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NUMBER OF FIXED POINTS OF INVOLUTIONS IS FOUR
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1. Introduction

Doubly transitive groups in which any involution fixes at most three points
have been classified by H. Bender [3], C. Hering [14] and J. King [16], [17]. In
this paper we shall prove the following results.

Theorem. Let G be a doubly transitive group on Ω = {1, 2, , n}. Assume
that the maximal number of fixed points of involutions in G is four. Then, if n^O
(mod 8), one of the following holds :
(a) n = 6 and G is S6,
(b) n = 10 and G is S6 or PΓL(2, 9),
(c) n = 12 and G is Mn or M12(the Mathίeu group of degree 11 or 12),
(d) n = 28 and G is PΓL(2y 8),
(e) n = 28 and G is PSU(3, 32) or PΣt/(3, 32).

Corollary. Let G be a doubly transitive group on Ω = {1,2, , n}. If every
involution in G fixes four points in Ω, then one of the following holds:
{a) n = 12 and G is Mlu

(b) n = 28 and G is PΓL(2, 8),
(c) n = 28 and G is PSU(3, 32) or PΣC/(3, 32).

Acknowledgement. The ideas of the proofs of several parts of this paper are
due to Professor Hirosi Nagao. The author wishes to thank him for his assistance.

2. Definitions and notations

A permutation group G on Ω is called semi-regular if every non-identity ele-
ment of G has no fixed point, and G is called regular if G is transitive and semi-
regular. If a set X of permutations on Ω fixes a subset Δ of Ω the restriction of
X on Δ will be denoted by XA. Further we use the following notations which
are standard.

Sn = symmetric group of degree n>
An = alternating group of degree n,
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GF(q) = finite field with q elements,
PΓL(m, q) = m-dimensional projective semi-linear group over GF(q),
PSL(m, q) = ^-dimensional projective special linear group over GF(q),
PSU(3, q2) = 3-dimensional projective special unitary group over GF(q2),
PΣC/(3, q2) = automorphism group of PSU(39 q%
Aut G = automorphism group of a group G,
Gij...r = pointwise stabilizer in G of points iyj •••, r,
G[ij...r) = global stsbilizer in G of the set of points i,jf •••, r,
/(X) = totality of points fixed by a set X of permutations,
«,-(#) = number of /-cycles of a permutation x,
o(x) = order of a permutation #,
NG(X) = normalizer of X in G,
CG(X) = centralizer of X in G,
<-Y, Y> = subgroup generated by X and Y,
[X, Y] = commutator of X and Y,
IXI = cardinality of a set X

3. Proof of Corollary

It suffices by our theorem to prove that w^0(mod 8) in the case G satisfies
the assumption of Corollary. Assume by way of contradiction that n = 0 (mod 8).
Then the length of any orbit of an S2-subgroup P of G on Ω is divisible by eight
(see [22], Theorem 3.4'). Then since a central involution of P fixes a point on
Ω, it fixes more than four points on Ω, contrary to the assumption.

4. Proof of Theorem

We begin with some lemmas on permutation groups.

Lemma 1 (J. Alperin [1]). Let the group G be transitive on Ω = {1, 2, , n}
and let H be a subgroup of the stabilizer Gx. If the conjugates Hg(g^G) which are
contained in Gλ make up k different conjugacy classes of subgroups of G, then the nor-
malizer NG(H) of H has exactly k orbits on I(H).

We remark that lemma 1 also holds valid if a subgroup H of Gλ in the above
is replaced by a subset K of Gx. In fact, Alperin's proof in [1] does not make use
of that H is a subgroup.

Lemma 2 (H. Nagao). Let X be a semi-regular permutation group on Ω
= {1, 2, •••, w}. If a permutation group A on Ω normalizes X and fixes at least one
point, then the order of CX(A) is not greater than the number of fixed points of A.
If X is regular, then the order of CX(A) equals the number of fixed points of A.

Proof. Suppose A fixes the point 1. Let x be an element of X and a an ele-
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ment of A. If x takes 1 to i and a takes i to/, then a~ιaxtakes 1 to /. Since a'1

xa^X and Xis semi-regular, x = α~xxα if and only if/ = ί, i.e. i e /(α). Thus
we have | C^(^) | < | I(A) |. If JΓ is regular, then for any fixed point i of A there
is a unique element of X which takes 1 to L Hence we have | CX(A) | = | I(A) \.

Lamma 3 (D. Livingstone and A. Wagner [18]). Let G be k-fold transitive
on Ω = {1, 2, , n}, and let H be the stabilizer of k points in Ω. Assume that an Sp-
subgroup P of H fixes precisely the given k points. Then for a point i in a minimum P-
orbit on Ω-/(P), iVG(P,.)/CP.0 is k-fold transitive.

The proof of the above lemma is seen in p. 400-401 of [18].

L e m m a 4. Let Y be a cyclic 2-group which acts regularly on Ω
= {1, 2, •••, n}, and assume that Y normalizes a four group U which is semi-regular
on a. Then \Y\ = | Ω | = 4.

Proof. Assume that n = 2m > 4, and let Δ, (1 < / < t) denote the orbits of
of Uon Ω. Then since Ypermutes A19 Δ2, , Δ, transitively we have | Y : Y^} I
= t>2, from which it follows that Y{Δl} centralizes U since | Y:CY(U)\ <2.
Then since Y^}^ is cyclic and Z7Δi is self-centralizing, we have | F lΔl} | = | 5/{Δ1}

ΔI I

^ 2, which yields that| Y\ = t\ F l Δ l } | | <2t = —, a contradiction.

Now to prove our theorem the following two cases will be treated separately.
Case I. n = 2 (mod 4).
Case II. n = 0 (mod 4).

Case I. Since an involution in G fixing four points is an odd permutation in
this case, N = G Π An is a normal transitive subgroup of index two. Furthermore
since | G1 : Nx \ = 2 is prime to n-ί, Nr is transitive on Ω—{1} and hence N is
doubly transitive on Ω. Then by a result of C Hering [14], either of the follow-
ing holds:
(i) n = q+ί and iV contains PSL (2. q\

(ii) n = 6 and JV is ^46.
In case(ii), w=6 and G is *S6. In case(i) an involution in G - N fixing four points
acts as a field automorphism. Hence we have 4 = 1 + y/~q~ and hence q = 9. Then
« = 10 and G is S6 or PΓL(2, 9).

Case II. We have # = 4(mod 8) in this case by our assumption that n ΐ
0(mod 8). In particular G contains no regular normal subgroup and hence by a
theorem of Burnside ([7], P202) we have

(*) a (unique) minimal normal subgroup H of G is a primitive non abelian
simple group.

In what follows we denote by H a (unique) minimal normal subgroup of G
throughout.
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Lemma 5. We may assume G contains no normal subgroup of index two.

Proof. Let G have a normal subgroup N of index two. Then, as seen in
Case I, N is also doubly transitive on Ω. If N contains an involution fixing four
points we take N in place of G. If N contains no involution fixing four points, the
results of H. Bender [3] and C. Hering [14] yield, similarly to Case I, that n = 6
or 10, which is not the case.

Lemma 6. An S2-subgroup of H is not dihedral.

Proof. This follows from a result of Gorenstein and Walter [11] and a result
of Luneburg ([19], Satz 1).

Lemma 7. If H has a quasi-dihedral S2-subgroup and H contains an involu-
tion a such that CH{a) is solvable then n = 12 and G is Mn.

Proof. By a result of Alperin, Brauer and Gorenstein [2] H is PSL(3, 3) or
Mn. If H is PSL(3, 3), since | Aut PSL(3y 3): PSL(3, 3) \ = 2, we have G is PSL
(3, 3) or Aut PSL(3, 3). But it is easily seen that PSL(3, 3) and Aut PSL(3y 3)
have no doubly transitive representation satisfying our assumption. If H is Mn>
since Aut M^^M^ we have G is Mu on 12 points.

Lemma 8. If H has an elementary abelian S2-subgroup and H contains an
involution a such that CH{a) is solvable then n = 28 and G is PTL(2, 8).

Proof. By a result of Walter [21] H is PSL(2, q) for a suitable q. Then the
result of Luneburg [19] applies.

Lemma 9. If H has a wreathed S2-subgroup of order 32 and H contains an
involution a such that CH(a) is solvable then n = 28 and G is PSU(3, 32) or PΣC/
(3, 32).

Proof. By a result of P. Fong [8] H is PSU(3, 32), and hence G is PSU
(3, 3P) or PΣ£/(3, 32). It is easy to see that PSU(3, 32) and PΣt/(3, 32) have no
other doubly transitive representation than the usual one of degree 28.

Now we consider the following two cases.
Subcase 1. an 52-subgrouρ of G12 fixes two points.
Subcase 2. an 52-subgroup of G12 fixes four points.

Subcase 1. Let P be an ^-subgroup of G. Then since n = 4 (mod 8) P
has an orbit of length four, say Δ = {1,2,3,4} (see [22], Theorem 3.4') and then
R = P1 is an S2-subgrou of Gx. We may assume I(R) = {1, 2}. Then R contains
an element b of the form b = (1)(2)(34) . We assume first that any element in
R of the form (1)(2)(34) - is an involution. Set S = R34. Then NG(S)ICS' is
doubly transitive by Lemma 3 and hence NG(S)ns:> = S4. Since any element in
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the coset b S is an involution b inverts every element of S and hence S is abelian.
On the other hand, since b fixes exactly two points on Ω-Δ, and since S is semi-
regular on Ω-Δ Lemma 2 yields | Cs(b) | = 2. Thus S must have a unique in-
volution and hence S is cyclic. This implies that CG(S)ICS:>^A4 and any element
t of NG(S) with *ΔGΞ AA lies in CG(S). Now since | P Δ | = 8, P contains an ele-
ment^ of the form (1324) . First assume o(jy)^>8. Then by Lemma 5 y has an
odd number of cycles of the same length on Ω-Δ. Then since the length of any
P-orbit on Ω-Δ is of 2-ρower P fixes the set of the points of a cycle of y, say (5, 6,
•••,/) on Ω-Δ and in particular so does S. Then since y* e S we have o(y) =
IS1, 21 S\ or 4151. If o( j;) = | *S | either j> or the generator z of S is an odd
permutation, contrary to Lemma 5. Also if o(y) = 21S \, since [y2, S] = 1, sett-
ing Γ = {5, 6,•••/,} we have (y2)Γ = (^W)Γ for some odd integer m. Then y2z~m

= (12)(34) fixes every point of Γ, contrary to the assumption of our theorem.
Thus we have o{y) = 4151 and hence <j> is a cyclic subgroup of P of index two.
Then the structure of P is known (see [10], Theorem 5.4.4) and since P contains
a non normal dihedral subgroup R, P is dihedral or quasi-dihedral. We may
assume by Lemma 6 that P is quasi-dihedral. Let a be an involution of S. Then
since CG(a)ICC°<ίS4 and since CG(a)ICa^ hsa a cyclic ^-subgroup it follows that
CG(a) is solvable. Then Lemma 7 yields that G is Mu on 12 points.

Now let o(y) = 4. Then since n = 4(mod 8) j> has four fixed points or two
2-cycles on Ω-Δ by Lemma 5 and hence y2 fixes four points on Ω-Δ. On the
other hand y2^A4 implies [y2, S] = 1 and hence | S\ < 4 by Lemma 2. Thus we
have IP ΓΊ # I < IP I < 32, and by a result of P. Fong P Π H is dihedral, quasi-
dihedral, elementary or wreathed of order 32. Then Lemma 6, Lemma 7, Lemma
8 or Lemma 9 applies, respectively.

Now we assume that R contains an element x of the form (1)(2)(34) which
is not an involution. Then since n = 4(mod 8), x has an odd number of cycles of
the same length on Ω-Δ by Lemma 5. In particular o(x) > 8, and P fixes the set
of the points of a cycle of x, say(56 &)onΩ-Δ. Then since x2 e S, Γ = {5, 6, &}
consists of one or two orbits of S. If Γ consists of two orbits of S then we have
S = ζx2y is cyclic. In this case the similar argument to the above applies. Thus
we may assume Γ consists of one orbit of S. Then o(x) = | S\ — | Γ | > 8 and
since Γ is a P-orbit an exponent of P is equal to o(x). In particular P contains a
normal four-group [/(see [10], P215. Exercise 9). Then since o(x)> 8, Lemma
4 implies that an involution c in U fixes a point on Γ, and hence we have | Cs(c) \
< 4 by Lemma 2. Then since | S : Cs(c) \ < \ S : CS(U) \ < 2 it follows that | S \
< 8 and hence \S \ = 8 . If S ^ Z4XZ2, P contains a normal four group which
is semi-regular on Γ, contrary to Lemma 4. Also if S is cyclic S contains an
odd permutation. Thus S must be quarternion or dihedral of order eight. Now
we shall determine the structure of P Π H. If | P Π H \ = 32, G contains a normal
subgroup of index two, contrary to Lemma 5. Let \P f)H \< 16. Then P Π H is
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dihedral, quasi-dihedral or elementary. Since the transitivity of H on Ω implies
the transitivity of P Π H on Δ(see [22], Theorem 3.4') we have | S Π H \ < \ R Π
HI < 4. If S Π /7 is a four-group, since it is normal in P, Lemma 4 yields a
contradiction. Hence Sf]H is cyclic. If 5 ΠH = 1 we have Rf)H = I and
hence P Π H <4. Also if 5 Π H Φ1, /f contains an involution a such that CH{a)
is solvable. In either case Lemma 6, Lemma 7 or Lemma 8 applies. Thus we
may assume \P\ = \P Π H \ = 64. Now let Γ = {5, 6, —, 12} be a P-orbit of
length eight and put T = P5. Then | Γ | = 8, Γis faithful on Δ and hence TA is
dihedral of order eight. Γalso acts faithfully on S and P is a semi-direct product
of S by Γ, where, as is seen above, S is quarternion or dihedral. Now we shall
determine the action of T on S. Let T = <y, ft> with o(y) = 4, o(ό) = 2 and
J>* = y"1. We may assume y and b are of the form

y = (1324X5X6)...,
6 = (1X2X34X5X6)....

First let S be quarternion with generators w and u. Since 5 contains three sub-
groups of order four, T normalizes one of them, say<w>. Then since T is faith-
ful on S and since Aut S ^ SA we have wy = w and wb = w'1. We may now
assume uy=wu~1. Then since ^ 1 ( i Q " Δ ) = 2 implies by Lemma 2 that ό centralizes
no element of S of order four we have ub = wu or w'^u and we may assume ub

= wu by taking by in place of i, if necessary. Next let S be dihedral with generators
z and e where o{z) = 4, o(̂ ) = 2 and #e = z~\ Then we have #* = z, zb = 0"1

and we may assume £y = ez. If £ induces an inner automorphism on S then bf
with some / i n S centralizes S which is impossible since (bf)Γ is an odd permu-
tation. Hence we have eb = ez or ez'1 and we may assume eb = ez"1 by taking
by in place of J, if necessary. We remark the two 2-groups obtained as above are
both isomorphic to an 52-subgrouρ of M12. In fact, the two groups are isomorphic
by the correspondence; y «-> y, b <-> b> y2u <-> e and w <-> 0. We claim that G is
M12 on 12 points in this case (and consequently the case S is quarternion occurs).
In order to prove this it suffices to show that G is isormorphic to M12 since M12

has no doubly transitive representation other than the usual one of degree 12. We
now assume by way of contradiction

(**) G has an ^-subgroup isomorphic to that of M12, but G is not M12.

Lemma 10. P contains exactly four involutions of the form (1 )(2)(34) , and
exactly six or two involutions of the form (12)(34) according as S is quarternion or
dihedral.

Proof. This follows immediately from the action of T on S.

Lemma 11. G has a single conjugacy class of involutions. The elements of
order eight of G with a 2-cycle are all conjugate.

Proof. If G has more than one conjugacy class of involutions then so does
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H since \G:H\ is odd. Then a result of Brauer and Fong([6], Corollary 62?) yields
H is M12 and hence G is M129 contrary to (**). From the action of T on S we ob-
serve that bu (or be) is of order eight, bu (or be) is conjugate to all its odd power
under ζb> y2y and that G12 has a quasi-dihedral (or dihedral) ^-subgroup of
order sixteen, from which the last half follows.

L e m m a 12. G12 has a single conjugacy class of involutions. A 2-element of

G which has both a 2-cycle and a fixed point is of order two or eight. If x is such an

element of order eight x has one 2-cycle and two fixed points and the centralizer

CG(x) of x has ζx} as its S2-subgroup so that it has a normal 2-complement.

Proof. By Lemma 11 the involutions of G12 are all conjugate under G. Now
let a be a central involution of S. Then since NG(S)A = S4 we have CG(a)A == S49

which implies the first assertion by Lemma 1. If an element of order four in G
has a fixed point then it has no 2-cycle by Lemma 5. The last part of Lemma 12
follows from the structure of an ^-subgroup of M12.

Lemma 13. Let a be a central involution of S. Then an element d of CG(a)
with dA = (ijkl) or (i)(j)(kϊ) fixes at most one orbit ofCG(a)^ on Ω-Δ and an element
f of CG(a) with fA = (ij)(kl) fixes at most three of them.

Proof. Let T = ζy, £> be as avobe. Then ζd, CG(α)Δ> is conjugate to
<J> CG(a)Ay or <£, CG(a)Ay in CG(a) according as dA = (ijkl) or (ΐ){j)(kϊ) and
</, CG(a)Ay is conjugate to ζy2, CG(a)Ay in CG(a). Thus to prove Lemma 13 it
suffices to show that b and y fix at most one orbit of S on Ω-Δ and y2 fixes at
most three of them since every orbit of CG(a)A on Ω-Δ consists of an odd number
of iS-orbits on Ω-Δ. By Lemma 10 P contains exactly four involutions of the
form (1)(2)(34) and exactly six (or two) involutions of the form (12)(34) . Let
Γ, (l <i<l) be the orbits of S on Ω-Δ. Then since b has a fixed point on Ω-Δ b
fixes some Γ, , say IV Then a^b1^) = 2 and the transitivity of S on Γ\ of length
eight imply that any of four involutions in P of the form (1)(2)(34)... has its fixed
points on ΓΊ and hence ζb, Sy is semiregular on Ω-Δ-IV Thus b fixes T1 only
and the similar argument yields that y2 fixes at most three of Γ/s. Now y also
fixes I\ and y has all of its fixed points on Γ\. (Note that j> has no 2-cycle). Assume
y fixes another Γ, , say Γ2. Then since yΓ* and wΓ2(or eΓ*) are even permutations
we have (yu)T2 (or (ye)Γz) is of order at most four and hence {yu)A (or (ye)A) Φ 1
fixes eight points, contrary to the assumption of our theorem.

Now since CG(α)jΔ = £3, CG(α\ contains a subgroup L of index two such
that LA = A3. Put K = CG(α)A and let t and s denote the number of orbits of
L and K on Ω-Δ, respectively. Then

Lemma 14. t = 1 and s = 3.

Proof. We make use of a similar argument to H. Nagao ([20], p. 336-337).
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Since G is doubly transitive by a theorem of Frobenius [9] we have

(1) Έga>(g) = \

On the other hand we have

( 2 ) Σ cc2(g)>\G:CG(a)\ Σ ' cc2(af)+\G:CG(x)\ Σ ' a2(xh),
*e=0 /e<?(«) AecfC*)

where a = w\or x2), x = bu(or be) and the summation in Σ ' is taken over all
2-regular elements of CG(a) or CG(x). We now calculate the right hand side of
(2). First Lemma 12 yields

( 3 ) \G:CG(x)\ \

Secondly since a 2-regular element of CG{ά) — K lies in precisely one of four
CG(a) -conjugates of L, we have

( 4 ) \G:CG(a)\ Σ ' cc2{af)

Σ
f(=K

= I G:CG(a) \ {4 Σ'£«2(«/ ) -

Now let tfj* denote a permutation character of Lor K acting on Ω-Δ. Then
we have

(5) Σ «!*(£) =

(see [12], Theorem 16.6.13). If v is a 2-singular element of L (or K)y then £;3m

with some integer m is an involution fixing 1, 2, 3 and 4. Therefore a*(vzm) = 0
and hence a^(v) = 0. On the other hand if/ is a 2-regular element then #!*(/)
= cti*{(af)2) = 2a2(af) since af has no fixed point on Ω-Δ. Thus by (4) and
(5) we get

( 6 ) \G:CG(a)\ Σ ' a2{af) = \G:CG{a)\{2t\L\-\s\K\)

4 16

Substituting (3) and (6) into (2) and comparing (2) with (1) we have

(7) 6>4/-ί>t,
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where the last inequality follows from 3t>s. We now show that t is odd. By the

theorem of Frobenius we have

for some integer /. On the other hand from Lemma 11 and Lemma 12 it follows

( 9 )
fecec*)

Now by Lemma 12 we have

(10) |G:Cσ(*)| Σ ' (<xhNat*hΆ = ±-\G\ and
htΞcβw \ 1 / V 1 / 4

(11) \G:CG{a) ( "

4 Σ f ^ f ^ + Σ (
f€=K-L\ 1 / \ 1 / /<=!£ \ 1

= |G:CG(α)|{4 Σ ' \cc*{f)+ 4 Σ ' !«,*(

= 2|G:CG(α)|Σ' «.*(/)

Then by (8)(9)(10) and (11) we have 2/ = t + 1, which implies ί is odd. Then

by (7) one of the following holds:

(i) * = l a n d s = l ,

(ii) t=\ and ί = 3 ,

(iii) ΐ = 3 and $ = 7,

(iv) * =

(v) * =

If s= 1, since a and £ are conjugate in G12 by Lemma 12, G12 is transitive on

Ω—{1, 2}. Then the result of J. King yiedls that G is M12, contrary to (* *).

We remark that the semi-direct product of elementary abelian grou of order 33 by

SL(3, 3) has no transitive extension. This follows from a result of Hering, Kantor

and Seitz [15] or a direct calculation of the number of ^-subgroups. Also it will

be easily seen that (iii), (iv) or (v) in the above conflicts with Lemma 13. For

instance assume that t = 3 and s = 7. We denote the orbits of CG(ά)Aon Ω—Δ

by Σ * (1^**^7). I f CG(a) has three orbits on {Σ/s}, b would fix at least

three of Σ/s, contrary to Lemma 13. Thus the only case to be considered is
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that CG(a) fixes one Σ t , say Σ7 and permutes Σx, Σ2, Σ6, transitively. In this
case we consider CG{a){^. Since | CG(a)A:CG(a){^\ = \CG(a) : CG(ά)[Ίιl) \ =
6, it follows that CG(α)(Sl}

Δ is of order four. On the other hand since CG(a){Ίιl}
fixes another Σ^φΣx), CG(ά){Ίιl)

A is a regular four group by Lemma 13. Then
we have CG(α)Δt>CG(α) { 2 l }

Δ and hence CG(<z)t>CG(tf){2l}. Then CG(a)[Ίtl] fixes
all Σ/s, contrary to Lemma 13. The similar argument eliminates the possibli-
lities of case (iv) and case (v), completing the proof of Lemma 14.

Lemma IS. G contans no element which has both a 2-cycle and a Z-cycle.

Proof. Assume G contains an element z of the form (i j) (klm) . Then the
2-part of z is of order two and d = z3r with some odd integer r is an involution.
Clearly z is in CG(d) and z fixes the 2-cycle (i j) of d. On the other hand since
a and d are conjugate in G by Lemma 11, Lemma 14 implies that any element of
CG(d) with a 3-cycle on I(d) fixes no 2-cycle of d. This is a contradiction.

Now set N = G[12) and M = G{l23}. Then

Lemma 16. G12 and N have two orbits on Ω—{1, 2} and M has one or two
orbits on Ω—{1, 2, 3}.

Proof. By Lemma 14 K has three orbits Σi, Σ2 and Σ3 of the same length
on Ω—Δ and any orbit of G12 on Ω—{1, 2} is a union of some of {3, 4}, Σ u Σ2 and
Σ3. If {5, 6} is in Σx, since a and b are conjugate in G12 by Lemma 12 {3, 4} and
Σx are contained in a G12-orbit and b takes Σ2 to Σ3 by Lemma 13. Thus G12

has at most two, hence by (**) precisely two orbits of different length on Ω—{1, 2}
and hence so does N. The last half is an immediate consequence of Lemma 14.

Lemma 17. N has two conjugacy classes of involutions and two classes of
elements of order eight. In particular involutions of N with 2-cycle (12) and elements
of order eight with 2-cycle (12) are all conjugae in N respectively.

Proof. We regard G as a (transitive) permutation group on the set of the
unordered pairs of the points of Ω. Then N is the stabilizer of the pair {1, 2} and
the involutions in N are all conjugate under G by Lemma 11. On the other hand
since CG(α)/(Λ) = S4 and since t = 1 by Lemma 14 CG(a) has two orbits on the
set of the unordered pairs which a fixes. Hence the first half follows from Lemma
1. Also the elements of order eight in N are all conjugate by Lemma 11, and
CG(x) has two orbits on the set of the unordered pairs which x fixes. Thus the
last half follows again from Lemma 1 and the remark after Lemma 1.

Lemma 18. If c = (12) (3) (4) 'is an involution in CG{ά) then CM(c) is
a subgroup of CN(c) of index four and any 2-regular element ofCN(c) lies in CM(c).

Proof. Clearly CM(c) is contained in N. (In fact, CM(c)=CN(c) Π G3). Since
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CG(ά)56 contains T, CG(ά)56 is transitive on Δ. Then Lemma 14 implies the
transitivity of CG(#)#.y on Δ for any 2-cycle (i j) of a. Then since a and c are
conjugate, CG(c)12 is transitive on I{c) and so is CN{c). This implies | CN(c) :
CM(c) I = 4. Now let / be a 2-regular element of N. Then/7 C C ) = 1 by Lemma
15, and hence/is in M.

Now we shall give a final contradiction. Let a^ and βt* be permutation
characters of ΛΓand M acting on Ω—{1, 2} and Ω—{1, 2, 3}, respectively. By
Lemma 16 we have

(12) Σa*(g) = 2\N\ and

(13)

From (12) and Lemma 16 we get

(14) Σ aχ*(g)=Ea1*ίg)-Έ

On the other hand, it follows from Lemma 12 and Lemma 17

(15) Σ
*eiV6r

where c is an involution of N of the form (12) (3) (4) and v is an element of N
of order eight of the form (12) (3) (4)... .

Now if we denote the set of 2-regular elemtns of a group X by X* Lemma
15 and Lemma 12 imply

(16) \N : CN(c)\^^a* (cf) = \N : CN(c)\ x4\CN(c)*\,

and

(17) \N: CN(v) I Σ ' a*(vh) = \N : CN(v) | x 21 CN{v)* \ = i

respectively. Then by (14), (15), (16) and (17) we have | C^c)* \= — \CN(c)
16

and hence by Lemma 18

(18) \CM(c)*\=ί-\CN(c)\.

On the other hand we have

(19) J J β r * ( g ) > e Σ A * ω >\M: CM{c)I
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where the last equality follows from Lemma 15. Then substituting (18) into (19)
we have

(20)

which conflicts with (13).

Subcase 2. Let P and R be as in Subcase 1. Then R fixes four points say
1, 2, 3 and 4 on Ω and R is normal in P. By a theorem of Witt ([22], Theorem
9.4), JVG(/2)/αe) is doubly transitive and hence we have NG(R)ICR> = A4 since NG

(i?)/c^} is of odd order. If G12 fixes more than two points it fixes four points
on Ω and hence by a result of K. Harda [13] and (*), G is PΓL(2, 8) on 28 points.
Thus we may assume G12 fixes exactly two points on Ω. Then the points 3 and
4 lie in the different G12-orbits of odd length. We denote them by Γ3 and Γ4 re-
spectively. Set W"= G12

Γ3. Then W is transitive on Γ3 and for any ί e Γ 8 WP
is a strongly embedded subgroup of W in a sense of H. Bender [5] and hence by
a result of Bender [5] either of the following cases occurs.

(i) An Sg-subgroup of W is cyclic or generalized quarternion,
(ii) W contains PSL(2, q), S2(q) or PSU(3, q2) normally with odd index

(as a permutation group of usual degree) where q is a suiitable power of 2.

Assume first (i) holds. Then R^RΓ3 is cyclic or generalized quarternion.
If R is cyclic since NG(R)T^ = A4 we have NG(R) = CG(R). Let b = (12).-be
an involution which is conjugate to an involution of R. We may assume b
normalizes, therefore centralizes R. Then since R is cyclic and since CR(b)Icb:>

< AA we have \CR(b)\ = \CR(b)la»\ = 2 and hence \R\ =2. Ύhtn\Pf)H\
< \P\ < 8, and so Lemma 6 or Lemma 8 applies. Now let R be generalized
quarternion. Then involutions of G fixing four points are all conjugate. Note
also that P contains a normal four group U in this case, for oteherwise P contains
a cyclic subgroup X = <V> of index two with xICR:> e: AA which implies x2 GΞ
R and hence R = <#2>, contrary to the assumption. Now since R is generalized
quarternion we have UKR:> Φ 1. If an involution c of U has a fixed point on
Ω-/(i?), since c1^ e A, we have | I{c) Π (ΩrI(R)) I = 4, C*(*)/ce> < A, and hence
I CR(c) I = I CR(c)τ^ I = 2. Then since | R: CR(c) \ < \ R : CR( U) \ < 2 it follows that
IRI <4, a contradiction. Thus any involution of U has no fixed point on Ω—I(R).
Now let c be an involution of U with c / α ? ) Φ 1, say cICR> = (12) (34) ••• and let
b = (12) ••• be an involution fixing four points. We may assume b normalizes
R. Then since ζc> i?> and (b, i?> are 52-subgroups of G{1>2} they are conjugate
and hence c also fixes an R-orbit Γ on Ω—I(R). Set X = <£, i?> and let m =
• IΓI. Then since \X\ = 2m and since Xv < Am X contains an involution d
fixing four points on Γ. Then since R is regular on Γ it follows from Lemma
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2 that I CR{d) \ = 4 and hence CR(d)Kd^ ^ CR(d) e* Z4, a contradiction.
Now assume (ii) holds. Then W3 is 2-closed and R is transitive on Γ3—{3}.

Let a be an involuiton of R> assume aΓ3 — (3) (56) and let b = (5) (6) ••• be an
involution commuting with a. Then we have bICR:>^A4. If ό/c/?) = (12) (34),
then b normalizes G12 and hence permutes Γ3 to Γ4, which is impossible. Thus
we may assume bIiR^ = (14) (23). Then since b normalizes G12U b also normalizes
an *S2-subgroup Q of G12U. Then since Q is also an ^-subgroup of G12, QΓZ is
an iS2-subgroup of W3f and hence we have QΓ3 = RΓ3 since Wz is 2-closed. Thus
Γ3—{3} is an orbit of Q and so b fixes Γ3—{3} as a whole. Then b has two or
four fixed points on Γ3—{3}. Suppose first b fixes two points on Γ3—{3}. Then
by a result of Zassenhaus ([23], Satz 5) Q has an cylic subgroup of index two.
Then by the structure of S2-subgroups of the groups in (ii) we have Q is a four
group, and hence \P | =16. If \P f]H | = 16, P f]H is dihedral, quasi-dihedral
or elementary of order sixteen, while as is easily seen, P ( = P f]H) contains a
normal four group and an element of order four. This is a contradiction. Thus
we have \P f)H \ < 8 and then Lemma 6 or Lemma 8 applies. Finally supose
b fixes four points on Γ3—{3}. Put Σ = {2}UΓ3 and L = <b,G12>. Then L
< G{2} and L s is transitive, in particular, L2

S and L5

S are conjugate. Clearly
Q* is an iS2-subgroup of L2

S and Q* is semi-regular on Σ —{2, 3}, while L5

S con-
tains an involution ό s fixing four points, which is a contradiction.
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