Noda R. Osaka J. Math. 8 (1971), 77-90

DOUBLY TRANSITIVE GROUPS IN WHICH THE MAXIMAL NUMBER OF FIXED POINTS OF INVOLUTIONS IS FOUR

Ryuzaburo NODA

(Received October 19, 1970)

1. Introduction

Doubly transitive groups in which any involution fixes at most three points have been classified by H. Bender [3], C. Hering [14] and J. King [16], [17]. In this paper we shall prove the following results.

Theorem. Let G be a doubly transitive group on $\Omega = \{1, 2, \dots, n\}$. Assume that the maximal number of fixed points of involutions in G is four. Then, if $n \equiv 0 \pmod{8}$, one of the following holds:

(a) n = 6 and G is S_{6} ,

(b) n = 10 and G is S_6 or $P\Gamma L(2, 9)$,

- (c) n = 12 and G is M_{11} or M_{12} (the Mathieu group of degree 11 or 12),
- (d) n = 28 and G is $P\Gamma L(2, 8)$,
- (e) n = 28 and G is $PSU(3, 3^2)$ or $P\Sigma U(3, 3^2)$.

Corollary. Let G be a doubly transitive group on $\Omega = \{1, 2, \dots, n\}$. If every involution in G fixes four points in Ω , then one of the following holds:

- (a) n = 12 and G is M_{11} ,
- (b) n = 28 and G is $P\Gamma L(2, 8)$,
- (c) n = 28 and G is $PSU(3, 3^2)$ or $P\Sigma U(3, 3^2)$.

Acknowledgement. The ideas of the proofs of several parts of this paper are due to Professor Hirosi Nagao. The author wishes to thank him for his assistance.

2. Definitions and notations

A permutation group G on Ω is called semi-regular if every non-identity element of G has no fixed point, and G is called regular if G is transitive and semiregular. If a set X of permutations on Ω fixes a subset Δ of Ω the restriction of X on Δ will be denoted by X^{Δ} . Further we use the following notations which are standard.

 $S_n =$ symmetric group of degree n,

 A_n = alternating group of degree n,

GF(q) = finite field with q elements, $P\Gamma L(m, q) = m$ -dimensional projective semi-linear group over GF(q), PSL(m, q) = m-dimensional projective special linear group over GF(q), $PSU(3, q^2) = 3$ -dimensional projective special unitary group over $GF(q^2)$, $P\Sigma U(3, q^2)$ = automorphism group of $PSU(3, q^2)$, Aut G = automorphism group of a group G, $G_{ij\cdots r}$ = pointwise stabilizer in G of points $i, j \cdots, r$, $G_{\{i,j,\dots,r\}}$ = global stabilizer in G of the set of points i, j, \dots, r , I(X) = totality of points fixed by a set X of permutations, $\alpha_i(x) =$ number of *i*-cycles of a permutation x, o(x) = order of a permutation x, $N_{G}(X) =$ normalizer of X in G, $C_G(X) =$ centralizer of X in G, $\langle X, Y \rangle$ = subgroup generated by X and Y, [X, Y] =commutator of X and Y, |X| =cardinality of a set X.

3. Proof of Corollary

It suffices by our theorem to prove that $n \equiv 0 \pmod{8}$ in the case G satisfies the assumption of Corollary. Assume by way of contradiction that $n \equiv 0 \pmod{8}$. Then the length of any orbit of an S_2 -subgroup P of G on Ω is divisible by eight (see [22], Theorem 3. 4'). Then since a central involution of P fixes a point on Ω , it fixes more than four points on Ω , contrary to the assumption.

4. Proof of Theorem

We begin with some lemmas on permutation groups.

Lemma 1 (J. Alperin [1]). Let the group G be transitive on $\Omega = \{1, 2, \dots, n\}$ and let H be a subgroup of the stabilizer G_1 . If the conjugates $H^g(g \in G)$ which are contained in G_1 make up k different conjugacy classes of subgroups of G, then the normalizer $N_G(H)$ of H has exactly k orbits on I(H).

We remark that lemma 1 also holds valid if a subgroup H of G_1 in the above is replaced by a subset K of G_1 . In fact, Alperin's proof in [1] does not make use of that H is a subgroup.

Lemma 2 (H. Nagao). Let X be a semi-regular permutation group on $\Omega = \{1, 2, \dots, n\}$. If a permutation group A on Ω normalizes X and fixes at least one point, then the order of $C_X(A)$ is not greater than the number of fixed points of A. If X is regular, then the order of $C_X(A)$ equals the number of fixed points of A.

Proof. Suppose A fixes the point 1. Let x be an element of X and a an ele-

78

ment of A. If x takes 1 to i and a takes i to j, then $a^{-1}ax$ takes 1 to j. Since $a^{-1}xa \in X$ and X is semi-regular, $x = a^{-1}xa$ if and only if j = i, i.e. $i \in I(a)$. Thus we have $|C_X(A)| \le |I(A)|$. If X is regular, then for any fixed point i of A there is a unique element of X which takes 1 to i. Hence we have $|C_X(A)| = |I(A)|$.

Lamma 3 (D. Livingstone and A. Wagner [18]). Let G be k-fold transitive on $\Omega = \{1, 2, \dots, n\}$, and let H be the stabilizer of k points in Ω . Assume that an S_p subgroup P of H fixes precisely the given k points. Then for a point i in a minimum Porbit on $\Omega - I(P)$, $N_G(P_i)^{I(P_i)}$ is k-fold transitive.

The proof of the above lemma is seen in p. 400-401 of [18].

Lemma 4. Let Y be a cyclic 2-group which acts regularly on $\Omega = \{1, 2, \dots, n\}$, and assume that Y normalizes a four group U which is semi-regular on Ω . Then $|Y| = |\Omega| = 4$.

Proof. Assume that $n = 2^m \ge 4$, and let Δ_i $(1 \le i \le t)$ denote the orbits of of U on Ω . Then since Y permutes $\Delta_1, \Delta_2, \dots, \Delta_t$ transitively we have $|Y: Y_{\{\Delta_1\}}| = t \ge 2$, from which it follows that $Y_{\{\Delta_1\}}$ centralizes U since $|Y:C_Y(U)| \le 2$. Then since $Y_{\{\Delta_1\}}^{\Delta_1}$ is cyclic and U^{Δ_1} is self-centralizing, we have $|Y_{\{\Delta_1\}}| = |Y_{\{\Delta_1\}}^{\Delta_1}| \le 2$, which yields that $|Y| = t |Y_{\{\Delta_1\}}| | \le 2t = \frac{n}{2}$, a contradiction.

Now to prove our theorem the following two cases will be treated separately. Case I. $n \equiv 2 \pmod{4}$. Case II. $n \equiv 0 \pmod{4}$.

Case I. Since an involution in G fixing four points is an odd permutation in this case, $N = G \cap A_n$ is a normal transitive subgroup of index two. Furthermore since $|G_1 : N_1| = 2$ is prime to n-1, N_1 is transitive on $\Omega - \{1\}$ and hence N is doubly transitive on Ω . Then by a result of C. Hering [14], either of the following holds:

(i) n = q+1 and N contains PSL (2. q),

(ii)
$$n = 6$$
 and N is A_6 .

In case(ii), n=6 and G is S_6 . In case(i) an involution in G - N fixing four points acts as a field automorphism. Hence we have $4 = 1 + \sqrt{q}$ and hence q = 9. Then n = 10 and G is S_6 or $P\Gamma L(2, 9)$.

Case II. We have $n \equiv 4 \pmod{8}$ in this case by our assumption that $n \equiv 0 \pmod{8}$. In particular G contains no regular normal subgroup and hence by a theorem of Burnside ([7], P202) we have

(*) a (unique) minimal normal subgroup H of G is a primitive non abelian simple group.

In what follows we denote by H a (unique) minimal normal subgroup of G throughout.

Lemma 5. We may assume G contains no normal subgroup of index two.

Proof. Let G have a normal subgroup N of index two. Then, as seen in Case I, N is also doubly transitive on Ω . If N contains an involution fixing four points we take N in place of G. If N contains no involution fixing four points, the results of H. Bender [3] and C. Hering [14] yield, similarly to Case I, that n = 6 or 10, which is not the case.

Lemma 6. An S_2 -subgroup of H is not dihedral.

Proof. This follows from a result of Gorenstein and Walter [11] and a result of Lüneburg ([19], Satz 1).

Lemma 7. If H has a quasi-dihedral S_2 -subgroup and H contains an involution a such that $C_H(a)$ is solvable then n = 12 and G is M_{11} .

Proof. By a result of Alperin, Brauer and Gorenstein [2] H is PSL(3, 3) or M_{11} . If H is PSL(3, 3), since |Aut PSL(3, 3): PSL(3, 3)| = 2, we have G is PSL(3, 3) or Aut PSL(3, 3). But it is easily seen that PSL(3, 3) and Aut PSL(3, 3) have no doubly transitive representation satisfying our assumption. If H is M_{11} , since Aut $M_{11} \simeq M_{11}$, we have G is M_{11} on 12 points.

Lemma 8. If H has an elementary abelian S_2 -subgroup and H contains an involution a such that $C_H(a)$ is solvable then n = 28 and G is $P\Gamma L(2, 8)$.

Proof. By a result of Walter [21] H is PSL(2, q) for a suitable q. Then the result of Lüneburg [19] applies.

Lemma 9. If H has a wreathed S_2 -subgroup of order 32 and H contains an involution a such that $C_H(a)$ is solvable then n = 28 and G is $PSU(3, 3^2)$ or $P\Sigma U(3, 3^2)$.

Proof. By a result of P. Fong [8] H is $PSU(3, 3^2)$, and hence G is $PSU(3, 3^2)$ or $P\Sigma U(3, 3^2)$. It is easy to see that $PSU(3, 3^2)$ and $P\Sigma U(3, 3^2)$ have no other doubly transitive representation than the usual one of degree 28.

Now we consider the following two cases. Subcase 1. an S_2 -subgroup of G_{12} fixes two points. Subcase 2. an S_2 -subgroup of G_{12} fixes four points.

Subcase 1. Let P be an S_2 -subgroup of G. Then since $n \equiv 4 \pmod{8} P$ has an orbit of length four, say $\Delta = \{1,2,3,4\}$ (see [22], Theorem 3.4') and then $R = P_1$ is an S_2 -subgrou of G_1 . We may assume $I(R) = \{1, 2\}$. Then R contains an element b of the form $b = (1)(2)(34)\cdots$. We assume first that any element in R of the form $(1)(2)(34)\cdots$ is an involution. Set $S = R_{34}$. Then $N_G(S)^{I(S)}$ is doubly transitive by Lemma 3 and hence $N_G(S)^{I(S)} = S_4$. Since any element in

the coset b S is an involution b inverts every element of S and hence S is abelian. On the other hand, since b fixes exactly two points on Ω - Δ , and since S is semiregular on Ω - Δ Lemma 2 yields $|C_s(b)| = 2$. Thus S must have a unique involution and hence S is cyclic. This implies that $C_G(S)^{I(S)} \ge A_4$ and any element t of $N_G(S)$ with $t^{\Delta} \in A_{+}$ lies in $C_G(S)$. Now since $|P^{\Delta}| = 8$, P contains an element y of the form (1324).... First assume $o(y) \ge 8$. Then by Lemma 5 y has an odd number of cycles of the same length on Ω - Δ . Then since the length of any *P*-orbit on Ω - Δ is of 2-power *P* fixes the set of the points of a cycle of y, say (5, 6, ..., l) on $\Omega - \Delta$ and in particular so does S. Then since $y^{t} \in S$ we have o(y) = 0|S|, 2|S| or 4|S|. If o(y) = |S| either y or the generator z of S is an odd permutation, contrary to Lemma 5. Also if o(y) = 2|S|, since $[y^2, S] = 1$, setting $\Gamma = \{5, 6, \dots l\}$ we have $(y^2)^{\Gamma} = (z^m)^{\Gamma}$ for some odd integer *m*. Then $y^2 z^{-m}$ = (12)(34)... fixes every point of Γ , contrary to the assumption of our theorem. Thus we have o(y) = 4|S| and hence $\langle y \rangle$ is a cyclic subgroup of P of index two. Then the structure of P is known (see [10], Theorem 5.4.4) and since P contains a non normal dihedral subgroup R, P is dihedral or quasi-dihedral. We may assume by Lemma 6 that P is quasi-dihedral. Let a be an involution of S. Then since $C_G(a)^{I(a)} \leq S_4$ and since $C_G(a)_{I(a)}$ has a cyclic S_2 -subgroup it follows that $C_G(a)$ is solvable. Then Lemma 7 yields that G is M_{11} on 12 points.

Now let o(y) = 4. Then since $n \equiv 4 \pmod{8} y$ has four fixed points or two 2-cycles on $\Omega - \Delta$ by Lemma 5 and hence y^2 fixes four points on $\Omega - \Delta$. On the other hand $y^2 \in A_4$ implies $[y^2, S] = 1$ and hence $|S| \le 4$ by Lemma 2. Thus we have $|P \cap H| \le |P| \le 32$, and by a result of P. Fong $P \cap H$ is dihedral, quasi-dihedral, elementary or wreathed of order 32. Then Lemma 6, Lemma 7, Lemma 8 or Lemma 9 applies, respectively.

Now we assume that R contains an element x of the form $(1)(2)(34)\cdots$ which is not an involution. Then since $n \equiv 4 \pmod{8}$, x has an odd number of cycles of the same length on Ω - Δ by Lemma 5. In particular $o(x) \ge 8$, and P fixes the set of the points of a cycle of x, say(56...k) on $\Omega - \Delta$. Then since $x^2 \in S$, $\Gamma = \{5, 6, \dots k\}$ consists of one or two orbits of S. If Γ consists of two orbits of S then we have $S = \langle x^2 \rangle$ is cyclic. In this case the similar argument to the above applies. Thus we may assume Γ consists of one orbit of S. Then $o(x) = |S| = |\Gamma| \ge 8$ and since Γ is a *P*-orbit an exponent of *P* is equal to o(x). In particular *P* contains a normal four-group U(see [10], P215. Exercise 9). Then since $o(x) \ge 8$, Lemma 4 implies that an involution c in U fixes a point on Γ , and hence we have $|C_s(c)|$ ≤ 4 by Lemma 2. Then since $|S: C_s(c)| \leq |S: C_s(U)| \leq 2$ it follows that |S| ≤ 8 and hence |S| = 8. If $S \simeq Z_4 \times Z_2$, P contains a normal four group which is semi-regular on Γ , contrary to Lemma 4. Also if S is cyclic S contains an odd permutation. Thus S must be quarternion or dihedral of order eight. Now we shall determine the structure of $P \cap H$. If $|P \cap H| = 32$, G contains a normal subgroup of index two, contrary to Lemma 5. Let $|P \cap H| \leq 16$. Then $P \cap H$ is dihedral, quasi-dihedral or elementary. Since the transitivity of H on Ω implies the transitivity of $P \cap H$ on Δ (see [22], Theorem 3.4') we have $|S \cap H| \leq |R \cap$ $H| \leq 4$. If $S \cap H$ is a four-group, since it is normal in P, Lemma 4 yields a contradiction. Hence $S \cap H$ is cyclic. If $S \cap H = 1$ we have $R \cap H = 1$ and hence $P \cap H \leq 4$. Also if $S \cap H \neq 1$, H contains an involution a such that $C_H(a)$ is solvable. In either case Lemma 6, Lemma 7 or Lemma 8 applies. Thus we may assume $|P| = |P \cap H| = 64$. Now let $\Gamma = \{5, 6, \dots, 12\}$ be a P-orbit of length eight and put $T = P_s$. Then |T| = 8, T is faithful on Δ and hence T^{Δ} is dihedral of order eight. T also acts faithfully on S and P is a semi-direct product of S by T, where, as is seen above, S is quarternion or dihedral. Now we shall determine the action of T on S. Let $T = \langle y, b \rangle$ with o(y) = 4, o(b) = 2 and $y^b = y^{-1}$. We may assume y and b are of the form

$$y = (1324)(5)(6)\cdots$$

 $b = (1)(2)(34)(5)(6)\cdots$

First let S be quarternion with generators w and u. Since S contains three subgroups of order four, T normalizes one of them, say $\langle w \rangle$. Then since T is faithful on S and since Aut $S \simeq S_4$ we have $w^y = w$ and $w^b = w^{-1}$. We may now assume $u^{y} = wu^{-1}$. Then since $\alpha_{1}(b^{\alpha-\Delta}) = 2$ implies by Lemma 2 that b centralizes no element of S of order four we have $u^b = wu$ or $w^{-1}u$ and we may assume u^b =wu by taking b^{y} in place of b, if necessary. Next let S be dihedral with generators z and e where o(z) = 4, o(e) = 2 and $z^e = z^{-1}$. Then we have $z^y = z$, $z^b = z^{-1}$ and we may assume $e^{y} = ez$. If b induces an inner automorphism on S then bf with some f in S centralizes S which is impossible since $(bf)^{\Gamma}$ is an odd permutation. Hence we have $e^b = ez$ or ez^{-1} and we may assume $e^b = ez^{-1}$ by taking b^{y} in place of b, if necessary. We remark the two 2-groups obtained as above are both isomorphic to an S_2 -subgroup of M_{12} . In fact, the two groups are isomorphic by the correspondence; $y \leftrightarrow y, b \leftrightarrow b, y^2 u \leftrightarrow e$ and $w \leftrightarrow z$. We claim that G is M_{12} on 12 points in this case (and consequently the case S is quarternion occurs). In order to prove this it suffices to show that G is isomorphic to M_{12} since M_{12} has no doubly transitive representation other than the usual one of degree 12. We now assume by way of contradiction

(**) G has an S_2 -subgroup isomorphic to that of M_{12} , but G is not M_{12} .

Lemma 10. P contains exactly four involutions of the form $(1)(2)(34)\cdots$, and exactly six or two involutions of the form $(12)(34)\cdots$ according as S is quarternion or dihedral.

Proof. This follows immediately from the action of T on S.

Lemma 11. G has a single conjugacy class of involutions. The elements of order eight of G with a 2-cycle are all conjugate.

Proof. If G has more than one conjugacy class of involutions then so does

H since |G:H| is odd. Then a result of Brauer and Fong ([6], Corollary 6B) yields H is M_{12} and hence G is M_{12} , contrary to (**). From the action of T on S we observe that bu (or be) is of order eight, bu (or be) is conjugate to all its odd power under $\langle b, y^2 \rangle$ and that G_{12} has a quasi-dihedral (or dihedral) S_2 -subgroup of order sixteen, from which the last half follows.

Lemma 12. G_{12} has a single conjugacy class of involutions. A 2-element of G which has both a 2-cycle and a fixed point is of order two or eight. If x is such an element of order eight x has one 2-cycle and two fixed points and the centralizer $C_G(x)$ of x has $\langle x \rangle$ as its S_2 -subgroup so that it has a normal 2-complement.

Proof. By Lemma 11 the involutions of G_{12} are all conjugate under G. Now let a be a central involution of S. Then since $N_G(S)^{\Delta} = S_4$ we have $C_G(a)^{\Delta} = S_4$, which implies the first assertion by Lemma 1. If an element of order four in G has a fixed point then it has no 2-cycle by Lemma 5. The last part of Lemma 12 follows from the structure of an S_2 -subgroup of M_{12} .

Lemma 13. Let a be a central involution of S. Then an element d of $C_G(a)$ with $d^{\Delta} = (ijkl)$ or (i)(j)(kl) fixes at most one orbit of $C_G(a)_{\Delta}$ on $\Omega - \Delta$ and an element f of $C_G(a)$ with $f^{\Delta} = (ij)(kl)$ fixes at most three of them.

Proof. Let $T = \langle y, b \rangle$ be as avobe. Then $\langle d, C_G(a)_{\Delta} \rangle$ is conjugate to $\langle y, C_G(a)_{\Delta} \rangle$ or $\langle b, C_G(a)_{\Delta} \rangle$ in $C_G(a)$ according as $d^{\Delta} = (ijkl)$ or (i)(j)(kl) and $\langle f, C_G(a)_{\wedge} \rangle$ is conjugate to $\langle y^2, C_G(a)_{\wedge} \rangle$ in $C_G(a)$. Thus to prove Lemma 13 it suffices to show that b and y fix at most one orbit of S on $\Omega - \Delta$ and y² fixes at most three of them since every orbit of $C_G(a)_{\Delta}$ on $\Omega - \Delta$ consists of an odd number of S-orbits on $\Omega - \Delta$. By Lemma 10 P contains exactly four involutions of the form $(1)(2)(34)\cdots$ and exactly six (or two) involutions of the form $(12)(34)\cdots$. Let $\Gamma_i(1 \le i \le l)$ be the orbits of S on $\Omega - \Delta$. Then since b has a fixed point on $\Omega - \Delta$ b fixes some Γ_i , say Γ_1 . Then $\alpha_1(b^{\Gamma_1}) = 2$ and the transitivity of S on Γ_1 of length eight imply that any of four involutions in P of the form (1)(2)(34)... has its fixed points on Γ_1 and hence $\langle b, S \rangle$ is semiregular on $\Omega - \Delta - \Gamma_1$. Thus b fixes Γ_1 only and the similar argument yields that y^2 fixes at most three of Γ_i 's. Now y also fixes Γ_1 and y has all of its fixed points on Γ_1 . (Note that y has no 2-cycle). Assume y fixes another Γ_i , say Γ_2 . Then since y^{Γ_2} and u^{Γ_2} (or e^{Γ_2}) are even permutations we have $(yu)^{\Gamma_2}$ (or $(ye)^{\Gamma_2}$) is of order at most four and hence $(yu)^4$ (or $(ye)^4$) $\neq 1$ fixes eight points, contrary to the assumption of our theorem.

Now since $C_G(a)_1^{\Delta} = S_3$, $C_G(a)_1$ contains a subgroup L of index two such that $L^{\Delta} = A_3$. Put $K = C_G(a)_{\Delta}$ and let t and s denote the number of orbits of L and K on Ω - Δ , respectively. Then

Lemma 14. t = 1 and s = 3.

Proof. We make use of a similar argument to H. Nagao ([20], p. 336-337).

Since G is doubly transitive by a theorem of Frobenius [9] we have

(1)
$$\sum_{g \in \sigma} \alpha_{z}(g) = \frac{1}{2} |G|.$$

On the other hand we have

$$(2) \qquad \sum_{s \in \mathcal{G}} \alpha_2(g) \ge |G:C_G(a)| \sum_{f \in \mathcal{O}_G(a)} \alpha_2(af) + |G:C_G(x)| \sum_{h \in \mathcal{O}_G(x)} \alpha_2(xh),$$

where $a = w^2(\text{or } x^2)$, x = bu(or be) and the summation in \sum' is taken over all 2-regular elements of $C_G(a)$ or $C_G(x)$. We now calculate the right hand side of (2). First Lemma 12 yields

(3)
$$|G:C_G(x)| \sum_{h\in G_G(x)} \alpha_2(xh) = \frac{1}{8} |G|.$$

Secondly since a 2-regular element of $C_G(a) - K$ lies in precisely one of four $C_G(a)$ -conjugates of L, we have

$$(4) \qquad |G:C_G(a)| \sum_{f \in G_G(a)} \alpha_2(af)$$
$$= |G:C_G(a)| \{4 \sum_{f \in L^- \kappa} \alpha_2(af) + \sum_{f \in K} \alpha_2(af)\}$$
$$= |G:C_G(a)| \{4 \sum_{f \in L} \alpha_2(af) - 3 \sum_{f \in K} \alpha_2(af)\}$$

Now let α_1^* denote a permutation character of L or K acting on $\Omega - \Delta$. Then we have

(5)
$$\sum_{s \in L} \alpha_1^*(g) = t |L| \text{ and}$$
$$\sum_{g \in K} \alpha_1^*(g) = s |K|.$$

(see [12], Theorem 16.6.13). If v is a 2-singular element of L (or K), then v^{3m} with some integer m is an involution fixing 1, 2, 3 and 4. Therefore $\alpha_1^*(v^{3m}) = 0$ and hence $\alpha_1^*(v) = 0$. On the other hand if f is a 2-regular element then $\alpha_1^*(f) = \alpha_1^*((af)^2) = 2\alpha_2(af)$ since af has no fixed point on $\Omega - \Delta$. Thus by (4) and (5) we get

$$(6) |G:C_G(a)| \sum_{f \in \mathcal{O}_G(a)} \alpha_2(af) = |G:C_G(a)| \{2t|L| - \frac{3}{2}s|K|\} \\ = \left(\frac{1}{4}t - \frac{1}{16}s\right) |G|.$$

Substituting (3) and (6) into (2) and comparing (2) with (1) we have

$$(7) 6 \ge 4t - s \ge t,$$

where the last inequality follows from $3t \ge s$. We now show that t is odd. By the theorem of Frobenius we have

(8)
$$\sum_{q \in \mathcal{G}} \binom{\alpha_2(g)}{1} \binom{\alpha_1(g)}{1} = \frac{l}{2} |G|$$

for some integer l. On the other hand from Lemma 11 and Lemma 12 it follows

$$(9) \qquad \sum_{g \in G} \binom{\alpha_2(g)}{1} \binom{\alpha_1(g)}{1} = |G: C_G(a)| \sum_{f \in \mathcal{C}_G(a)} \binom{\alpha_2(af)}{1} \binom{\alpha_1(af)}{1} + |G: C_G(x)| \sum_{h \in \mathcal{C}_G(x)} \binom{\alpha_2(xh)}{1} \binom{\alpha_1(xh)}{1}.$$

Now by Lemma 12 we have

(10)
$$|G: C_G(x)| \sum_{h \in \mathcal{C}_G(x)} {\alpha_2(xh) \choose 1} {\alpha_1(xh) \choose 1} = \frac{1}{4} |G| \text{ and}$$

(11)

$$|G: C_{G}(a) \sum_{f \in \mathcal{O}_{G}(a)} {\binom{\alpha_{2}(af)}{1}} {\binom{\alpha_{1}(af)}{1}} = |G: C_{G}(a)| \left\{ 4 \sum_{f \in \mathcal{K}^{-L}} {\binom{\alpha_{2}(af)}{1}} {\binom{\alpha_{2}(af)}{1}} + \sum_{f \in \mathcal{K}} {\binom{\alpha_{1}(af)}{1}} {\binom{\alpha_{1}(af)}{1}} \right\}$$

$$= |G: C_{G}(a)| \left\{ 4 \sum_{f \in \mathcal{L}^{-K}} {\frac{1}{2}} \alpha_{1}^{*}(f) + 4 \sum_{f \in \mathcal{K}} {\frac{1}{2}} \alpha_{1}^{*}(f) \right\}$$

$$= 2|G: C_{G}(a)| \sum_{f \in \mathcal{L}} {\binom{\alpha_{1}(af)}{1}} {\binom{\alpha_{2}(af)}{1}} = \frac{t}{4} |G|$$

Then by (8)(9)(10) and (11) we have 2l = t + 1, which implies t is odd. Then by (7) one of the following holds:

- (i) t = 1 and s = 1,
- (ii) t = 1 and s = 3,
- (iii) t = 3 and s = 7,
- (iv) t = 3 and s = 9,
- (v) t = 5 and s = 15.

If s = 1, since a and b are conjugate in G_{12} by Lemma 12, G_{12} is transitive on $\Omega - \{1, 2\}$. Then the result of J. King yields that G is M_{12} , contrary to (* *). We remark that the semi-direct product of elementary abelian grou of order 3° by SL(3, 3) has no transitive extension. This follows from a result of Hering, Kantor and Seitz [15] or a direct calculation of the number of S_7 -subgroups. Also it will be easily seen that (iii), (iv) or (v) in the above conflicts with Lemma 13. For instance assume that t=3 and s=7. We denote the orbits of $C_G(a)_{\Delta}$ on $\Omega - \Delta$ by $\sum_i (1 \le i \le 7)$. If $C_G(a)$ has three orbits on $\{\sum_i s\}$, b would fix at least three of $\sum_i s$, contrary to Lemma 13. Thus the only case to be considered is

that $C_G(a)$ fixes one Σ_i , say Σ_7 and permutes Σ_1 , $\Sigma_2, \cdots \Sigma_6$, transitively. In this case we consider $C_G(a)_{\{\Sigma_1\}}^{a}$. Since $|C_G(a)^{\perp}:C_G(a)_{\{\Sigma_1\}}| = |C_G(a):C_G(a)_{\{\Sigma_1\}}| = 6$, it follows that $C_G(a)_{\{\Sigma_1\}}^{a}$ is of order four. On the other hand since $C_G(a)_{\{\Sigma_1\}}$ fixes another $\Sigma_i(\pm \Sigma_1)$, $C_G(a)_{\{\Sigma_1\}}^{a}$ is a regular four group by Lemma 13. Then we have $C_G(a)^{\perp} \triangleright C_G(a)_{\{\Sigma_1\}}^{a}$ and hence $C_G(a) \triangleright C_G(a)_{\{\Sigma_1\}}$. Then $C_G(a)_{\{\Sigma_1\}}$ fixes all Σ_i 's, contrary to Lemma 13. The similar argument eliminates the possiblilities of case (iv) and case (v), completing the proof of Lemma 14.

Lemma 15. G contans no element which has both a 2-cycle and a 3-cycle.

Proof. Assume G contains an element z of the form (i j) (klm).... Then the 2-part of z is of order two and $d = z^{3r}$ with some odd integer r is an involution. Clearly z is in $C_G(d)$ and z fixes the 2-cycle (i j) of d. On the other hand since a and d are conjugate in G by Lemma 11, Lemma 14 implies that any element of $C_G(d)$ with a 3-cycle on I(d) fixes no 2-cycle of d. This is a contradiction.

Now set $N = G_{\{12\}}$ and $M = G_{\{123\}}$. Then

Lemma 16. G_{12} and N have two orbits on $\Omega - \{1, 2\}$ and M has one or two orbits on $\Omega - \{1, 2, 3\}$.

Proof. By Lemma 14 K has three orbits Σ_1 , Σ_2 and Σ_3 of the same length on $\Omega - \Delta$ and any orbit of G_{12} on $\Omega - \{1, 2\}$ is a union of some of $\{3, 4\}$, Σ_1 , Σ_2 and Σ_3 . If $\{5, 6\}$ is in Σ_1 , since a and b are conjugate in G_{12} by Lemma 12 $\{3, 4\}$ and Σ_1 are contained in a G_{12} -orbit and b takes Σ_2 to Σ_3 by Lemma 13. Thus G_{12} has at most two, hence by (**) precisely two orbits of different length on $\Omega - \{1, 2\}$ and hence so does N. The last half is an immediate consequence of Lemma 14.

Lemma 17. N has two conjugacy classes of involutions and two classes of elements of order eight. In particular involutions of N with 2-cycle (12) and elements of order eight with 2-cycle (12) are all conjugae in N respectively.

Proof. We regard G as a (transitive) permutation group on the set of the unordered pairs of the points of Ω . Then N is the stabilizer of the pair $\{1, 2\}$ and the involutions in N are all conjugate under G by Lemma 11. On the other hand since $C_G(a)^{I(a)} = S_4$ and since t = 1 by Lemma 14 $C_G(a)$ has two orbits on the set of the unordered pairs which a fixes. Hence the first half follows from Lemma 1. Also the elements of order eight in N are all conjugate by Lemma 11, and $C_G(x)$ has two orbits on the set of the unordered pairs which a fixes. Thus the last half follows again from Lemma 1 and the remark after Lemma 1.

Lemma 18. If $c = (12) (3) (4) \cdots$ is an involution in $C_G(a)$ then $C_M(c)$ is a subgroup of $C_N(c)$ of index four and any 2-regular element of $C_N(c)$ lies in $C_M(c)$.

Proof. Clearly $C_M(c)$ is contained in N. (In fact, $C_M(c) = C_N(c) \cap G_3$). Since

 $C_G(a)_{56}$ contains T, $C_G(a)_{56}$ is transitive on Δ . Then Lemma 14 implies the transitivity of $C_G(a)_{ij}$ on Δ for any 2-cycle (i j) of a. Then since a and c are conjugate, $C_G(c)_{12}$ is transitive on I(c) and so is $C_N(c)$. This implies $|C_N(c)| = C_M(c)| = 4$. Now let f be a 2-regular element of N. Then $f^{I(c)} = 1$ by Lemma 15, and hence f is in M.

Now we shall give a final contradiction. Let α_1^* and β_1^* be permutation characters of N and M acting on $\Omega - \{1, 2\}$ and $\Omega - \{1, 2, 3\}$, respectively. By Lemma 16 we have

(12)
$$\sum_{g \in N} \alpha_1^*(g) = 2|N| \quad \text{and}$$

(13)
$$\sum_{g \in \mathcal{U}} \beta_1^*(g) \leq 2|M|.$$

From (12) and Lemma 16 we get

(14)
$$\sum_{g \in N-\theta_{12}} \alpha_1^*(g) = \sum_{g \in N} \alpha_1^*(g) - \sum_{g \in \theta_{12}} \alpha_1^*(g) = 2|N| - |N| = |N|.$$

On the other hand, it follows from Lemma 12 and Lemma 17

(15)
$$\sum_{x \in N^{-}G_{12}} \alpha_{1}^{*}(x) = |N : C_{N}(c)| \sum_{f \in G_{N}(c)} \alpha_{1}^{*}(cf) + |N : C_{N}(c)| \sum_{h \in G_{N}(c)} \alpha_{1}^{*}(ch)$$

where c is an involution of N of the form (12) (3) (4)... and v is an element of N of order eight of the form (12) (3) (4)....

Now if we denote the set of 2-regular elemtns of a group X by X^* Lemma 15 and Lemma 12 imply

(16)
$$|N:C_N(c)| \sum_{f \in \mathcal{O}_N(c)} \alpha_1^* (cf) = |N:C_N(c)| \times 4 |C_N(c)^*|,$$

and

(17)
$$|N: C_N(v)| \sum_{h \in \mathcal{O}_N(v)} \alpha_1^*(vh) = |N: C_N(v)| \times 2|C_N(v)^*| = \frac{|N|}{4},$$

respectively. Then by (14), (15), (16) and (17) we have $|C_N(c)^*| = \frac{3}{16} |C_N(c)|$ and hence by Lemma 18

(18)
$$|C_M(c)^*| = \frac{3}{4} |C_N(c)|.$$

On the other hand we have

(19)
$$\sum_{g \in \mathcal{M}} \beta_1^*(g) \geq \sum_{g \in \mathcal{M}} \beta_1^*(g) \geq |M: C_M(c)| \sum_{f \in \mathcal{O}_M(c)} \beta_1^*(cf)$$
$$= |M: C_M(c)| \times 3 |C_M(c)^*|,$$

where the last equality follows from Lemma 15. Then substituting (18) into (19) we have

(20)
$$\sum_{g \in \mathcal{M}} \beta_i^*(g) \geq \frac{9}{4} |M|,$$

which conflicts with (13).

Subcase 2. Let P and R be as in Subcase 1. Then R fixes four points say 1, 2, 3 and 4 on Ω and R is normal in P. By a theorem of Witt ([22], Theorem 9.4), $N_G(R)^{I(R)}$ is doubly transitive and hence we have $N_G(R)^{I(R)} = A_4$ since $N_G(R)^{I(R)}$ is of odd order. If G_{12} fixes more than two points it fixes four points on Ω and hence by a result of K. Harda [13] and (*), G is $P\Gamma L(2, 8)$ on 28 points. Thus we may assume G_{12} fixes exactly two points on Ω . Then the points 3 and 4 lie in the different G_{12} -orbits of odd length. We denote them by Γ_3 and Γ_4 respectively. Set $W = G_{12}^{\Gamma^3}$. Then W is transitive on Γ_3 and for any $i \in \Gamma_3 W_i^{\Gamma^3}$ is a strongly embedded subgroup of W in a sense of H. Bender [5] and hence by a result of the following cases occurs.

(i) An S_2 -subgroup of W is cyclic or generalized quarternion,

(ii) W contains PSL(2, q), $S_z(q)$ or PSU(3, q^2) normally with odd index (as a permutation group of usual degree) where q is a suitable power of 2.

Assume first (i) holds. Then $R \simeq R^{\Gamma_3}$ is cyclic or generalized quarternion. If R is cyclic since $N_G(R)^{I(R)} = A_4$ we have $N_G(R) = C_G(R)$. Let b = (12)...be an involution which is conjugate to an involution of R. We may assume bnormalizes, therefore centralizes R. Then since R is cyclic and since $C_R(b)^{I(b)}$ $| \leq A_4$ we have $|C_R(b)| = |C_R(b)^{I(b)}| = 2$ and hence |R| = 2. Then $|P \cap H|$ $\leq |P| \leq 8$, and so Lemma 6 or Lemma 8 applies. Now let R be generalized quarternion. Then involutions of G fixing four points are all conjugate. Note also that P contains a normal four group U in this case, for oteherwise P contains a cyclic subgroup $X = \langle x \rangle$ of index two with $x^{I(R)} \in A_4$ which implies $x^2 \in$ R and hence $R = \langle x^2 \rangle$, contrary to the assumption. Now since R is generalized quarternion we have $U^{I(R)} \neq 1$. If an involution c of U has a fixed point on $\Omega - I(R)$, since $c^{I(R)} \in A_4$ we have $|I(c) \cap (\Omega - I(R))| = 4$, $C_R(c)^{I(c)} \leq A_4$ and hence $|C_R(c)| = |C_R(c)^{I(c)}| = 2$. Then since $|R:C_R(c)| \le |R:C_R(U)| \le 2$ it follows that $|R| \leq 4$, a contradiction. Thus any involution of U has no fixed point on $\Omega - I(R)$. Now let c be an involution of U with $c^{I(R)} \neq 1$, say $c^{I(R)} = (12) (34) \cdots$ and let $b = (12) \cdots$ be an involution fixing four points. We may assume b normalizes R. Then since $\langle c, R \rangle$ and $\langle b, R \rangle$ are S_2 -subgroups of $G_{(1,2)}$ they are conjugate and hence c also fixes an R-orbit Γ on $\Omega - I(R)$. Set $X = \langle c, R \rangle$ and let m = $|\Gamma|$. Then since |X| = 2m and since $X^{\Gamma} \leq A_m X$ contains an involution d fixing four points on Γ . Then since R is regular on Γ it follows from Lemma

88

2 that $|C_R(d)| = 4$ and hence $C_R(d)^{I(d)} \simeq C_R(d) \simeq Z_4$, a contradiction.

Now assume (ii) holds. Then W_3 is 2-closed and R is transitive on $\Gamma_3 - \{3\}$. Let a be an involution of R, assume $a^{\Gamma_3} = (3) (56)$...and let b = (5) (6)... be an involution commuting with a. Then we have $b^{I(R)} \in A_4$. If $b^{I(R)} = (12) (34)$, then b normalizes G_{12} and hence permutes Γ_3 to Γ_4 , which is impossible. Thus we may assume $b^{I(R)} = (14) (23)$. Then since b normalizes G_{1234} b also normalizes an S_2 -subgroup Q of G_{1234} . Then since Q is also an S_2 -subgroup of G_{12} , Q^{Γ^3} is an S_2 -subgroup of W_3 , and hence we have $Q^{\Gamma 3} = R^{\Gamma 3}$ since W_3 is 2-closed. Thus $\Gamma_3 - \{3\}$ is an orbit of Q and so b fixes $\Gamma_3 - \{3\}$ as a whole. Then b has two or four fixed points on $\Gamma_3 - \{3\}$. Suppose first b fixes two points on $\Gamma_3 - \{3\}$. Then by a result of Zassenhaus ([23], Satz 5) Q has an cylic subgroup of index two. Then by the structure of S_2 -subgroups of the groups in (ii) we have Q is a four group, and hence |P| = 16. If $|P \cap H| = 16$, $P \cap H$ is dihedral, quasi-dihedral or elementary of order sixteen, while as is easily seen, $P (= P \cap H)$ contains a normal four group and an element of order four. This is a contradiction. Thus we have $|P \cap H| \leq 8$ and then Lemma 6 or Lemma 8 applies. Finally supose b fixes four points on $\Gamma_3 = \{3\}$. Put $\Sigma = \{2\} \cup \Gamma_3$ and $L = \langle b, G_{12} \rangle$. Then L $\leq G_{\{\Sigma\}}$ and L^{Σ} is transitive, in particular, L_2^{Σ} and L_5^{Σ} are conjugate. Clearly Q^{Σ} is an S_2 -subgroup of L_2^{Σ} and Q^{Σ} is semi-regular on $\Sigma - \{2, 3\}$, while L_5^{Σ} contains an involution b^{Σ} fixing four points, which is a contradiction.

OSAKA UNIVERSITY

References

- [1] J. L. Alperin: On a theorem of Manning, Math. Z. 88 (1965), 434-435.
- [2] J. L. Alperin, R. Brauer and D. Gorenstein: Finite groups with quasi-dihedral and Wreathed Sylow 2-subgroups, to appear.
- [3] H. Bender: Endliche zweifach transitive Permutationsgruppen deren Involutions keine Fixpunkte haben, Math. Z. 104 (1968), 175-204.
- [4] ———: Doubly transitive groups with no involution fixing two points, to appear.
- [5] ———: Finite groups having a strongly embedded subgroup, to appear.
- [6] R. Brauer and P. Fong: A characterization of the Mathieu group M₁₂, Trans. Amer. Math. Soc. 122 (1966), 18-47.
- [7] W. Burnside: Theory of Groups of Finite Order, Cambridge University Press, 1911.
- [8] P. Fong: Some Sylow subgroups of order 32 and a characterization of U(3, 3), J. Algebra 6 (1967), 65-76.
- [9] G. Frobenius: Uber die Character der mehrfach transitive Gruppen, S. B. Preuss. Akad. Wiss. Berlin (1904), 528-571.
- [10] D. Gorenstein: Finite Groups, Harper and Row, 1968.
- [11] D. Gorenstein and J. H. Walter: The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Algebra 2 (1965), 85-151, 218-270, 334-393.

- [12] M. Hall: The Theory of Groups, Macmillan, New York, 1959.
- [13] K. Harada: On some doubly transitive groups II, to appear.
- [14] C. Hering: Zweifach transitive Permutationsgruppen in deren 2 die maximale Anzahl von Fixpunkten von Involutionen ist, Math. Z. 104 (1968), 150–174.
- [15] C. Hering, W. M. Kantor and G. M. Seitz: Finite groups with a split BN-pair of rank 1, to appear.
- [16] J. King: A characterization of some doubly transitive groups, Math. Z. 107 (1968), 43-48.
- [17] J. King: Doubly transitive groups in which involutions fix one or three points, Math. Z. 111 (1969), 311-321.
- [18] D. Livingston and A. Wagner: Transitivity of finite permutation group on unordered sets, Math. Z. 90 (1965), 393-403.
- [19] H. Lüneburg: Characterisierungen der endlichen desarguesschen projectiven Ebenen, Math. Z. 85 (1964), 419-450.
- [20] H. Nagao: On multiply transitive groups IV, Osaka J. Math 2 (1965), 327-341.
- [21] J. H. Walter: The characterization of finite groups with abelian Sylow 2-subgroups, Ann. of Math. 89 (1969), 405–514.
- [22] H. Wielandt: Finite Permutation Groups, Academic Press, New York, 1964.
- [23] H. Zassenhans: Kenzeichnung endlicher linearer Gruppen als Permutationsgruppen. Abh. Math. Sem. Hansischen Univ. 11 (1936), 17;40.