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Let © be a finite group. Let {n1? •••, nr} be the set of integers each of
which is the index of the centralizer of some element of © in ©. We may
assume that n1>n2> >nr=l. Then the vector (n19 ,nr) is called the
conjugate type vector of ©. A group with the conjugate type vector (nl9 ••• , nr)

is said to be a group of type (n19 ••• , nr).
In an earlier paper [5] we have proved that any group of type (n19 1) is

nilpotent. In the present paper we want to prove the following theorem.

Theorem. Any group of type (n19 n2, 1) is solvable***

At few critical points the proof requires heavy group-theoretical apparatus.

NOTATION AND DEFINATION. Let © be a finite group. Z(®) is the center of
©. Z2(®) is the second center of ©. Z)(©) is the commutator subgroup of ©.

Φ(©) is the Frattini subgroup of ©. Let p be a prime. Op(®) is the largest
normals-subgroup of®. F(@) is the Fitting subgroup of ®(.F(®)=Π O^(®)).

Let X be a finite set. | X | is the number of elements in X. | X | p is the highest
power of p dividing | X . τr(©) is the set of prime divisors of |©|. If XC®

and is non-empty, then C(X) is the centralizer of Xin ©. If X— {X}, C(%)=
C(X). 7V(X) is the normalizer of X in ©. Let X be a subgroup of © and 2) a

subgroup of X. If G'^GCX (G<Ξ®) implies that G~^G=ty, we say that
2) is weakly closed in X with respect to ©. © is called a Frobenius group, if

© is a product of a normal subgroup SR and a subgroup ξ> such that no elements
(φ£") of JΪ and ξ> commute one another. Let Σ be a group of automorphisms
of ©. If every element σφl of Σ leaves no element (^pE) of © fixed, Σ is
called regular. If all the Sylow subgroups of © are cyclic, then © is called a
Z-group, PGL(2, q) and PSL(2, q) denote the projective general and special
linear groups of degree 2 over the field of (^-elements.

* This is a continuation of [5].
** This research is partially supported by N.S.F. Grant GP 9584.

*** A part of the theorem, namely in the form of Proposition 2.2 was known at the time
of [5].
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A proper subgroup § of © is called fundamental, if there exists an element
X of © such that %=C(X). A fundamental subgroup % is called free, if % is
not contained in and does not contain any other fundamental subgroup of ©.
© is called of type F, if all the fundamental subgroups of © are free.

Let © be a group of type (nl9 n2, 1). If %l and S2

 are fundamental
subgroups of @ such that %^%2ί then f^ and f$2 are called fundamental

subgroups of © of type 1 and of type 2 respectively.

1. Preliminaries

Let © be a group of type (nίy n2, 1) which is a counter-example of the least
order against the theorem. Then © is non-solvable.

Proposition 1.1. (Burnside). |τr(©)|>3.

Proof. ([3], p. 492]).

Proposition 1.2. Z(®)£Φ(®).

Proof. Otherwise, there exists a proper subgroup ξ> of © such that
Let X be an element of ξ>. Since C(A)2Z(®), we have that

:φnC(JΓ). Hence φ is a group of type (n19 n2, 1). By the
choice of © ξ) is solvable. Then © is solvable against the assumption.

Proposition 1.3. For every prime divisor p of |@| there exists a p-element

X such that C(JT)=|=®.

Proof. Otherwise, a Sylow />-subgroup *β of © is contained in Z(©).
By a theorem of Zassenhaus ([3], p. 126) there exists a Sylow ^-complement

of ®. Hence *β^Φ(©). This contradicts Proposition 1.2.

Proposition 1.4. (Cf. [5], Proposition 1.1). Let % be a free fundamental

subgroup of ©. Then % is either (i) abelίan, or (ii) a non-abelian p-subgroup
for some prime p, or (iii) a direct product of a non-abelian p-subgroup and the Sylow

p-complement <£,Φ <£ o/ Z(®).

2. Case where © is of type F

In this section we assume that © is of type F

Proposition 2.1. © contains no fundamental subgroup of prime power
order.

Proof. Let $ be a fundamentals-subgroup of ©. Let q(^pp) be a prime
divisor of |©| (Cf. Proposition 1.1) and let X(^E) be an element of the center
of a Sylow ^-subgroup O of ®. Then C(X) contains £}. Since
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Z(©) is a p-group. Now let γ$1 be a fundamental subgroup of ® such that

I f J J Φ l δ l Then f$ι contains a Sylow (/-subgroup of ® for every q(^pp).
By Propositions 1.1 and 1.4 Si is abelian. Let φ be a Sylow />-subgroup of

®. Then ®=Sii$> and hence © is solvable (For instance, [4]). This is a
contradiction.

Proposition 2.2. © contains a fundamental subgroup which is of the form

(iii) in Proposition 1.4.

Proof. Assume the contrary. Then by Propositions 1.4 and 2.1 all the

fundamental subgroups of © are abelian. The intersection of any two distinct
fundamental subgroups of © is equal to Z(@). Hence ®/Z(@) admits an

abelian normal partition whose components are factor groups of fundamental
subgroups of © by Z(©). Then by a theorem of Suzuki ([6], Theorems 2

and 3) ®/Z(®) has the following structures: If C(XZ(®)) is nilpotent for every
involution XZ(®) of G/Z(®), then ®/Z(®) is isomorphic to PSL(2, q). If
®/Z(®) contains an involution XZ(®) with non-nilpotent C(XZ(®)), then
®/Z(®) is isomorphic to PGL(2, q).

First assume that q is even. Then PSL(2, q) (=PGL(2, q)) contains an

involution whose centralizer is a 2-group. Hence ® contains a 2-element
X such that C(X)/Z(®) is a 2-group. Let $ be a fundamental subgroup of @

such that |g |φ |C(JQ|. By Proposition 1.3 |8/Z(®)| must be divisible by
every odd prime divisor of | ® |. But PSL(2, q) contains no elements of order

aby where #(Φ1) and i(φl) are divisors of q+l and q—l respectively. This
is a contradiction. So q=pm is odd. PSL(2, q) and PGL(2, q) contain ̂ -elements
whose centralizers are ^-groups. Hence ® contains a ^-element X such that
C(X)/Z(®) is a p-group. Let § be a fundamental subgroup of ® such that
|g| Φ I C(X)\. By Proposition 1.3 |g/Z(®)| must be divisible by every prime
divisor of |®| other than p. Let a and b be odd prime divisors of q-\-l and
q—1 respectively. Then PSL(2, q) and PGL(2, q) contains no element of order
ab. This is a contradiction. Therefore q-\-1 or q— 1 is a power of 2. But then
PSL(2, q) and PGL(2, q) contain 2-elements whose centralizers are 2-groups.

Hence ® contains a 2-element Y such that C(Y)/Z(®) is a 2-grouρ. Since

I C( Y)= 181, this is a contradiction.
Let γ$Q=yβ0χ&p be a fundamental subgroup of ® which is of the form

(iii) in Proposition 1.4; namely, ^β0 is the non-abelian Sylow ^-subgroup of

So and S^ΦS is the Sylow ^-complement of Z(®). So in this section p is
fixed henceforth.

Proposition 2.3. Let %l be a fundamental subgroup of ® such that | Si 1 Φ
|8o|. Then 81 is abelian.

Proof. By Propositions 2.1 and 1.3, otherwise, %l is a direct product of
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a non-abelian ^-subgroup and the Sylow ^-complement Gt^ΦGc of Z(©). By
Propositions 1.1 and 1.3 there exist a prime divisor r of |©| distinct from p and
q and an r-element X of © such that C(^Qφ®. Then we obtain that | C(X) \ r>

1 80 1 r and | C(X) \r>\%,\r. This is a contradiction.

Proposition 2.4. Let ^l be a fundamental subgroup of ® such that \ %λ \ Φ

I So I . Let q be a prime divisor of \ © | distinct from p. Let Oj be the Sylow q-

subgroup of §! and Q a Sylow q-subgroup of © containing Oj . If O w abelian ,

then O— £V If & is non-abelian, then £l:dl=q. Hence q2 does not divide

Proof. If Q is abelian, then by Proposition 1.3 0=^ . So let us assume
that O is non-abelian. Then by Proposition 2.3 Q^Q, and hence

DΠ Z(®). Let JΓ be an element of Z2(O) such that J¥"$Z(O) and ^*

Then C(JSQ 3 D(O). Take any element Y of Q. Then Y ~1XY=XZ with Z e
Therefore C(X)=C(XZ)=C(Y~1XY)= Y~1C(X)Y and Y^ belongs to

Let D2 be the Sylow ^-subgroup of C(X). Then N(C(X)) contains O
and O/D2 is an elementary abelian <?-group.

By Propositions 1.1 and 1.3 there exist a prime divisor r of | C(X)\ and the

Sylow r-subgroup 3Ϊ2 of C(X) such that 3ΐ2^Z(@)n 5R2. We show that D/O2

can be considered as a regular automorphism group of 3R2/Z(©) Π 3t> In fact,
let us assume that there exist PF<=Q and F<=3Ϊ2 such that JF <$£!,, FφZ(®)

Π3ί2 and W~1VW=VU with C/eZ(®)n5R2. Then [Γ, W]q=[V, Wq}=E
= Uq, which implies that U=E. Therefore W belongs to C(V)=C(X), which
is a contradiction. Hence O/d2 is cyclic ([3], p. 499), and Q: £l2=q. Therefore

O: Oi^^ and Dx is normal in O. Finally we show that QGΛ/^). Assume

the contrary. Then there exist an element A of Q and a Sylow r-subgroup 3̂
of Sx such that S^Φ^""1^ ^4. Then an abelian group δ1=C(O1) contains ̂

and ^"^ ^4 as its Sylow r-subgroups. Hence Ήl^A'1^ A, which is a
contradiction.

Proposition 2.5. Let ̂  fo a fundamental subgroup of © SMC/* ί/ι«ί |Sj Φ
I . Then N(%l)/^l is not a p-group and has a square-free order.

Proof. In order to prove that | N(%1)/^1 \ is square-free, it suffices to show
that p2 does not divide | #(&)/& | (Proposition 2.4). Let φ, φ,, ̂  and @^

be Sylow ^-subgroups of ©, NffiJ, %, and Z(©) such that φ^φ^φ^

If Λ^Sj/Si is a ^-group, then by Proposition 2.4 we have that ©=
Since Sj. is abelian (Proposition 2.3), © is solvable (For instance, [4]). This is
a contradiction.

Now assume that φx: *&>/. If ^3©,, then C(«β1)=Sι Thus Φi ίs

non-abelian. Then Z(φ1)=Z(©)Πφ, and ̂  contains an element ^Γ such that

and XP^Z(^). As in the proof of Proposition 2.4 we
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obtain that φj^ is an elementary abelian p-group. By Propositions 1.1 and

1.3 there exist a prime divisor q of |f5j distinct from p and the Sylow q-

subgroup D! of %1 such that £}^Z(©)n £}x. As in the proof of Proposition
2.4 we can show that φjφj can be considered as a regular automorphism group

of jQJZί®) Π QI . Hence ^/^ is cyclic and Φ1:^β1=^>, which is against the
assumption. So we can assume that ^ι=@p. As above ̂ /^ can be considered
as a regular automorphism group of O1/Z(@) Π Gj. Hence if p is odd, then

Φi/^βi is cyclic. So A^^)/^ is a Z-group. We already know that there exists

a prime divisor r of [^(SO/Sj distinct from p. Let X/f^ be a Hall {/>, r}-

subgroup of N(^1)/%1. By Propositions 1.1 and 1.3 there exist a prime divisor
q of I §j I distinct from p and r and a Sylow <?-subgroup £X of f5x such that

Q^Z(©) Π G!. Then X/§1 can be considered as a regular automorphism group

of £yZ(®)Π £>!• So ϊ/g1 contains an element Y& of order pr ([3], p. 499).

Then I C( Y) | p> \ & \ p and | C( Y) | r> | S01 r - This is a contradiction. If />=2
and SβJSβi is cyclic, we get a contradiction as above. Thus we may assume that

ΦjSβi is a (generalized) quaternion group. Let I%1 be an involution of NffiJ/
&. Then for every element K of £}x we get that IKI=K~l (mod. £^ Π Z(@)).
Let W%λ be an element of order r of #(&)/&. Then we obtain that IW^KWI

= W-1K-1W=W~*IKIW (mod. D^zJ®)). Put ?)/O1nZ(©)=C(iD1/£i1n

Z(©)). Then ?):§! equals a power of <? and 2) is normal in Λ^(Sι) Since

|W7?)|=2r, |C(ίf7)/Z(®)|=0(mod2r). Then | C(W7)|2> |δJ2 and | C(WI)\r

> I So I r This is a contradiction.

Proposition 2.6. L^ gj i^ a fundamental subgroup of © such that \ %l \ =f=
I δ01. L^ί q be a prime divisor of \ © | distinct from p. Let Qx δ^ ίA^ Sylow
q-subgroup of ^1 and O α Sylow q-subgroup of © containing d1. 7/ Oj £y woί

weakly closed in Q zwYλ respect to ©, £λe« O/O Π Z(©2) w α/z elementary abelian
q-group of order q2.

Proof. This is obvious by Proposition 2.4.

Proposition 2.7. Let %^ be a fundamental subgroup of © such that
I g11 φ I g01. Let q be a prime divisor of \ © | distinct from p. Let £1, Ox α/zJ

@^ i^ Sy/ozϋ q-subgroups of ®, §! ^nrf Z(@) such that O^O^©^. A^o^ if ©

contains a normal subgroup ξ> of index q, then O/QΠ Z(@) ty α/z elementary abelian
group of order q2.

Proof. Since |S0U— I ® * I , £^3©* bY Proposition 1.3. Let ^0 be a
fundamental subgroup of © such that |$ 0 | = |f5 0 | By Proposition 1.2 ξ)
contains Z(®). Thus ξ) contains $ί0. So if for every pair of fundamental

subgroups & and & such that iSj = |&| Φ |S0|
 we have that ^ΠS!—€>

Π Sι> then ξ) is of type (»/, w2

7, 1). By the minimality of © φ is solvable, and
hence © is solvable against the assumption. So there exists a pair of funda-
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mental subgroups §ι and $fx such that | & | = | ̂  | Φ | g0 1 and ξ>Ξ>Sι and & : ξ>

Π ^1=q. This implies, in particular, that O is non-abelian. Let Qx be the

Sylow ^-subgroup of ̂  . We may assume that C^CG. Then OjΦOj and Ox

nώ1SZ(O)=£inZ(®). Therefore D/OΓlZ(®) is an elementary abelian
group of order q2.

Proposition 2.8. Let %^ be a fundamental subgroup of © such that

I Si I =M ??o I Then I N@1)/jS1 \ cannot be divisible by three distinct prime numbers
qy r and s which are distinct from 2 and p.

Proof. Assume that q>r>s. Let X/f^ be a Hall {r, s}-subgrouP of
ι (cf. Proposition 2.5). Let Ox be a Sylow ^-subgroup of &. Then

(cf. Proposition 1.3). Now ϊ/Sj can be considered as a regular
automorphism group of dJOj (Ί Z(©) (cf. Proof of Proposition 2.4). So
ΐ/Si is cyclic ([3], p. 499). The same argument holds for any Hall {r, t}-or

{s, t} -subgroup of A^)/^, where t is a prime divisor of l-Λ^Sj/δU distinct
from r and s. Thus N(^1)/^ί is cyclic. Let @ and @x be Sylow ^-subgroups
of Nffii) and Sj respectively. Then @ is a Sylow s-subgroup of ©. If @j is
weakly closed in @ with respect to ©, then since s is odd and @x is abelian, ©
contains a normal subgroup of index s ([2], p. 212). So by Propositions 2.6 and
2.7 we have that ©^ Z(®)Γ\^ί=s. Let D be a Sylow ^-subgroup of
Then Q/Sij can be considered as a regular automorphism group of @
Π @! . Since <?>£, this is a contradiction.

Proposition 2.9. Let %^ be a fundamental subgroup of © such that \ %l \

Φ I So I //" I N(8ι)/8ι I £y ^^w, ίA^w I ̂ (S^/δi I ^w/zoί 6^ divisible by two
distinct prime numbers q, r which are distinct from 2 and p.

Proof. This is obvious by the proof of Proposition 2.8.

REMARK. By Propositions 2.5, 2.8 and 2.9 we have that N(%1):^l—q or
pq or qr or pqr, where q Φ r and q^pp^r.

Proposition 2.10. Let %λ be a fundamental subgroup of © such that

I δ J Φ l S o l Let φ, φx and &p be Sylow p-subgroups of ®, & and Z(©)
respectively, such that β̂ Ξ> ̂  g Θ .̂ Then we have that ^β^® .̂

Proof. Assume that ^Ξg®^. Then since β̂ is not abelian (Propo-
sition 2.2), C(φι)=g1 and N^=N^^Zj^). Let β be the largest normal
subgroup of © contained in NffiJ. Then since ©— ̂ 3Λ^(Sι) (Proposition 2.4),
$ contains Z2(φ). Let X be an element of Z2(φ) not belonging to Z(©). Let
D! be a Sylow g-subgroup of §x. If X belongs to Sι> then f5j= C(X) contains
D(φ), and (̂80= JV^) contains «β. This is a contradiction. Thus ^Γ does
not belong to §ι So XZ(®) induces a regular automorphism on
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Hence $ contains C^ . Therefore Λ : Λ Π Si is a power of p, and dj is the
Sylow ^-subgroup of the Fitting subgroup of $. Thus Oj is normal in ®.
Since ^Dj)— Λf(Sι), this is a contradiction.

Proposition 2.11. p is odd.

Proof. Assume that^>=2. Let 7Z(®) be an involution of ®/Z(®) and put

)=--. Then X: C(/) is a power of 2. Since |C(7)| = |8ol
Z(@) ^

(Proposition 2.10), C(/)/Z(®) is a 2-group. So — — - is a 2-group. Therefore

by a theorem of Suzuki ([9], Theorem 2) ®/Z(@) possesses one of the fol-
lowing properties: (a) ®/Z(®) contains a normal Sylow 2-subgroup. (b)
*βZ(®)/Z(®) is cyclic or (generalized) quaternion and if A'"1φZ(©)JΪ'ΦφZ(©),
then ^Γ-1φZ(®)^ΓnφZ(®)=:Z(®), where φ is a Sylow 2-subgroup of®, (c)
®/Z(@) contains two normal subgroups ®JZ(®) and ®2/Z(®) (®^®2) such
that (i) a Sylow 2-subgroup of ®2/Z(®) is normal, (ii) ®: ®α— is odd, and (iii)
®!/®2 is isomorphic to PSL(2, q) (q is a Fermat or a Mersenne prime) or
PSL(2, 32) or PSL(2, 2m) (m>2) or S(?) or PSU(3, q) (q>2) or PSL(3, ?)
(#>2) or M^; where S(q), PSU(3, q), PSL(3, q) and Mq denote the Suzuki
group, the 3-dimensional projective special unitary group, the 3-dimensional
special linear group and the linear fractional group over the non-commutative
nearfield of 9 elements respectively.

If ®/Z(®) has Property (a\ then φ is normal in ®. Since ®=^N(%l)ί

®lΦ^N(%ι)/φΓ\N(%1). So ® is solvable against the choice of ® (Proposition
2.5). Suppose that ®/Z(®) has Property (b). Since φ0 is non-abelian (Propo-
sition 2.2), SβZ(@)/Z(®) is (generalized) quaternion. So Sβ contains two
elements A and B such that A2m=E EA^B=A~\ B2=Azm~l (mod Z(Sβ)).
Put BA^B^A^Z, ZeZ(5β). Then since C(B2) contains A, we get that
C(B2)^C(B). Since £2<£Z(®) and ® is of type F, this is a contradiction.
So ®/Z(®) has Property (c).

Suppose that ®2ΦZ(®). Let ^2 be the Sylow 2-subgrouρ of ®2 and let
O be a Sylow ^-subgroup of Λf(?$ι) not contained in Si (Proposition 2.5). If
^?2^Z(®), then Q/Dn Z(®) can be considered as a regular automorphism group
of φ2/^2n Z(®) (Proposition 2.10). So D/On Z(®) is cyclic ([3], p. 499), and
Q is abelian. Then Q is contained in Si (Proposition 1.3), which is a contradic-
tion. Thus φ2 is contained in Z(®) and ®2/Z(®) has an odd order. But
then Sβ/^β Π Z(®) can be considered as a regular automorphism group of
®2/Z(®). So φ/φnZ(®) is cyclic or (generalized) quaternion. This leads to
a contradiction, as above. Thus we get that ®2=Z(®).

It can be easily checked that PSt/(3, q) and PSL(3, q) (q>2) contain in-
volutions whose centralizers are not 2-groups. Thus ®1/Z(®) is not isomorphic
to PSU(3y q) nor PSL(3, q) (q>2). Now assume that ©Φ®^ Then it can
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be easily checked tha (S/Z(©) contains an element of even order, which is not a

power of 2. Thus we get that ©=©!. By the proof of Proposition 2.2 we can

assume that ®/Z(©) is isomorphic to S(q) or Mg. S(q) contains no element

of order ab, where a and b are prime divisors of #2+l and q—1 respectively

(cf. [7]). M9 contains no element of order 15. This contradicts Proposition
1.3.

Proposition 2.12. A Sylow 2-subgroup G of © is not abelian.

Proof. If G is abelian, then we may assume that G is contained in %l. By

a theorem of Feit-Thompson [1] GΦ(£. If jr-\Z(®)G*/Z(®) ΓΊ Z(®)G/Z(®)

ΦZ(®), then choose an element Y of XZ~1(®)£iX Π G not belonging to Z(@).

C(Y) contains X~l&X and G. Since C(Y) is abelian (Proposition 2.3), we

get that X-1ΩX=&. So by a theorem of Suzuki ([8], Theorem 2) ®/Z(®)
possesses one of the following properties: (a) ®/Z(©) contains a normal Sylow

2-subgroup. (b) GZ(®)/Z(®) is cyclic or (generalized) quaternion, (c) ®/Z(@)

contains two normal subgroups ®JZ(&) and ©2/Z(©) such that (i) ®j®1 and

@2/Z(®) have odd orders and (ii) ©J®,, is isomorphic to PSL(2, q) (?>3),

ΛSE7(3, ?) (q>2) or S(f).

If ®/Z(®) has Property (a), then G is normal in @. Then N(^)=N(%1)

=©, which implies the solvability of © (Proposition 2.5). This is a contradic-

tion. If ®/Z(©) has Property (b), then, since G is abelian, GZ(©)/Z(©) is

cyclic. Take a prime divisor r of | N(^1)/%1 \ and an r-element R of A^^) not

belonging to §x. Then 7?̂  induces a regular automorphism of G/G Π Z((S),

which is a contradiction. So ®/Z(@) has Property (c).

Suppose that ®2ΦZ(®). Let *β2 be a Sylow ^-subgroup of ©2. If
φ2SZ(@), then we may assume that N(φ2) contains Q. Thus d/θnZ(®)
can be considered as a regular automorphism of ^β2/Z(@) Π ^β2 So O/O Π
Z(@) is cyclic, which leads to a contradiction as above. Thus ^β2 is contained
in Nffi^ and ©2 is solvable. If ©2 is contained in %19 then f51=C(®2) is normal
in ©, which implies the solvability of ©. This is a contradiction. So ©2 is not
contained in %l. Take an element X of ($2 not belonging to ̂ . Then X^1

induces a regular automorphism of jQ/G Π Z(©). Hence ©2 contains O, which
is a contradiction. Thus we get that ®2=Z(®).

It can be easily checked that Sylow 2-subgroups of PSU(3, q), (q>2) and
S(q) are non-abelian. Thus ©JZ(©) is isomorphic to PSL(2, q). Now if q
is odd, then a Sylow 2-subgroup of PSL(2, q) is dihedral and contains its own
centralizer (in P5L(2, q)). Since G is abelian, we get that G/GΠZ((S) is
elementary abelian of order 4. If q is even, then a Sylow 2-subgroup of
P5L(2, q) is an elementary abelian 2-group of order q and coincides with its
own centralizer (in PSL(2, q)). Since &=€(&), we get that gx Π ®l=GZ(®).
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If r is an odd prime divisor of (q-\~l)(q—l) distinct from py then let R be an r-
element of ©x not belonging to Z(©). We may assume that ^1=C(R) and that

Since ?$1 is abelian, this is a contradiction. So we must have that
(q—l)=2*pβ with α, β^O. Since q>3, if we put q=Γ, then ZΦ2 and
Let L be an /-element of ©x not belonging to Z(©). We may assume

that S^C^L) and that S^Q. Since ^ is abelian, this is a contradiction.

REMARK. By the remark after Proposition 2.9 and by Proposition 2.12 we
have that N(γ$1):ι$1=2 or 2p or 2q or 2pq, where q is an odd prime distinct
from p.

Proposition 2.13. We have that N^): &=2 or 2q.

Proof. If Λ^Si): S1=2p, then ΛΓ(Sι)/Sι can be considered as a regular
automorphism group of ΠJ/D! Π Z(©), where Q^ΦG?) is a Sylow ^-subgroup
of Sx (By Proposition 1.1 there exists such a prime q). Thus N@ί)/^1 is
cyclic and there exists an element of order 2p of ®/Z(©). This is a con-
tradiction (Proposition 2.10). The case N($1):%ί=2pq can be treated in the
same way.

Proposition 2.14. For any subgroup X of & put £=XZ((S)/Z(©).
α Frobenίus group with *β as όte kernel, where 3̂ w <z Sylow p-subgroup of ©.

Proof. © is not />-nilpotent. In fact, if so, Nffi^ is normal in © (Pro-
position 2.13), which implies the solvability of © against the choice of ©.

Hence © also is not />-nilpotent. Thus by a theorem of Frobenius ([3], p. 436)
there exists a non-trivial subgroup § of ̂  such that 7V(ξ>)/C(ξ>) is not a p-
group. We choose § so that |ξ>| is as big as possible. We show that §=φ.
Assume that §£φ. First we notice that C(ξ>) is a p-group. In fact,
otherwise, there exist a />-element X not belonging to Z(©) and an element Y
which does not belong to Z(@) and has order prime to p, such that XY= YX.
This contradicts Proposition 2.10. Then we get that C(ξ>)Cξ>. Otherwise,
notice that 7V(C(§)$)2N(§) and C(C(§)§)CC(§), which contradicts the
choice of §. Let Q be a Sylow ^-subgroup of Λf(ξj), where q^p, and consider
ξ>JO. Then the above argument shows that Q can be considered as a regular
automorphism group of ξ>. Hence Q is cyclic or (generalized) quaternion
([3], p. 499). Suppose that Q is (generalized) quaternion. Then Q contains
two elements A and B such that | AZ(®) \ —4 and B2=A2Z, , BA~1B=A-1Z2 with
Z1? Z2€ΞZ(®). Then ®5C(£2)aC(£). Since © is of type F, this is impos-
sible. So Q is cyclic. By a theorem of Feit-Thompson [1] 7V(ξ>) is solvable.

So let ξ>* and X be a Sylow ^-subgroup and a Sylow ^-complement of Λ^(§)
respectively. By assumption on § we have that ξ> =0^(^(5)) and ξ>*3§.

There exists a non-trivial cyclic subgroup 2) of 36 such that ξ>5) is normal
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in N(§). By a theorem of Sylow we obtain that
Therefore there exist an abelian subgroup 2) which is not contained in Z(®)
and has order prime to p and a ̂ -element Z not belonging to Z((8) such that Z

normalizes 2). Let Y be an element of 2) not belonging to Z(@). Then C(Y)

and C(ZYZ-1)=Z'1C(Y)Z contains 2). Thus we get that C(Y)=Z~1C(Ύ)Z
(Proposition 2.3). This contradicts Proposition 2.13. So we must have that

Φ=5.
Let X=X/Z(@) be a Sylow ^-complement of ΛΓ(5p). Then, as above, X

can be considered as a regular automorphism group of φ. Thus Λf(φ) is a
Frobenius group with φ as its kernel.

Proposition 2.15. Let X be an element of ©=@/Z(@) whose order is

divisible by p. Then X is a p-element.

Proof. Otherwise, put X= ΫZ=ZΫ9 where Ϋ is a ^-element and Z is an

element whose order is prime to p. We may assume that Y belongs to 9β (in
Proposition 2.14). Then Z^φZφφ (Proposition 2.14) and Z^φZn ΦΞ> ΫΦE.

Let 3)=φn W'^W" be a maximal intersection of $ with other Sylow p-

subgroups. Then ΦΦG? and a Sylow />-subgroup of 7V(®) is not normal in

7V(®) ([10] p. 138). This leads to a contradiction as in the proof of Proposition

2.14.

Proposition 2.16. Sylow p-subgroups of ® are independent, namely if

then χ

Proof. This is obvious from the proof of Proposition 2.15.

Proposition 2.17. Let X be an element of © not belonging to Z(@) whose

order is prime to p. Then C(X) is conjugate with %1 in ®.

Proof. If there exists a prime divisor r of | %l distinct from 2 and g, then

let $R be a Sylow r-subgroup of g l β Then C(SR)=81 and 91 is a Sylow r-
subgroup of & (Proposition 2.13). C(X) is abelian and contains Y~1(3ίY for

some Ye®. Thus C(X)=C(Y-1MY)=Y-lC(m)Y=Y-l%1Y. The same
argument holds if 3ι contains a Sylow subgroup of @. Therefore by Prop-

osition 2.13 we may assume that %1 is a {2, ^}-group and that NffiJ: γ$ί=2q.
Let @, @x, @^ be Sylow 2-subgroups of ̂ gj), δx and C(A) respectively. We

may assume that @2@!, @3@x and ^φβ^. Since ©jΠ ©*££(©), we
obtain that ©^ Z(©)Π @!=2. Now let ]Q and C^ be Sylow g-subgroups of
-/V^t) and Si respectively. Then O/OX can be considered as a regular auto-
morphism group of @!/Z(©) Π @! . This is a contradiction.

Now we count the number of elements in ©. Put

=y, and 1 7V(φ) | =paz. By Propositions 2.15 and 2.16 there exist -(pa — 1)
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elements (Φ#) of © whose orders are prime to p. Thus we obtain that

From (*) we obtain that

Since y and z are divisors of x, it is only possible when either #=1 or y=x.

By Proposition 2.13 we have that y^x. By Proposition 2.14 we have that

*Φ1.
Thus © cannot be of type F.

3. Case where G is not of type F

In this section © is not of type F (See § 2). Let Si and S2 be fundamental

subgroups of © such that Sι5S2

Proposition 3.1. | Si I is divisible by every prime divisor p of \ © | .

Proof. This is obvious by Proposition 1.3.

Proposition 3.2. If% is a free fundamental subgroup of © with | S I — I Si I >
then % is abelίan.

Proof. If % is of type (iii) in Proposition 1.4, then | S ι l * = l @ * l > where
&q is the Sylow ^-subgroup of Z(&) with q^p p. This contradicts Proposition 1.3.

Proposition 3.3. | S2 \ is divisible by every prime divisor p of \ © | .

Proof. Suppose that there exists a prime divisor p of | © | which does not

divide |g2| . Since Z(@)sS2, |Z(@)| ^0 (mod. p). Let XΦE" be an element
of Z(*β), where «β is a Sylow ^-subgroup of ©. Then we have that | C(X) \

= I Si I . If C(X) is of type 1, then X belongs to a fundamental subgroup of type
2 contained in C(X). Then |S2 |=0 (mod. p) against the assumption. So
C(X) is free, and by Proposition 3.2 C(X) is abelian. Since | C(X) \ = \ Si I and
C(X)^, we may assume that ?{$£&. But then C(^)2Z(g1) and C(X)=^.
This is a contradiction.

Proposition 3.4. We may choose %2 so that there exist (at most] two primes
p and q such that §2 is a direct product of a {p, q}-Hall subgroup and an abelian
{p, q}-Hall complement.

Proof. We can find a ^-element X with C(X)=^%1 for some prime p.

Assume that for any other prime q and for any ^-element Y of Si we have that
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C(y)2gι Then g1 is a direct product of a Sylow ^-subgroup and an abelian
Sylow ̂ -complement. Hence the same is true for $2. So we may assume that
there exists a prime ^(Φp!) and a g'-element Yoί^1 such that (7 )̂$ .̂ Then
we can choose C(XY) as 82 with the claimed property.

Proposition 3.5. |g2/Z(@)| is divisible by every prime divisor p of \®\.

Proof. Let ^β2 be a Sylow />-subgroup of g2. Assume that *β2 is con-
tained in Z(©). Let ̂  be a Sylow p-subgroup of gx containing Sβ2. Then
by Proposition 1.3 we have that ^Ξg^β.,. Let Y be an element of ̂  not
belonging to φa. Then \C(Y)\ = \%1\ and, since g^Z^), C(Y) must be
free. By Proposition 3.2 C(Y) is abelian. Since C(Y)^Z(^)9 ^=C(Y).
This is a contradiction.

Proposition 3.6. EWry fundamental subgroup %2 of type 2 is nilpotent.

Proof. If there exists a ̂ -element X with C(X)=g2, then g2 i§ a direct
product of a Sylow />-subgroup and an abelian Sylow ^-complement of §2 (cf.
the proof of Proposition 3.4). So we may assume that there exists no element
X of a prime power order such that C(X)=%2.

Let X be a ̂ -element of g1 with C(X)=%19 where giSg,,. Let Y be an

element of the least order of %2 such that C(Y)=S2. Putτr(| y |)={j,r, •••}.

Then | τ r ( | y |)| >2. Put y=y^yr . , where y^φ£, yrΦ^- are q-, r-, -

elements which are commutative with each other. Then by assumption

C(y,)3& for each q in τ r ( \ Y \ ) . If C(Y,)=®, then 82=C(y)=C(r Π ?y^),rφί
which contradicts the choice of Y. So we get that | C( Yg) \ = \ Si I Assume
that q^p. Then %1^C(XYg)^^2. If for every q^p we have that
%l=C(XY9)=C(Yf)9 and if g^qy^y^) provided that p belongs to τr( | Y |),
then δ1=δ2ϊ which is a contradiction. So we may assume that either for
some q C(XYq)=τ§2 or $2=C(YpYg). Thus, in any case, §2 is a direct product
of a Hall {/>, ^-subgroup and an abelian Hall {p, <?}-complement (Proposition 3.4).

LetrΦ^), q and let Zbe an r-element of S2

 wrth C(Z)Φ© (Proposition 3.5).

Then we may assume that C(Z)=8le In fact, otherwise, g^C^ZJ^ga
and hence, C(^fZ)=g2. Then g2 is a direct product of a Hall {̂ >, r}-subgroup
and an abelian Hall {p, r}-complement of g2 (Proposition 3.4). Since <7Φr,
g2 is then nilpotent. So C(Z)=^l. Then the above argument shows that
there exists a prime sφr such that g2 is a direct product of a Hall {r, s}-subgroup
and an abelian Hall {r, s}-complement. Since {p, ^}φ{r, ί}> this implies that g2

is nilpotent.

Proposition 3.7. TVo Sylow subgroup (φGf) o/ © ά contained in g2.

Proof. Let β̂ be a Sylow p-subgroup (Φ©) of ©. Assume that β̂ is
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contained in §2 . Then every element of © belongs to some conjugate subgroup
of C(«β) (Proposition 3.6). This implies that ®=C(φ) and *βCZ(©) con-
tradicting Proposition 1.3.

REMARK. For every prime divisor p of | © | we have that p2 divides | © | .
This is obvious by Propositions 3.5 and 3.7.

DEFINITION 3.8. Let ^1=C(X) with a ^-element X. Then Si is called-
/>-singular if Z(Sι)/^(©) is a p-group.

Proposition 3.9. Let H be a finite group and @ a Sylow p-subgroup of X.
Let 2) be a p-subgroup of X such that 2)3Z)(@). Then there exists a Sylow p-
subgroup £ of X such that 2 ̂  2) S £>(£).

Proof. Let Z be a s Sylow ^-subgroup of X such that S)3Z)(2;) and
3) : 2) Π S is the least. We show that 2) =2) Π S. Assume that 2) : 2) Π £φ 1 .

Since 2) Π £3Z>(2;), 7V(2) Π S) contains S. Put 3=$ Π N(2) Π S). Then
3S?)n Z. If N(2)n £)=X, then 2)Π S^G-Ό^G for all GeX. This con-
tradicts the assumption $•" ?)fΊ £=t=l. So we must have that Λf(2)Γl£)φX.
Then by an induction argument with respect to | X | we may assume that there
exists a Sylow ^-subgroup U of N(tyΓ\X) such that 11̂ ,3 3 Z)(U). But U is
a Sylow ^-subgroup of X and 3)ΠU33^2)Π£. This is a contradiction.

Proposition 3.10. Let 5ι ^^ ^ fundamental subgroup of type 1. Let q
be a prime divisor of © : %1 . If there exists no q-singular fundamental subgroup
of ©, then (f does not divide © : %l .

Proof. Let £} and C^ be Sylow ^-subgroups of © and Si such that
QaO le Then Z(Q)£Z(®) and Ci is not abelian by Proposition 1.2. Let
^ be an element of Z2(D) not belonging to Z(D) and X^eZ(D). Let F be
an element of £}. Then y-1^ry = ̂ ΓZ with ZeZ(®). Thus C(y-^y)
= y-χC(JΪ)y=C(^) and F-^^y^-y-^-^y^^E1. Therefore jQ is
contained in N(C(X)) and Q/£iχ is an elementary abelian g-group, where Oχ
=QnC(A) is a Sylow ^-subgroup of C(JQ. If \C(X)\ = \%2\, then by Pro
position 3.6 or Proposition 1.4 C(X) is nilpotent. If Q/Oy can be considered
as a regular automorphism group of 3ί ̂ /Z(©) (Ί SR^ , where SRX is a Sylow r-
subgroup of C(X) and rφg, then O/O^ is cyclic ([3], p. 499) and d: O^=^
(Cy. Proposition 3.5). If G/£lχ is not regular as an automorphism group of
^xlZ(®)Π^χy there exists an r-element Y in 3ΐx not belonging to 3(©) such
that a Sylow ^-subgroup Qr of C( Y) contains tdx properly. By Proposition
3.9 we may assume that £}ΞgQFjΞ>Z)(G). Let Z be an element of d. Then
Z"1QZ=Qy. Now put 9ϊ*=<Z-1yZ, ZeO>. Then $R* is a D-invariant
subgroup of $iχ and Dr=OΠ C(5R*). Since a Sylow ^-complement of C(^f)
is abelian (cf. Proposition 3.4), C(Y) is a fundamental subgroup of type 1.
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Therefore d/Dr can be considered as a regular automorphism group of
9t*/9ΐ* Π Z(@). Hence O/Or is cyclic ([3], p. 499) and &:£ίγ=q.

If I C(X) I = I §! I and if C(X) is free, then C(X) is abelian by Proposition 3.2.

Q/Gjr can be considered as a regular automorphism group of $lx /?flx ΓΊ Z(@),
where 9^ is a Sylow r-subgroup of C(X) and r=£q. Thus Q/O^ is cyclic and
d:£lχ=q. So we may assume that C(X) is of type 1. By the assumption

there exists an r-element Y such that C(X)=C(Y), where jφr. Then G/Π*
can be considered as a regular automorphism group of 3tχ Π Z(C(X))I3{X Π Z(@),

where 9tx is a Sylow r-subgroup of C(X). Hence O/Dχ is cyclic and £l:>Cϊx=q.

Proposition 3.11. Let %1=C(X) be p-sίngular, where X is p-element.

Let Y be a q-element of §ι not belonging to Z(@) (Cf. Proposition 3.5). Let

9Ϊ! and 9ΐr be Sylow r -subgroups of & and C(XY) such that SR^SRy. //

Proof. By assumption y does not belong to Z(f$ι), and thus C(XY) is of

type 2. Assume that SRjSSRjr. Let Z be an element of Z )̂. Then

I C(XZ) I r> I C(XY) I r and C(X)^C(XZ). Hence by assumption C(JQ=C(JΓZ)

and Z belongs to Z(®). So ZίSROS^ί®) and î ίs not abelian. Let W be an
element of Z^) not belonging to Z(®) and such that W^reZ(®). Then

C(XW^) is of type 2. Let 9V be a Sylow r-subgroup of C(XW). Then as in
the beginning of the proof of Proposition 3.10 we have that SR1£ΞJV(C(-XTϊ'')) and

Riffiw ιs an elementary abelian r-group. By Proposition 3.6 C(XW) is
nilpotent. Let <S>W be a Sylow ί-subgroup of C(XW) with ίφr. Then 9^/3^

can be considered as a regular automorphism group of @Wr/@WrΠZ(®) (Pro-

position 3.5). Thus 91J9V is cyclic ([3], p. 499) and (Si1:
<3ϊw=

(3i1:3iγ=r.

Proposition 3.12. Let γ$1 be p-sίngular and q^pp. Then (f does not

divide ̂ i^.

Proof. This is obvious by Proposition 3.11.

Proposition 3.13. Assume that there exist no p-sίngular fundamental
subgroups of © for every p. If a Sylow q-subgroup Q2 of a fundamental subgroup

S2 °f tyPe 2 is not abelian, then for every prime divisor r of \ © | distinct from q
there exists a {q, r}-element X such that %2=C(X). In particular, a Sylow

q-complement of S2 & abelian.

Proof. By Proposition 3.6 §2 is nilpotent. Let %1=C(Y) is a funda-
mental subgroup of type 1 containing §2 . By assumption we may assume that Y

is a ^-element with p^q. If a Hall {p, <?} -complement SI of ^2 contains an

element Z not belonging to Z(f$ι)> then C(YZ) is of type 2 and contains O2.
This implies that O2 is abelian against the assumption (cf. the proof of Prop-

osition 3.4). So we must have that 2l£Z(f5ι) Then for every rΦ/>, q there
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exists an r-element W such that ^1=C(W) (Proposition 3.5). The above

argument shows that a Hall {r, <?} -complement of S2 is contained in Z )̂.
By Propositions 1.1 and 3.5 a Sylow ^-complement of S2 *

s contained in Z(Sι).
Putg2=C(F)and V=VpVg— , where Vp, Vq^E, ••• are^-, q-, ••• elements

which are commutative with each other. Let U be an r-element such that

g1= C( U). Then & 3 C( UVq) S 82 . If &= C( t/F,), then F, belongs to Z(Sθ
and §!=S2 which is a contradiction. So %2=C(UVg) as claimed.

Proposition 3.14. Assume that there exist no p-singular fundamental
subgroups of © for every prime p. Then every fundamental subgroup Si of type 1
is nίlpotent and njn2 is a prime power. Hence all the fundamental subgroups of
© are nίlpotent.

Proof. We show that for every element X of Si Si : & Π C(X)= 1 or njn2 .
If C(JQ=®, this is obvious. If C(X) is free, then C(X ) is abelian (Propositions
3.5 and 1.4) and C(X) contains Z(g1). This implies that & contains C(X),
which is a contradiction. If C(X) is of type 1, then we may assume that X
is a ^-element. By the assumption we can find a ^-element Y such that Si

= C(Y) andp^q. Then C(XY)=C(X)Π^19 which implies that Si : SiΠC^)
= 1 or ftj/ftg. So we may assume that C(X) is of type 2. If C(^Γ) is abelian,
then C(X) contains Z(§j) and C(X) is contained in %l . Hence we may assume
that a Sylow ^-subgroup of C(X) is not abelian for some p. Let %1=C(Y)J

where Y is a g-element. By Proposition 3.13 there exists a {p, r} -element X
such that C(X)=C(X) and ^Φ^>, r. Since F belongs to C(X) and C(̂ ) is
nilpotent (Proposition 3.6), YX=XY. Thus by Proposition 3.13 we get that

C(X Y)=C(X) is contained in & .
Hence by Theorem 1 of [5] Si is nilpotent and wjw2 is a prime power.

Proposition 3.15. There exists a p-singular fundamental subgroup of ©

for some p.

Proof. Assume the contrary. Then by Proposition 3.10 @: f§1 is square-

free, and by Proposition 3.14 f$ι is nilpotent. We show that Si is normal in
©, whence © is solvable against the assumption. Now let ̂  and *β be Sylow

^-subgroups of & and © such that ̂ cφ. We show that *β £#(&)• We may
assume that ^β:^βι=p. Put Sι=^βιXΦι> where φx is a Sylow ^-complement
of &. Let A: be an element of φ not belonging to sβlβ Then JΓ-1g1JΓ=φι

X jf"1^^. Let y be an element of φx not belonging to Z(®). Then C(Y)

is nilpotent (Proposition 3.14) and contains φx and X~l^X as Sylow ^-com-
plements. Hence φ1=J?"1φ1Jί , and JΓ belongs to

Proposition 3.16. Assume that there exists a p-singular fundamental
subgroup and that there exist no q-singular fundamental subgroups of © for every
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prime q distinct from p. If a Sylow r-subgroup of a fundamental subgroup S2 °f
type 2 is not abelian, then for every prime divisor s of \®\ distinct from r there
exists a {ry s}-element X with γ$2=C(X). In particular, a Sylow r-complement of
S2 is abelian.

Proof. By Proposition 3.6 $2 is nilpotent. Let ^1=C(Y) is a fundamental
subgroup of type 1 containing %2. The proof of Proposition 3.13 shows that
the assertion is true if we can choose Y as an s-element with $Φr. Then such a
choice is possible, unless r=p and §ι is ^-singular. So assume that r=p and
Si is ^-singular. Let *β2 be a Sylow ^-subgroup of %2. Let Z^E be a
^-element of §2 not belonging to Z(©) with q^pp. Then C(Z) contains *β2. If
C(Z) is free or of type 2, then *β2 is abelian against the assumption. Thus C(Z)
is of type 1 and we may assume that C(Z)$§2. So C(YZ) is of type 2 and

contains a Hall {p. <?}-complement St of S2 51 is abelian (Proposition 3.4).
Let W^pE be an s-element of SI not belonging to Z(®) (By Proposition 3.5
such an element always exists). C(W) cannot be free nor of type 2 as above.
So C(W) is of type 1 and contains %2. So we can apply the proof of Proposition
3.13.

Proposition 3.17. Assume that there exists a p-singular fundamental subgroup
and that there exist no q-singular fundamental subgroups for every q distinct from
p. Ifι$ι is not (p-) singular and of type 1, then ̂  is nilpotent and njn2 is a prime
power.

Proof. It is not difficult to check that the proof of Proposition 3.14 can
be applied here.

Proposition 3.18. Assume that there exists a p-singular fundamental
subgroup and that there exist no q-singular fundamental subgroups for every q
distinct from p. Then exists no non-singular fundamental subgroup of type 1.

Proof. Assume the contrary and let §ι be a non-singular fundamental
subgroup of type 1. By Proposition 3.10 the prime to p part of ©: ̂  is square-
free. By Proposition 3.17 §ι is nilpotent. By the proof of Proposition 3.15
®: N($i) is a power of p.

First assume that Nffi^) is solvable, and let ξ> be a Sylow ^-complement of

Af(8i)- Φ is a Sylow ^-complement of ©. Put ^l=^ Π Si. Then ̂  is a
Sylow ^-complement of Si Let ̂  be a Sylow />-subgrouρ of Si - Then
*P! is normal in ^ξ). Let 3̂ be a Sylow ^-subgroup of © containing 3̂̂
Since ©=φξ>, *β contains a normal subgroup 5̂  of© containing ̂ . £>x is a
Sylow ^-complement of C(̂ ). Hence if ̂ 5^, then ^0^(^)5^. But

for AΓe^n JV(θι) and Yt=$19 we have that X^Y^XY^^n^^^S. Since
& is non-singular, we have that CφOCδi. ΦiΠ #(&)£& and ̂
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C^Pu which is a contradiction. Hence we get that sβj=*{$!. If ®: ̂ ί 0
(mod/)), then ©—JV^^), and © is solvable against the assumption. So ©: ̂

ΞΞθ (mod/)), and thus Sβ is non-abelian and Z(*β)CZ(®). Now φ/^ can be

considered as a regular automorphism group of 9$JZ(®). Since ξ>/ξ\ has a

square-free order, ξ>/φ, is cyclic ([3], p. 499). Then ©/^C^) is a product
of a cyclic group and a/)-group, and hence is solvable (For instance, [4]). On

the other hand, C(^)=(^Γ\ COPι))θι is solvable by a theorem of Wielandt ([3],
p. 680). Thus © is solvable against the assumption.

Now assume that ΛΓ(f5ι) is non-solvable. Let *βx* be a Sylow ^-subgroup
of #(&). Then, since C^JsSi, Sβι*ββι can be considered as a regular
automorphism group of ^ι/Φι Π Z(©), where ξ)x is a Sylow ^-complement of
Sj. Hence ^Pi*/-^ is cyclic or (generalized) quaternion. If ^β^/Sβi is cyclic,
then N(^1)/^1 is a Z-group, which implies the solvability of NffiJ against the
assumption. So Sβi*/^ must be (generalized) quaternion, and, in particular,
p=2. Let *β be a Sylow 2-subgroup of © containing ^βx*. Then *β is non-
abelian and Z(*β)£Z(®). Let JΓ be an element of Z2(*β) not belonging to
Z(@) such that X2 GΞZ(®). Then C(X) 3D(sβ). As in the proof of Proposition
2.4 $β£ΛΓ(CCY)) and Sβββ^ is an elementary abelian 2-grouρ, where φx is
a Sylow 2-subgroup of C(-Y) such that φ^φ^2D(φ). If C(J5Q is not
2-singular, then by Propositions 1.4, 3.6 and 3.17 C(X) is nilpotent. Let dx

be a Sylow ^-subgroup of C(X) with <?φ/). If C(JQ is not of type 2, ty/tyx can
be considered as a regular automorphism group of Q^/OχΠZ(©). So ^β/^3χ
is cyclic and «β: φx=2 ([3], p. 499). Then | ̂ */^ | <2, which is a contradic-
tion. Suppose that C(X) is of type 2 and that ^β/^βχ is not regular as an
automorphism group of Q^/Qjr Π Z(©). Then there exist an element Y of
φ not belonging to ^β^ and an element Z of dx not belonging to Z(@) such
that YZ=ZF (cf. the proof of Proposition 2.4). Then C(Z) contains <$$X) Y>,
and is free or of type 1 and is not 2-singular. So by Propositions 3.2 and 3.17
C(Z) is nilpotent. Let ^βz be a Sylow 2-subgroup of C(Z). Then by Proposi-
tion 3.9 we may assume that ^β^φz^Z)(φ). Then W~1φzW=φz for every
PΓeφ. Put &*=<W~^ZW, W<=<$y. Then O* is a ^-invariant subgroup
of £lx and φz=^nC(D*). Now ^β/^βz can be considered as a regular
automorphism group of Q*/D*ΠZ(®). So *β/^βz is cyclic and «β: φz=2.
Then l^β^^βj <2, which is a contradiction. Hence we may assume that C(J5Γ)
is 2-singular.

Let S2 be a fundamental subgroup of type 2 contained in C(-X). By
Proposition 3.17 C(X): f$2 is a power of a prime. If C(X): S2^0 (mod 2), then
by Proposition 3.12 C(X): τ$2=q is a prime. By Proposition 3.6 %2 is nilpotent.
C(X) is a product of a Sylow ^-subgroup of C(JΓ) and a Sylow ^-complement of
g2. Hence by a theorem of Wielandt ([3], p. 680) C(X) is solvable. Let

where SI and 95 are Sylow 2-subgroup and Sylow 2-com-
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plement of F(C(X)) respectively. If SBstZ(®), then, since 33cS2,
can be considered as a regular automorphism group of 33/33 Γl Z(@). So we get
a contradiction as before. But if 33CZ(@), then by a theorem of Fitting ([3],

p. 277) F(C(X))SC(F(C(X)))3ftx, where ftx is a Sylow r-subgroup of
with rφ#, 2. By Propositions 1.1 and 3.5 we have that 9ϊx^Z(©). This is

a contradiction. Hence we may assume that C(X):ι$2=is a power of 2.
Let 31 be a Sylow 2-comρlement of S2. Suppose that a Sylow ^-subgroup

Π2 of 31 is non-abelian. Then by Proposition 3.15 a Sylow r-subgroup 3ϊ2 of

31 is abelian. Choose an element Y of 9Ϊ2 not belonging to Z(®). Then

C(XY)S&2 and C(XY) is of type 2. Then O2 is abelian against the as-
sumption. Hence 31 is abelian (cf. Propositions 1.1 and 3.5). Hence, in
particular, C(X) is solvable (cf. [4]). If C(X) is nilpotent, then φffix can be

considered as a regular automorphism group of 31/31 Γ\Z(®)9 and we get a
contradiction as before. Hence C(X) is not nilpotent.

Let §2 be a fundamental subgroup of type 2 contained in Si Since

Si o2 is a power of 2, every Sylow ^-subgroup of Oj of Si is contained in
^2 for #Φ2. We show that Dx is abelian. Suppose that Oj is not abelian.

Let Y be an element of Gx not belonging to ̂ Oj). Then C( Y) is of type 1 and

contains the Sylow ^-complement of Si In particular, C(Y) contains 9^,

where 9^ is the Sylow r-subgroup of Si (Proposition 1.1). Let Z be an element
of 9^ not belonging to Z(@) (Proposition 3.5). Then C(Z) contains Ox and

the Sylow ^-subgroup of C(Y). This is a contradiction. So the Sylow

2-complement 3̂  of Si is abelian.
Now we show that we may assume that 31=31!. Let Q, Ox and £lx

be Sylow ^-subgroups of ©, Si and C(JQ, where <?Φ2. We may assume that

and O2θ^-. Then since Qj and O^ are abelian, we have that

is elementary abelian of order q2 or O1=QjE . If O1 = QjC, then
is nilpotent and contains Slj and 31 as its Sylow 2-complement. So we

get that 3l1=3ί. Otherwise, let SR, 3̂  and <>fix be Sylow r-subgroups of ©, Si and
C(X), where rΦ^, rφ2. By Propositions 1.1 and 3.5 there exists such a prime.

Since we have assumed that SliΦSΪ, we get that SR/ϊtΓl^©) is elementary
abelian of order r2. We may assume that r>q. Since 31/3̂  can be considered
as a regular automorphism group of £lJZ(®) Π £X, this is a contradiction.

Hence we (may) assume that Sl^Slj.

Put F(C(Jr))=eχ3>, where (£ and © are the Sylow 2-subgroup and

Sylow 2-complement of F(C(X)). If ®SZ((8), then C(-X)n C(®) is nilpotent

and contains 31 and is normal in C(X). So 3ί is normal in C(X). Then

<$^N(C(X))CN(yi). Since C(Sl)=g1, ^ is normal in «β. Then «β is

contained in Λ^(Sι) and ©—7V(Sι), which implies the solvability of (S. This

is a contradiction. So we must have that ©CZ(@). Then (£2^β2> where ^β2

is a Sylow 2-subgroup of S2 Then 31/31 Γ\Z(®) can be considered as a
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regular automorphism of Sβjrββ2 , and hence SI/SI Π Z(®) is cyclic. Then

assume as above that r>q. Then since ;D1/Z(©)nOι is cyclic, we get a
contradiction as above.

Proposition 3.19. Assume that there exists a p-singular fundamental

subgroup and that there exist no q-singular fundamental subgroups for every q

distinct from p. Then there exists no free fundamental subgroup of index nλ.

Proof. This is obvious by the proof of Proposition 3.18.

Proposition 3.20. For at least two distinct primes p there exist p-singular
fundamental subgroups of ©.

Proof. By Proposition 3.15 for some prime p there exists a ^-singular

fundamental subgroup §ι of ® Suppose that there exists no ^-singular
fundamental subgroup of © for every prime q distinct from p.

By Propositions 3.18 and 3.19 if X is a ^-element of © not belonging to

Z(®), then ®:C(X)=n2. By Propositions 3.6 and 1.4 C(X) is nilpotent.
Furthermore by Propositions 3.18, 3.19, 3.5 and 1.1 C(X) is abelian.

Let S2 be a fundamental subgroup of type 2 contained in ̂  . Let O, Gj

and Q2 be Sylow ^-subgroups of ®, %t and g2 such that OsOiBOz (#Φ/>). By
Propositions 3.10 and 3 . 1 1 we have that O : Gj < q and C^ : CX, < q. Now we show

that O2 is normal in O. Assume the contrary. Then we must have that Q : ̂

=q, Ox: &2

=(l and £^: O2— ?2 Furthermore there exists an element Y in Q
such that F-'OaFφOa. Since O2 is abelian, Y~l&2Y Γl G2=QΓΊZ(®). So
OX/O Π Z(©) is elementary abelian of order q2. Let Z be an element of O1

such that Z(QnZ(®)) is an element of Z(Q/£i Π Z(®)) of order q. Let Oz

be a Sylow ^-subgroup of C(Z). Then Oz-(OnZ(®))<Z> is normal in O.
Let 9lz be a Sylow r-subgroup of C(Z) with rΦ/>, ^ (Proposition 3.5).
Then Q/D£ can be considered as a regular automorphism group of 3ΐz/3ΐz

nZ(®). Thus O/DZ is cyclic ([3], p. 499). This is a contradiction. So
£12 is normal in Q. Let 9ϊ2 be a Sylow r-subgroup of §2 with rΦp, 5. Then
D/Q2 can be considered as a regular automorphism group of 5t2/$R2nZ(©).

Thus O/£)2 is cyclic. Since C(O2)=g2, we get that £)£7V(g2). Therefore

©: N($2) is a power of/).
Since N(g2)£7V(^2), ©=φΛΓ(φ2), where «β is a Sylow 2- subgroup of ©

containing φ2. Hence we get that O^(©)^^P2.
Let §* be a free fundamental subgroup of index n2 (cf. Proposition 3.19)

and O* a Sylow ^-subgroup of §*. We may assume that O*£θ. We show

that D* is normal in O. Assume the contrary. Then we must have that

0:0*=^. Since 0(0*000 contains Z(&) and since g* is free and

abelian, we get that O* Π O^O Π Z(@). Thus O* : O Π Z(®)=O2: O Π Z(@)
= .̂ We know already that O/O2 is cyclic (of order q2). Let WfO2,
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be a generater of £)/Q2. Then C(W) has the index n2 in ® and
This is a contradiction. Now G/Q* is cyclic in fact, O/O* can be considered

as a regular automorphism group of *β*/Z(©)Γl^β*, where *β* is a Sylow />-
subgroup of f5* (cf. Proposition 3.7). Furthermore, the above argument shows
that D: Q*=g and that O*: Z(®)ΠΠ*=?. Then take a prime divisor r of

I S* I distinct from p and #. Let SR and 31* be Sylow r-subgroups of © and S*
such that 9ϊ^$R*. Then as above we obtain that 2t: SR*=9ί*: Z(®)nSR*=r.
We may assume that r>q. Then since 31/91* can be considered as a regular
automorphism group of G*/Z((S) Π G*, this is a contradiction. Hence there
exists no free fundamental subgroup (of index n2).

Now every ^-element is contained in some fundamental subgroup of type
2. Hence we get that Op(&)=^. Since ξ> is solvable, © is solvable against
the assumption.

Proposition 3.21. Let Si and S2 be fundamental subgroups of type 1

and 2 such that Si^^ Then S^ S2 is square-free.

Proof. This is obvious by Propositions 3.12 and 3.20.

Now let Si be ^-singular and ̂  be ^-singular, where />Φ q. Let S2 be a
fundamental subgroup of type 2 contained in Si By Proposition 3.6 S2 is
nilpotent. Since Si is ^-singular, ^^. N(^2)Γ(^1=p or 1. Next let $2 be a
fundamental subgroup of type 2 contained in §le By Proposition 3.6 $2 is
nilpotent. Since ̂  is g-singular, ̂ : Λf($ί2) Π §ι—q or 1. Assume that p>q. Let

Φ2 be a Sylow ^-subgroup of §2. Since ΛΓ(φ2)n$ι=N($2)ΓI$ ι, we see that

φ2 is normal in ^j. Hence $ί2 is normal in ̂ . Let X be an element of ̂
not belonging to ^2 such that \X\ is prime to q. Assume that ^ί=C(Y)9

where Y is a g-element. Then C(XY) is a fundamental subgroup of type 2
contained in gf l e The above argument shows that C(^ΓF) is a nilpotent normal
subgroup of $f l e Then §2C(^Γy) is nilpotent. This is a contradiction. This

implies that &: $ί2=?. But then S^S^j and §2 is normal in Si There
exists an element Z of Si not belonging to S2

 sucn tnat I ̂  | is prime to p.
Assume that %λ=C(W\ where ί^is a ̂ -element. Then C(ZW) is a fundamental
subgroup of type 2 contained in f$ le The above argument shows that C(ZW)

is a nilpotent normal subgroup of Si Then S2 C(ZW) is nilpotent. This is
a contradiction (cf. Proposition 1.1).
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