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1. In this work the author presents the representation rings of orthogonal
groups explicitely. As O(2n+1) is a direct product of SO(2rn+1) and Z,,
R(O(2n+1)) is isomorphic to R(SO(2n+1))QR(Z,), where R(G) is the complex
representation ring of a compact Lie group G. But the situation about O(2n)
is somewhat different. We prove the following

Theorem 1. R(O(2n))==Z[N\'Dos +**s N Pons T2n] With two generating relations
APonTlon=N"Psn and 73,=1, where \*p,, denotes the k-th exterior power of the
standard representation p,,: O(2n)—U(2n) for k=1, 2, --+, n and 7,, the deter-
minant representation which is of 1-dimension.

I would like to express my gratitude to Professor S. Araki for many helpful
and encouraging discussions. Also I am much indebted to the reviewer of the
original form of this paper for helpful suggestions.

2. Let us summarize here Segal’s results in §1, 2 of [3] and Clifford’s
theorem [1].

Let G be a compact Lie group in this section. Segal introduced subgroups
of G such that they are cyclic and of finite index in their normalizers, which
are called Cartan subgroups, and proved that the number of the conjugacy
classes of these subgroups is finite and that
(2.1) The restriction R(G) — > sR(S) is injective, where S runs through the
representatives of conjugacy classes of Cartan subgroups of G ([3], p. 121).

Let i : H — G be the inclusion of a closed subgroup of G. When we
regard R(H) as an R(G)-module by the restriction *: R(G)— R(H), we can
define a homomorphism iy: R(H)— R(G) of R(G)-modules, which is called
the induced representation homomorphism. In particular, we have

(2.2) ix(1) = X —1)*[HYG/H, C)]
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where H¥G|H, C) is the k-th cohomology group with complex coefficients of the
manifold G|H and becomes a G-module by the induced actions of left actions of G
on G[H for each k>0, and we denote their isomorphism classes by the brackets ([3],
p. 119).

Let N be a normal closed subgroup of G and i: N—G the inclusion of N.
By D(G) and D(N) we denote the families of the equivalence classes of the
irreducible representations of G and N repsectively. If G/N is isomorphic to
Z,, then we can state Clifford’s theorem as follows.
(2.3) For any element p of ® (G), we have
(1) If p*p7, then *peD(N), i*p=C\,(1*p) and ixi*(p)=p+p7,
(ii) If p=pmn, there exists an element o of D(N) satisfying that i*p=c+Cy(o),
o+ C,(0) and ixa=p, and conversely for any element o of D(N)
(i) If o+ C (o), then iyo ED(G), ixo=7mixo and i*iyx(c)=0c+C,(o),
(iv) If =Cy(c), there exists an element p of D(G) satisfying that ixo=p-+p7,
p=pn and i*p=ac, where 7 is the 1-dimensional representation of G defined by the
composition of the canonical 1-dimensional non-trivial representation of G|N and the
natural projection from G to G|N, € is an element of G such that EN generates
G|N and C,(o) is the representation of N defined by acting E*hE on the representa-
tion space of o in stead of each element h of N.

3. We put

1
Em=| Ty -‘eom).

By [3], Prop. (1.5) and Proof of Prop. (1.2), we see that O(2z) has only two
Cartan subgroups

T:SO(2n) and TSO(2n—2) X Z,

up to conjugacy, where T'SO(m) denotes the standard maximal tours of SO(m)
and Z, the group generated by &,,.
Next, let 7: SO(2n)—O(2n) be the inclusion map. Then we obtain

(3.1) ix(1) = 147,

from (2.2) since we can regard 74(1) as a group algebra of Z, over C.

By R(SO(2n))?: we denote a subalgebra of R(SO(2n)) consisting of invariant
elements under the conjugacy C,,, by &,,. Using the notation of [2] we get
the following lemma from Proof of Theorem 10.3 of [2], §13.
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Lemma 1. R(SO(2n))22 = Z[N'Pyns =** s N"P2n] -
Put
Ry = Z[N'Dos > 5 N'Pans Nan] (N Pen(2n—1), 73a—1) -
We prove first the case n=1 of Theorem 1.
Lemma 2. R(O(2)) =R,.

Proof. The relation 73=1 is easily seen from the definition of 7,, and by
means of the injection (2.1) of R(O(2)) into R(SO(2)) @ R(Z,) we see the relation
p.m,=p, and that R, is a subalgebra of R(O(2)).

When we restrict any irreducible representation of O(2) to SO(2), (2.3) shows
that we have only two types. Let p be an irreducible representation of O(2).
When p is in the case of (2.3), (i), ¢*p is an irreducible representation of SO(2),
then it is of 1-dimension since SO(2) is abelian and also invariant under the
conjugcay C,,. Therefore we get i*p=1and so 1+7,=p-+p75, from (3.1). This
shows that p is either 7, or 1. When p is in the case of (2.3), (ii), we have an
irreducible representation o of SO(2) satisfying ixo=p. So if we show that
every induced representation of SO(2) is contained in R,, then we will finish the

proof.
Let a be the canonical 1-dimensional non-trivial representation of SO(2).

Then we have
i (a*™) = a”+a™™
by (2.3), (iii) and
*(p,) = ata™
and from these formulae and (2.1), we can deduce the identities

PEm = 200 () (> )+ () (14-2,)

ﬁ§m+1 — 2n=0 (Zm;:-;l) l* (ai(zm.g.l—zk)) .
Consequently we see inductively that ix(a*™) is contained in R, for all m>0.
q.e.d.
Lemma 3. R, is a subalgebra of R(O(2n)) for n>2.

Proof. Consider the inclusion map j: SO(2n—2) X O(2)—O(2n).
J¥: R(O(2n))—R(SO(2n—2) X O(2)), for n>2, is injective by (2.1) since
O(2n) and SO(2rn—2)x O(2) have the same Cartan subgroups 7.SO(2n) and
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TSO(2n—2)x Z,. Now it follows from Lemma 1 and Lemma 2 that the image
of j* is contained in the subalgebra R described by

R = Z[Npsnss **s N7 Pon_ss P2y 7:]/(Po(m—1), 75—1) .
Put  x,=N\p,,, x",=1*(\"p,,), 1<h<n, y,=Apy_.,
1<s<n—1 and 2 = p,. Then we have
J¥(@20) = 7,
J*(®) =y, +=
7¥(xe) = YetYe-3+Ye-2, K =2,3, -, n—1
J¥(%) = Yut-YusZ+Yn-sle = Yn_o(Bet1)+ynz

(3.2)

since A2=7, and ¥,,=YV,u_s_,, for m=0, 1, --.) 2n—2. We know the relation
A"DonTizw=N"P,, from the last formula of (3.2). Since the relation 73,=1 is easily
seen, what we have to show is that no other generating relation exists.

Any element £ of R, can be written as follows :

£ = f4+gnmtx.h

where f, g€ Z[x,, --+, x,_,] and ke Z[x,, -+-, x,_,, x,]. Let us denote the restric-
tions of f, g and 4 to SO(2#n) by f’, g’ and A’ respectively. If £=0, then f'4g’
+x3h'=0 and so f'+g'=0, x;h’=0 by Lemma 1. We have then f+g=0 and
x,h=0. Thus we conclude that

1) = 0.

Next we prove by induction on % that if f(%,,—1)=0 for feZ[x,, .-+, x,],
1<k=n—1, then f=0. In case of k=1, when we put f(x,)=3;>.ax1,

Zigoaiyi(ﬁz_ 1) =0

follows from (3.2) and 27,==2. Since there exists no relation between y, and 7,
in R, a,=0 for all =0 and therefore f=0. Suppose that the assertion is as
stated for k<l. In case of k=I, put f=>N,f.xi where f,€Z[x,, +--, x,_,],
0=<{<N, then we get

fN(T?Zn_l) =0

by considering the image of f(#,,—1)=0 by j* and comparing the coefficient of
y¥, because j*(x,,) =Y+ Vm-12+Vm-_22 2=m=<n—1, by (3.2). Hence fy=0
follows from the inductive hypothesis. Similarly f,=0 is proved successively
for =0, 1, ---, N—1 and so f=0. This completes the induction. q.e.d.

By p(m, m—1) we denote the inclusion map O(m—1)—O(m).

Lemma 4. p(2n, 2n—1)* (R,)=R(0(2n—1)).
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Proof. Since O(2n—1) is isomorphic to SO(2n—1)X Z, where Z, is genera-

ted by
—1
[ } €0(2n—1).
—1

we have

R(O(2n—1))=Z[N'Po—1s *** » N* " 'Pau—1s Tana)[(Bin-1—1)
by [2], §13, Theorem 10.3 and moreover
P(20, 2n—1)*(7.n) = 7o
(3.3) p(2n, 2n—1)*(\*p,,) = NP1+ AE7'P,,_, 1<k<n—1
(27, 2n—1)*(A\"Pon) = N"Pan—st A" Py
= APy s(Ten-1H1)

where the last formula follows from A\*p,, _,=A\*p,, .7*%,,_., and X\*p,, ,=
Ak 1, 0<k<2n—1. Clearly (3.3) shows Lemma 4.

4. Proof of Theorem 1
From (2.2) and O(2n)/O(2n—1)~S**~* as O(2n)-manifold we have
p(2n, 2n—1)4(1) = [H'(S™", C)]—[H™ (™", O)].

Then [H(S**7?, C)]=1 obviously and [H**"'(S**"!, C)]=7,, since the actions
by the elements of SO(2n) on H**"*(S**"!, C) are trivial and &,, reverses the
orieintation of the manifold S?*~*. Therefore we obtain

4.1) p(2n, 2n—1)5(1) = 1—7,, .
It follows from (3,1) and (4.1) that
p(2n, 2n—1)xp(2n, 2n—1)*(§) = (1—7,,)E

for any £ R(O(2n)). When we restrict i* and p(2n, 2n—1)* to R,, we see that
i*: R,—R(SO(2n))?: and p(2n, 2n—1)*: R,—R(O(2n—1)) are surjective by
Lemma 1 and Lemma 4. Therefore there exist elements &,, k=1, 2, of R,
satisfying

4.2)

1*(&,) = 1%(§) and p(Zn, 2n—1)*(&,) = p(2n, 2n—1)* (£)
and then we have

i%(8) = (14 7)E,



248 H. MiNnamI

and p(2n, 2n—1)5p(2n, 2n—1)*(E)=(1—7,4)&, .

Since (1+7%,,)€, and (1—7,,)&, are elements of R,, it follows from (4.2) that
2£ is contained in R,. Here, using the following lemma, it is proved that £ is
contained inR,. This completes the proof of Theorem 1.

Lemma 5. The j*-image of R, into R is a direct summand.

Proof. From (3.2) it follows that
yie = (—1)* 2k R(k), 1 <k<n—1
and () = (—1)"'="+ Rn)

where R(k) is the linear combination of j*(7,,) and 2*, 0<h<k—1, with the
polynomials of j*(x;), 1 <s<k, as coeflicients for k=1, 2, .-+, n. 'This implies

(4. 3) R=R,11R, -zt F+R,z""

when we regard R as an R,,-module by j*. Thatis, any £’ €R can be represen-
ted as

g =3"fx', fieR,foralll.

Then we prove that if £'=0, then f,=0.
Put

R(TSO(2n)) = Z[aty, **, Ay a7, -+, o (@107 —1, -+, anaz—1)

and B,=a,+ a; "' where a,, ] <k<mn, are the canonical 1-dimensional non-trivial
representations of 7'SO(2n). Suppose £'=0, then we have

(4.4) vs1fiBn = —f4

since the restriction of z to T'SO(2n) is 3,, where f}, 0<I/<n—1, denote the
restriction of f, to T.SO(2n) respectively. Since f§ is contained in the image of
the injection R(SO(2n))—R(T'SO(2n)), it is invariant under the actions by the
elements of the Weyl group of SO(2n). Therefore we get

(4.3) pnifiBl = - = 3NCifi8 = — /s
Here we put

R} 1= 2= Bit for 1<I<n—1, k>0

E
and 1,041, ., L4s: 04841, L4542

_ k k=i ... =iy +eetis D Q1 oo Qisiz E—(lg+.tig, )
- Etlso tho i5,,=0 181 l+x+lﬁl+s+2
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for 1<lI<m—s—2, k>0. Then we have the following equalities

Bi—Bi1= (Bi—Bus1)RiT
R: 11— R} 1s2=(Brs1—Bra2)Ri ™11, 142

k k
Rz, T4+1, .., 04804841, z+s+2_‘Rz, T+1, a0, L48:24+8+1, 14843

4.6)

= (ﬁl+t+2_ﬁl+s+3)R;',_ll+1, e, LHS+1:7 4842, 14+843
From (4.5) and (4.6), we get
(1) fAA2mhn iR v i1 1 =0
*+-7) (1) A2k fIR S e b1k 4s2 =0

for k=1, 2, -+, n—2. We prove (4.7) by induction on k. In case of k=1, we
get

Bi—B)(fi+22122fIRZ) = 0 and (B,—Bo)(f1+2122 fiRIE) = 0

by (4.5) and also since f; is contained in a subalgebra Z[B,, -, B,] of
R(TSO(27)) for each ¢ and Z[B,, ---, B,] has no zero divisor, we can devide by

B.— B, and B,— B, respectively. So
i‘*“z?:lf/Rl 2 = =0 andf +2”: 1_3 =

Suppose that the assertion is as (4.7) for k<j. In case of k=j, by subtracting
(ii) from (i) and dividing by
Bj1— B+, We get

a2t SR i g2 =0,
Analogously, we can deduce

Fiat 2 eefiRIA? 55a1 508 =0,
In particular, when we put &=7—2 in (4.7) and subtract (ii) from (i), we have

faa(Ri,z,..n-8:n-2,n-1—Ri 2 .. .n-3:n-2.0) =(Ba—1—Ba) fr-1=10.
Thus we obtain
fr1=0

and also successively

fia= - =f4=0

using (4.7). This implies that the restriction of f, to T.SO(2n) vanishes.
Furthermore the character of >Y;Z1f,2’ at any generator g of T'SO(2n—2)x Z,
is zero because the character of z at g is zero and hence the restriction of f, to
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TSO(2n—2) x Z, vanishes. Consequently we see
fo=—21fir' =0
by (2.1). This shows in (4.3) that R is a direct sum of R,-1 and R,:-3+R, 2
+ -+ +R,-" ' and therefore completes the proof of Lemma 5.
5. Finally we prove the following corollaries.
Corollary 1. R(O(m))=RO(O(m)) for any m>1.

Proof. This follows from the facts that the generators of R(O(m)) are all
complexifications of some real representations and the complexification c:

RO(O(m))— R(O(m)) is injective. q. e. d.
Corollary 2. We have

(1) p(m, m—1)* is surjective for any m>0
(11) Ker p(2n, Zn_l)* = ()"npzn_(l—i_'ﬁzn)z?:l("—l)ix”_h‘.pzn)
Ker P(zn_,_l» 2")* = ((len—h_1)2?=0(—1)i7\'”_ip2n+1) .

Proof. We have

p(2n+1 ’ zn)*(—f]z’ +1) = Ton»
p(2n+1, 20)*(N*Pynt1) = NPt A*""Poy, 1<k<n.

From these and (3.3), we see (i) easily and also

ND = SV o(—1)p(2n. 2n—1)* A*=ip,, 1 <k<n—1,
Kkpz = Ef,o(—l)'P(2n+1, 2”)* xk—ip2n+l’ 1£k_<_<n .

Using these formulae, we obtain (ii). q. e. d.
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