rn)=R(O(2n-ί)).
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Proof. Since O(2n— 1) is isomorphic to SO(2n— 1) X Z2 where Z2 is genera-

ted by

eθ(2n-l).

L - i J
we have

by [2], §13, Theorem 10.3 and moreover

p(2n, 2n-\)*{η2n) = v2n_x

(3. 3) P(2ny 2n-l)*(\i*p2n) = λ ' f c ^

p(2n, 2«-l)*(λnp2 Λ) - Xnρ2n-

where the last formula follows from \kρ2f -1 = Xkp2n-iVk2n-ι a n d

*>2n~1~fcp2n-ι, 0<k<2n-l. Clearly (3.3) shows Lemma 4.

4. Proof of Theorem 1

From (2.2) and O(2n)/O(2n-ί)^S2n-1 as O(2w)-manifold we have

P(2n, 2n-l)*(l) = [H\S2n~\ C)]-[H2»-\S2»-\ C)].

Then [H°(S2n-\ C)]=l obviously and [H2n~\S2n-\ C)]=η2n since the actions

by the elements of SO(2n) on H2n~\S2n~\ C) are trivial and 82n reverses the

orieintation of the manifold S2*1"1. Therefore we obtain

(4.1) p(27*,2/z-l)*(l)=l-*72,,.

It follows from (3,1) and (4.1) that

ί4 2) *V(£)
1 ' j p(2n, 2n-l)*P(2ny 2n-ψ(ξ) = (l-

for any ξ^R(O(2ή)). When we restrict i* and p(2«, 2n—1)* to #„, we see that

/*: Rn->R(SO{2n))z2 and p(2n, 2w—1)*: ΛM-^i?(O(2«-l)) are surjective by

Lemma 1 and Lemma 4. Therefore there exist elements ξh> k=ί, 2, of Rn

satisfying

= i*(f) and p(2n, 2n-l)*(f 2) - P(2ny 2 n - l ) *

and then we have

ί*»*(£) =
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and P(2n, 2«-l)*p(2«, 2n-ί)*(ξ)=(ί-η2n)ξ2.

Since (l-\-η2n)ξi a n d O —fy*)^ a r e elements of Rm it follows from (4.2) that

2ξ is contained in Rn. Here, using the following lemma, it is proved that ξ is

contained ΊnRn. This completes the proof of Theorem 1.

Lemma 5. The j*-image of Rn into R is a direct summand.

Proof. From (3.2) it follows that

yk = (_l)***+ JR(£), \<k<n-l

and y* ( ^ ) = ( _ i Γ

where R(k) is the linear combination of j*(y2n) and #Λ, 0<h<k— 1, with the

polynomials ofy*(^), l<s<&, as coefficients for k=l, 2, •••, n. This implies

(4. 3) R = Rn-l+R,

when we regard R as an Λ,Γmodule by /*. That is, any ξr ^R can be represen-

ted as

I;'= ΣU//*',
Then we prove that if ξ '=0, then/ 0 =0.

Put

R(TSO(2n)) = Z[aly •••, any aΐ\

and βk=cck+aj1 where aky 1 <k<ny are the canonical 1-dimensional non-trivial

representations of TSO(2n). Suppose ξ'=Q, then we have

(4.4) Ί5zlfίβι.= -fΌ

since the restriction of z to TSO(2ή) is y5w, where/^ 0 < / < « — 1, denote the

restriction of// to TSO(2n) respectively. Since/o is contained in the image of

the injection R(SO(2ή))->R(TSO(2ή)), it is invariant under the actions by the

elements of the Weyl group of SO{2n). Therefore we get

(4.5)

Here we put

Rϊ.ι + ι = ΣX=oβ'βkιτifor l<l<n-\, k>0

1 l+s :l
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for 1 <l<n—s—2 , k>0. Then we have the following equalities

, . , x -*M,Z + 1 J\ι z + 2 — \Pl + \ Pι+2)^l -.1 + 1,1+2

( 4 6 ) ff* 7?*
* M . Z + l l+s : l+t + 1, l+s+2 •***, l + l l+s : l + s + 1, l+s

— \Hl+s + 2 Hi + s + SjlX-l, l + l l + s + lιl + s + 2, l+s

From (4.5) and (4.6), we get

( ) / / . .
4> 7 ) (ii) / ί+Σ7^ + i/ ίΛίΓί .- . . *-iu. *+» = 0

for k=l, 2, ••• , n—2. We prove (4.7) by induction on k. In case of k=l, we

get

(A-AX/ί+Σ^/TO) = 0 and (A-AX/ί+ΣΉ/ίΛί:,1) = 0

by (4.5) and also since /{ is contained in a subalgebra Z[β19 ••• , βn] of

R(TSO{2ή)) for each z and Z ^ , ••• , βn] has no zero divisor, we can devide by

βx—β2 and β2—βz respectively. So

Γi+Σfclf'iRi7i = 0 and/ί+Σ^WΓs1 = 0 .

Suppose that the assertion is as (4.7) for k<j. In case of k=j, by subtracting

(ii) from (i) and dividing by

+i—βj+2 w e g e t

?-J + 2/<-Rl, 2.T.. . j : j + 1, ) + 2 = 0 .

Analogously, we can deduce

In particular, when we put k=n—2 in (4.7) and subtract (ii) from (i), we have

fn-l(Rlt 2 w-3:w-2, w-1 — Rl, 2 n-3:n-2,n) =(βn-l — βnjfn-1 = 0

Thus we obtain

/i-i = 0

and also successively

using (4.7). This implies that the restriction of f0 to TSO(2ή) vanishes.

Furthermore the character of Σϊ-ί//*' a t anY generator g of TSO(2n—2)χZ2

is zero because the character of z at £ is zero and hence the restriction of f0 to
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TSO(2n—2) xZ2 vanishes. Consequently we see

by (2.1). This shows in (4.3) that R is a direct sum of Rn l and R,-z+Rn-z2

+ ••• +Rn'
n~1 and therefore completes the proof of Lemma 5.

5. Finally we prove the following corollaries.

Corollary 1. R(O(m))^RO(O(m)) for any m>l.

Proof. This follows from the facts that the generators of R(O(m)) are all
complexifications of some real representations and the complexification c:
RO(O(m))->R(O(m)) is injective. q. e. d.

Corollary 2. We have

( i) p(m, m—1 )* is surjectίve for any m > 0

(ii) Ker P(2ny 2n-l)* = ( λ - p ^ - ί l + ^ Σ T ^ ί - i y λ - 1 - ^ )

Ker P(2n+1, In)* = ((^+1-l)Σ?=o(-l) fλn- t>2rt+1).

Proof. We have

P(2n+l,2n)*(fi2i+ί) = η2n,

p(2n+ίy 2/z)*(λ^p2rt+1) = λ ^ + λ * " 1 ? ^ , 1 <k<n .

From these and (3.3), we see (i) easily and also

n-! = Σί-o(-l)'p(2if'. 2 n - l ) * λ*-'p2li,

- Σ ί - o ( - l ) ' p ( 2 n + l , 2n)* λ*"'p2l i+1,

Using these formulae, we obtain (ii). q. e. d.
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