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1. Introduction. Let (R, 1) and (S, ») be two measure spaces of totally
o-finite in the sense of P. Halmos [7]. Let us consider operation 7" which trans-
forms measurable functions on R to those on S. The operation T is called quasi-
linear if:

(i) T(f,+f.) is uniquely defined whenever Tf, and Tf, are defined and
| T(fi 1) = «(ITAI+1TF.])
where « is a constant independent of f, and f,;

(ii) 7(cf) is uniquely defined whenever Tf is defined
and

| T(cf)| = lel | T

for all scalars c.
We say that

F=1f
is an operation of type (a,8), ] Sa < b =< oo, if :

(i) Tfis defined for each feL{(R), that is for each f measurable with
respect to u such that

1o =({1£1%dn)"
is finite, the right side being interpreted as the essential upper bound (with res-
pectto u)of |f|ifa= oo ;
(ii) for every f € LYR), f = Tfis in L¥(S) and
(1.1) WA ss= M [fllap

where M is a constant independent of f.
The least admissible value of M in (1.1) is called the (4, b)-norm of operation 7.
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Next let us define the weak type (a, b) of operations.

Suppose first that 1 <b<<oco. Given any y>0 denote by E, = E, [f] the set of
points of the space S where

| Fx) >,

and write »(£,) for the »-measure of the set E,. An immediate consequence of
(1.1) is that

(12) WELT) = (i)

An operation T which satisfies (1.2) will be called to be of weak type (a, b). The
least admissible value of M in (1.2) is called the weak type (a, b)-norm of T.
We define weak type (a,o0) as identical with type (a,o0). Hence T is the weak
type (a,o0) if
ess. sup | f| < MI|flla,

If no confusion arises we omit the symbols x and » in the notation for norms.
In a number of problems we are led to consider integrals of type

[ (171w

where @ is not necessarily a power.

The interpolation of operation on the type of space with finite measure has
been considered firstly by J. Marcinkiewicz [12] and A. Zygmund [15]. In the
previous paper [10], the author treated an extension to the space with totally o-
finite measure. We intend further extension and refinement of those theorems to
the space which is closely related to the intermediate space. The intermediate
between a pair of Banach spaces was firstly introduced by A.J. Luxemburg [11].

Let us consider two continuous increasing functions @,(x) and @,(%). The

former is defined on the interval 0 < u < v and the latter is on 1 Su<<oo,and

v
7 is a constant larger than 1. Those satisfy the following properties:
(i) 2(0) =0 and @,(2u) = O(gp,(u))
Sl P (t) dt = 0(?’1(”))
“ tb+1 ub
Su‘Pl(t) dt = 0(‘7’1("))
0 ta+1 ua

for u — 0, Here and in what follows it is assumed that a<b;

(if) Po(2u) = O(po(u))
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(ot0am (ot

“ tb-i-l

(20a=fet?)

1 g u
foru — oo

(iii) @,(1) = @,(1) and so necessarily ¢,(#) ~ @,(«) on an appropriate in-
terval containing the unity, say—lf)j < u < v, v>1. It means that there exist

positive constants 4, B such that

A<?®p 51

= Susy, v>1
Po(1)
Let us join ¢, with @, and introduce a new function ¢, that is

ou), f0=<u=x1
@ u), if 1 <u<oo

P(u) = {
The typical example is

P(u) = {

unn(u), f0=<u=xsl
unlr(u), if 1 <u <oo

where a < ¢,, ¢, < b and +r,,\r, are slowly varying function (c.f. A. Zygmund [16]).

Theorem 1. Suppose that a quasi-linear operation T is of weak type (a, a)
and (b, b) with norms M, and M,, where 1 < a < b < oo. Then Tf is defined for
every f with p-integrable o(| f|), @(| Tf|) is v-integrable and we have

| otzr) av < k| o171)an

where K = 0(M, v M,), M, v M, meaning the maximum value of M,, M,.

Let us consider another pair of continuous increasing functions X,(#) and
X,(1) which satisfy the following properties:

) X(0) =0, X,(2u) = 0(X,(x))
(A0 )
|, 2= o(2)
foru — 0;

(i) X,(2) = 0(X(u))
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S“ Xz(t) dt = 0(x2(u))
“ tb+1 ub
for u — oo
(iii) X,(1) = X,(1) and so necessarily X,(z)~X,(x) on the interval }—é
Y

u < v for some v > 1.
Write

X,*(u) = u"S“’:T{ﬁ_)dt if u>1

and let us join X, with X, and X,* and introduce new functions X and X*, that is

Xu), f0=u=<sl

X(u), if 1 <u< oo

X(u), f0=u=<1
X(u)+X* w), if 1 <u<<oo

X(u) = {

X*(u) = {

The typical example is
X (u)=u(u), f0=<u=x<1
X(u) = u’, X,¥w) =u’logt u, if l<u<oo

where a << ¢ < b, Jr,(u) is a slowly varying function.

Theorem 2. Suppose that a quasi-linear operation T is of weak type (a, a)
and (b, b) with norms M, and M,, where 1 < a < b<<co. Then Tf is defined for
every u-integrable X*(| f|), X(|Tf) is v-integrable and we have

SS(ITfI)dv gKSRx*(|f|)d,L

where K = O(M, v M,).

We shall prove those theorems in § 2. In § 3, we shall add some remarks
which are useful on a certain case. In § 4, we shall prove the following theorem.

Theorem 3. Suppose that a quasi-linear opeation T is of weak type (1, 1)

and type (p, p) for some p>>1. Then we have

| Tf | ?dv + S | TF |dv

ITfIS1 ITfi>1

x| [ irrant § 1ot if s

If1s1 1£1>1
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where K is a constant independent of f.

In § 5, we shall state some applications to singular integral operators.
Here the present author thanks to the referee for his kind advices.

2. Proofs of Theorems 1 and 2. Firstly we intend to prove Theorem 2.
The X, () has the following properties

B <Xu)<Au® 0=uxl)

where we shall use letters A, B, etc. as absoute constants.
If we denote by f* equi-measurable, non-increasing rearrangement of | f |,
and by R, the sub-set of the space R where | f| < 1, then

SRI [fltdu = S:o (f*)Pdx< B‘IS: X,(f*)dx
= B[ %(1f D

where ¢ denotes the y-measure of set {x| | f(x)| >1}.
The X,(u) and X,*(#) have the following properties. The X,*(x) is continuous,
non-decreasing function for # > 1 and

X, 4(2) = 0(%,*(w))
for u — co. Because for #’' > u > 1, we have

w
>u"S X(t) 4~ 0
w 1ot

and since X,(2u) = 0(X,(u)) for # — oo, we have

= o ol - {0 (240

ta.H i

— axr+ | 4 2a

=4 Xz*(u)+A'”aS u Xri(fl) dt < A" X,*(u).

By similar arguments read
X,(v) = A X, *(u)
u® < A X,*u)

and
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X, (u) < Bub
respectively. We have
Sm xz*(t) dt = O(Xz*(u))
“ tb-t-l ub

for u — co. Because we have by the definition of X,*,

Smwdt = Smﬂt“ S‘xz(s)ds

tb+l “ tb+1 1 s“+l

_ Suxz(s)dsS” dt +s°°xz(s)ds S" dt

1 % g w o+t s oot

1 sz(s)dH 1 S”Xz(s)ds

- (b—a)ub~* Js 2 (b—a) Ju o+

< sz*fu) +A,X2(:t) é A,,Xz*fu).
u u u

If we denote by R, the sub-set of R where | f|>1, then
[ 1710w = [ (rorae< 4 [ xxroya
2 0 0
= 4 %*(1£1)du,

where ¢ denotes the y-measure of se {x| | f(x)| >1}. Under those preparations,
let fe L}’ (R) and write

f=ff
where f* = f whenever | f| < 1 and f' = 0 otherwise ; f" = f- f'. Since f'eLn
and so f'eLl, f’€ L} and so f’ € L% Hence Tf and Tf” are defined,

by hypothesis, and so Tf=T(f'+f"). Let n,(y) by the distribution function
| Tf|. Wehave

Ssx( | Tf|)dv = —S:X(y)dnu(y)

=[(maxm = 51 78,

where §; = X(\27*")—X(N\27) and 7; = v(Ey,) [| Tf|]), » = 3«*. The passage
from the second to the third integral is justified as in A. Zygmund [15, Vol. II,
p- 112 (4.8)).

For each fixed j = 0, we write f = f, 4 f, + f;, where f, equals f or 0 ac-
cording as 1 <|f| <2/ or elae; f, does f or 0 according as| f | > 2/ or else; and
so f, does f or 0 according as | f| < 1 orelse. Since f, € Li. N L}, f, € Li and
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Js € L} respectively. In view of the inequality

ITf| = «(ITh+F) I+ THI)
= (| THIH1TLI+ TR (e>1)

if | Tf;| < y, for all =1, 2, 3 and any positive real number y, then |Tf| < Ay
with A = 3«2 Therefore we have

T >0} © U (ol 161>
and if we take y = 27, we get the following formula,
L WA PR S AT P A AR
and then

Sn;8; < C{;1 z—fba,.SRZ |f1|bd#'+§)2-ja3stz VAN

N - 7b b
+5327,( 1,1}
= L+ 1+, say.

By ¢&; (=1, 2,-++), we denote the u-measure of the set where 2:7*<C | f| <2/, then
then if we interchange the order of summation and substitute above estimates
we are led to

I,=C 2%, S |AlMdp S €520, S 2%,
j=0

l=l

= csve 2, s 0 St (T Xi(t) g,

=1 j=i j=1 i+1 ub+l
< " x@)E < 0| x(1f g
i=1 2

I, = C327, $R|f2|“d,b <c z-f“a,. ST piag,
j=0 =0

i=j+1

— CEZ:“G 22 !“8 < 22‘“8 S i(_ﬁ)d
i=1 i=1
= ¢ S xx@ = | X (1f 1w
=20 2
L=cgions, [ 1hldu=Cf £t 52,
i=o =0

s cf, 11 a < of xigids
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Therefore we have
S17,8, O XA DdutC [ 21 Nut-C | 301£ 1)
= ¢ x+(1f 1.

Similarly, for each fixed j < 0, we write f = f, + f; + f;, where f, equals f
or 0 according as 2/ < | f| = 1 or else; f; does for 0 accordingas 0 < | f| < 27
or else; and so f; does f or 0 according as 1 < | f| or else. Since f, € L% N L3,
fs € L and f, € Li respectively, we have

T e WA P R WAL S WA

- N
We can estimate the summation >} %,8; just the same as >} #,8; and we have
jEe 7=0

2 78, = D (7 durD | %11 1)

i=

and hence we attain the desired inequality

[ x0Trnar < & [ %1 £1)d

The proof of Theorem 1 is a rather easy repetition of that of Theorem 2 and
need not be gone into.

3. Some remarks. (1). If the operation T is linear, then we can present
theorems 1 and 2 as more general forms which are useful on a certain case (c.f.
E.M. Stein - G. Weiss [13]).

We say that the operation T is of restricted weak type (a, b), if for every
simple function f on R, Tf is v-measurable function on S and satisfies

w(E, [|Tf1]) < (A;"llfl!a,“)b

where M is a constant independent of f. We can state

Corollary 1. In Theorem 1, if the operation T is linear and of restricted
weak type (a, a) and (b, b) where 1 < a < b < oo respectively. Then we have
for every simple function f on R,

[,otzrni <k o(1f1du

and moreover we can extend the operation T to the whole space L preserving the
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norm of operation.

Proof. We need only to prove the process of extension. Take any fin Lf.
Let us write

. k—1 k—1
(signf)—, if ——
= n n
(sign f)n, if |f|>n
k=1,2,,n;n=1,2,..-. Then f, tends to f monotone increasingly for a.e.
x and so (| f,|) does to @(| f]). By the Lebesgue convergence theorem we
have

k
i = |fl <;

tim{ (1 ful)du = {_o(1£1)dn

and
tim | (1 fu—ful ) = 0.

If we write £, = Tf,, then by hypothesis we have
[ o1 7ldy < K o1 fal)dp
and since T is of linear

[ o1 PPl < K (1 ful)dn

The least formula shows that {£,} is a sequence of fundamental in measure and
so there exist a limit function funiquely except a set of »-measure zero and sub-
sequence () of (%) such that £, converges to f for a.e. x. Applying the Fatou
lemma we have the desired result.

The same argument leads to

Corollary 2. In Theorem 2, if the operation T is linear and of restricted weak
type (a, a) and (b, b) where 1 < a < b < oo, respectively. Thenwe have for every
simple function f on R,

[ X1y < K[ 251 £ 1)

and moreover we can extend the operation T to the whole space Ly preserving the

norm of operation.

(2) Next we meet the @(x) which is continuous and not necessarily in-
creasing on the whole interval. If we suppose that  is ultimately increasing for

the value of u near zero and infinity; in the middle interval, say (l, 7) with
Y
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v>1, is of bounded variation, then we can find an increasing function @* such
that

p(u) = p*(u) < Ayp(u), forallu = 0.

For example a construction of @* is as follows:

o(u), if 0 <u<t
v
pr@=1 o)+ ldol, if Lsu<y
¥ Y ’ v

¢(§)+ [ 1dol+@m—e@), i vsu<e

The simple calculation shows that the inequality is satisfied

L)+ oo

min @(u
1/vs~sv<p( )

=

Corollary 3. In Theorem 1, if the @(u) is ultimately increasing for the value

of u near zero and infinity ; in the middle interval, is of bounded variation. The
same conclusion is also true.

The same argument leads to

Corollary 4. In Theorem 2, if the X(u) is ultimately increasing for the value

of u near zero and infinity ; in the middle interval, is of bounded variation. The same
conclusion is also true.

4. Proof of Theorem 3. Let us suppose that f € L?+L log* L. Write
f=g+h:
» iflfl=1
lo, if1f1>1

We have g € L? and b & L log* L respectively. Since the operation T is of type
(p, p) by hypothesis, we have

|Thi#d = —n()+p | m(yy* dy

IThl<1

M - M
< -1 p-1dy —£-71 h\d ,
<[ Phll e dy =PT {h1dy
and therefore
M,

IThl=1 1£1>1
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Next if we follow carefully on the lines of proof of Theorem 2, we have

Thdy = —("y dn,(3) = n )+ m()y

ITh>1

< m(1)+0(1) 23 7,8,

gO(Ml)S ]hldp+0<pM:1>1§|>lIhldu—I—O(Ml)S |h|log* | k| dp

1A >1 [hl>1
Therefore
(2) [ 17mia <o Ma)[ 1710+o0g" £ 1)
ITh>1 P P£1>1
We have immediately
(3) [ 17g100 < pz( 1g1edp = mz{ 17124
S R
inst
and also

| Tgldy = n(1)+( m()ay

iTg|>1
= (Mpllgllpu\?
< Mi.’llgllp,u+gl (~%”—) dy
and therefore
(4) [ 17elar <o M) 171%a
|81 >1 =1

We need the following lemma
Lemma. From an inequality
A=<k(B+C),A,B,C=20,k=1
we have (i) if 0 S A< 1
< {K(B—}—C), f0=Cxs1
~ (k(B4C?), if C>1
(i) fA4>1

<

{(ZM)"(B%LCP), fo0=Cxs1

(2e)?(B*4-C), if C > 1.

Proof. (i) Suppose that 0 < 4 <1. If 0 < C < 1, it s trivial; if C<1
A1 <C’” < k(B+CY?).

(ii) Suppose that 4 >1. From an inequality 4 < «(B-+C), one of the relation
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B> A and C > A always holds. If B> 74,
2k 2k 2k
A < 2«¢B < (2¢B)?
- {(Zx)P(B"—Q—C/’), fosCcsl
— (2k)2(B*+C), if C > 1.
A
IfC> 2

A < 2«C
J(ZxC)P < 2r)2(B*4-C?), f0=C<1
(2¢)(B?+C), if C > 1.

<

Let us estimate Tf on the set S, = {x||Tf|=<1}. Applying Lemma (i)
such as 4 = |Tf|, B = |Tg| and C= | Th| and the Minkowsky inequality, we
have

(SS le|1’dy>1/P§ M(S (|Tgl+lTh§‘/P)pd,,>w
' Sy n{*1ThI>1)
+"(S (ng|+|Th|)»d,,>x/p

S, n{FIThIS1)

< 2/C<S51 | To | vdu)”” 1o I| Z:h | dy)”’+ W 1w "’dv)llp

ITh> IThl<1

Substituting (1) (2) and (3),

(5) [ 1rra <oy | 17174
+°(]”Wpif“‘1%>§,] F1(1-+log" f1)d

Let us estimate 7f on the set S, = {x| |Tf| > 1}, we have

[1mriar s @y | azeirsimnder@or | (7214 21TRI2)

Sy N{FIUThI>1} Sy n{*IThsIy

§2(2x)"g |Tg|"dv+(2x)"g '|Th|dv+(2/c)”g | Th|*dv

IThI>1 IThI <1

Substituting (1) (2) and (3)

P MZ+M1 +
(6) | ITfldvéo(Mp)ISﬂé‘ [ f1odur o MR 1 1og* £ 1)

IT fI>1 LfI>1
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The formulas (5) and (6) complete the proof of Theorem 3.

5. Applications. Let x=(x,, x,, -**, %,), y=(9; V2 ***» ¥a), by points of
the real s#-dimensional space E,. A.P. Calderon-A. Zygmund [2] studied the

singular integral operator:
7@ = (K )& = PV fis—) K (5) dy

—lim (x) = lim | _ fla— »)K(») ay,

e>0 Ji3>¢

where kernel K (x) has the form

K(x)= |x|"Q), & = le

Let us denote by = the unit sphere on which the ((x’) is denfied. Let us denote
by »(8) the modulus of continuity of Q(«'),

1) — Q)| =¥ —5').
Let us suppose that
(a) Szﬂ(x') dx' =0
(b) Q(x)eL!(Z) and its modulus of continuity w(8) satisfy the Dini
condition,

599 ds < oo,

]

Then they proved that the operations Tf= f and T,f= f, are both linear and of
type (p, p) for every p>1 and of weak type (1, 1) respectively. Applying our
theorem 3, we have for example

F1ras+ | 17140
IF1=1 1Fi>1

<k 11 | 1riaviogtifyas)

17151 At

where K is a constant depending on p and not on f.

A.P. Calderon-M. Weiss-A. Zygmund [4] proved that the condition (b) of
Q(x) can be replaced by the (rotational) integrated modulus of continuity w,(8)
instead of w(8). That is, the w,(8) is defined as follows

,(8) = sup Szlﬂ(px’)—ﬂ(x’ﬂdx’

where p is any rotation of = and|p| its magnitude.
Furthermore the maximal operation Tf=f
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Tf=7=suplfl

satisfy the same assumptions as the operations Tf=f and T, f=f, and so
necessarily the same conclusions. See, L. Hormander [8], A.P. Calderon-A.
Zygmund [3] and A.P. Calderon-M. Weiss-A. Zygmund [4].

As a special case,the one-dimensional Hilbert transform

Hf(x) = P.V. ,1; [~ 3{% dy

and the Riesz transform

Rf@W =PV 5|, S22 dy (=12 m)
where
C. — B2
" n+1
P(T)

and also the unified operator of Hilbert transform and ergodic operator belong
to our category. See J. Horvath [9], M. Cotlar [5] and E.M. Stein[14].
On the other hand let us consider

fm(x)=P.V.S &= gy 0 <a<n;

| |nm

then the following is known according to G.H. Hardy- J.E. Littlewood [6] and
A. Zygmund [15] (c.f. also, E.M. Stein [14]):

(1) it is of type (7, )
1 falls = M, |If1l,

where 1 <r<s<oo,l—— l =
s

r

)

@
n

(i1) it is of weak type <1, 1 ) .
n—a

Thus the potential operator is beyond the scope of Theorem 3. We shall give a
conjecture.

Let us write a;= l, Bi= bl (=1, 2). Let(a,, B,) and (a,, B,) be any two

points of the triangle

A: 0<B=<a=l
such that 8,%8,. If a,> a,, let us suppose that a quasilinear operation f= Tf
is of weak type <0(l , %) and type (al , ’%) , then we have

1 1 2 2
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[ Tf dvt {1 Tf 1%

ITfIS1 ITfI>1

<k {| 1717w+ | 17150+ 0g" 1 7))} du)

111 1£1>1

where k, = b , K is a constant independent of f.

1

We shall have an analogous result in the case o, <a,.
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