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1. Introduction

A differentiable action (Mm, φ, G) is called semi-free if it is free outside
the fixed point set, i.e., there are two types of orbits, fixed points and G. We
shall study the situation where (Σm, φ, S1) is a semi-free differentiable action
of S1 on a homotopy sphere 2W, and the fixed point set Fp is a homotopy sphere.
Concerning semi-free differentiable actions, Browder has studied in [5] and has
posed the following problem.

"What are the homotopy spheres which are being operated on in our con-

structions?"

On this problem we shall prove some theorems (see Theorems 2.1-2.5),
generalizing a theorem stated in [11]. They give a partial answer to this problem
of Browder. As corollaries we shall give non existence theorems of semi-free
^-actions on some homotopy spheres (see Corollaries 2.6, 2.7). They give an
answer to a problem of Bredon (see [19, problem 4, page 235]) and a partial

answer to a problem of Hirzebruch (see [19. problem 12, page 236]).
The author wishes to express his warmest thanks to Professor M. Nakaoka

for his constant encouragement.

2. Definitions, notations and statement of results

Let us denote by (Mm, φ, G) a differentiable action of the Lie group G
on the smooth manifold My i. e.y φ: GxM-^M such that, if meM, x, y^G,

(i) φ(x, φ(yy iff)) = φ(xy, Iff),

(ii) φ(e, m) = m, e=identity of G,

(iii) φ is a C°°-map.

A smooth submanifold 7VcMw is called invariant if φ(GxN)dNdMrn. An

* The author is partially supported by the Yukawa Foundation.
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action is called semi-free if it is free off of fixed point set, i. e., there are two types

of orbits, fixed points and G. All manifolds, with or without boundary, are to

be compact, oriented and differentiable of class C°°. The boundary of M will

be denoted by QM. We write M1 = M2 for manifolds Mί9 M,, if there is an

orientation preserving diffeomorphism /: M1 -+ M2. Let θn be the group of

homotopy /z-spheres and θn(dπ) be the subgroup consisting of those homotopy

spheres which bound parallelizable manifolds. The inertia group of an
oriented closed differentiable manifold Mn is defined to be the group

{ΣeΘJMM#Σ=Mn} which is denoted by /(M). Let ΣM be the generator of
θn(dτr) due to Kervaire and Milnor [14]. Dn and Sn~l denote, respectively,
the unit disk and the unit sphere in euclidean w-space and CPn denotes the
complex projective ra-space. Denote by S(ξ), B(ξ), CP(ξ), the total space of

the sphere bundle, the total space of the disk bundle, the total space of the

projective space bundle, respectively, associated to a complex vector bundle ξ.

Let (Σw, φ, S1) be a semi-free action on a homotopy sphere Σm, with fixed
point set F a homotopy ^-sphere. Let η be the normal complex <?-plane bundle
of F in Σw, 2q=m — p. The fixed point set Fp is called untwisted when η is

the trivial complex <?-plane bundle.

Then we shall have

Theorem 2.1. If a homotopy sphere Σp+29 admits a semi-free Sl -action with

some Fp^Θp as fixed point set/or p-\-2q^ 7, then

where η is the normal complex q-plane bundle of Fp in Σp+2q and C denotes the

trivial complex line bundle.

Theorem 2.2. If a homotopy sphere Σp+29 admits a semi-free Sl -action

with some Fp^Θp as fixed point set, for p-\-2q^7, p<*2q—ly then

FpxCP9=(SpxCPg) #

Theorem 2.3. // a homotopy sphere Σp+2q admits a semi-free Sl -action
with Fp^θp(dπ) as untwisted fixed point set for p-\-2q^7 and q: odd,, then

Theorem 2.4. If a homotopy sphere 24 / >~1 M^ admits a semi-free Sλ -action

with F4p~l^θ/ιp_ί(dπ) as untwisted fixed point set for 4p— 1+4^^7, then

where U is a manifold constructed as follows. Let W4p be a parallelizable manifold
with dW=F. Then U is a parallelizable (4p+4 q)-manifold such that Index U
= Index W and QU is a homotopy sphere.



DlFFERENTIABLE ACTIONS 181

Theorem 2.5. If a homόtopy sphere Σ4/>+1+4<7 admits a semi-free Sl-action

with F4p+l<=θ4p{l(dπ) as untwisted fixed point set for 4 ρ+l+4q (Φ 13)^7, then

where U is a manifold constructed as follows. Let W4p+2 be a parallelίzable

manifold with 8W=F. Then U is a parallelίzable (^pJ

Γ2-\-^q)-manίf old such
that Arf U=A.rf W and dU is a homotopy sphere. When 4p+l+4q=l3 or 29,

Corollary 2.6. Any homotopy sphere Σp+2q which is not a spin boundary,

does not admit any semi-free Sλ -action with Fp^θp(dπ) as untwisted fixed
point set for p Φ 1 , q : odd and p-\-2q^7.

Milnor [17] and Anderson, Brown and Peterson [1] have proved that there

exist homotopy spheres Σo*+1, Σo*+2 not bounding spin-manifolds for any
k^l. Hence Corollary 2.6 brings about the following

Corollary 2.7. The homotopy sphere Σ§*+1 (resp. Σo*+2) does not admit any
semi-free Sλ -action with Fp^θp(dπ) as untwisted fixed point set, if p^p\ and

(8/+l_p)/2 (resp. (8& + 2-£)/2) is odd.

REMARK 2.8. When (8k+2—p)/2 is even, G.E. Bredon has constructed
some examples in [2]. For example, the homotopy sphere Σo° (resp. Σo8) admits

a semi-free ^-action with the natural sphere as untwisted fixed point set of any

codimension divisible by 4.

On the other hand we can construct some semi-free S^-actions on homotopy

spheres by making use of the results of Brieskorn and Hirzebruch [4], [8].

Proposition 2.9. For any k<=Z, &Σ$~1+4<7 admits a semi-free Sl -action

with k ΣM * as fixed point set.

Proposition 2.10. For any k<=Z, k Σffi'1'1'49 admits a semi-free S'-actίon
with k Σ^"1"1 as fixed point set.

REMARK 2.11. Theorem 2.1 is a generalization of H. Maehara [15],

3. Preliminaries

In this section we shall, for the benefit of the reader, prove a lemma of
Browder [5] which will be necessary afterward. For a general discussion of
semi-free S ^actions we refer to [3] and [5].

Let (Σw, φ, S1) be a semi-free action, with fixed point set .F^cΣ"*, Fp a
homotopy ^-sphere. According to Uchida [23], the normal bundle of Fp has a
complex structure such that the induced action of S1 on it, is the scalar multi-

plication when we regard S1 as {z^C |#| =1}. In particular the codimension
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m—p=2q. Let η be the complex bundle over F defined by the action. It
is shown by Hsiang [9] and Montgomery-Yang [18] that if q=l and m>6,
then Σm=Sm and F=Sm~2 embedded as usual, and the action is linear. There-
fore we may restrict ourselves to q>\. Let B(ή) be an invariant tubular
neighbourhood of F in Σw (see [7, page 57]) (here we identified an invariant
tubular neighbourhood with the total space of the normal disk bundle), and
let S2q~l be the boundary of a fibre of B(η). When <?>!, it follows from a
general position argument that ^(Σ—F)^{1}. By making use of the Alex-
ander duality theorem, we can prove that the inclusion S2q~lc.Σ—F induces
isomorphisms H*(S2q~l)^H*(Σ<—F) of homology groups. It follows from
J.H.C. Whitehead [24] that if q>ly then S^^cΣ — F is a homotopy equiva-
lence. Now let N=Σ — B0(η) where B0(η) is the interior of an invariant

tubular neighbourhood of F, with B0(η)c: Int B(η). Then Sl acts freely on TV,
and on S2q~ldN, and S29"1 is homotopy equivalent to N. It follows from
the exact homotopy sequence of the fibre maps, using the diagram

that S2g~1/Sl-^N/S1 is a homotopy equivalence. Set N=N/Sl. Since the
action of Sl on S29~l is standard, S2q-l/Sl=CPq~\ and since S2q~l is the fibre
of B(η) over F it follows that its normal bundle is equivariantly trivial, so that
we get an embedding Dp+lχCPq~1(Σ.Nm~1, and it is a homotopy equivalence.
Similarly it is easy to prove that the region between dN and SpχCPq'1 is an
A-cobordism, so if m>6, by the A-cobordism theorem of Smale if p>l [22],
or its generalization, the s-cobordism theorem if p=l [13], it is diffeomorphic to
the product SpχCPq~lχI, and hence N is diffeomorphic to Dp+lχCPg~\
and N—>N is equivalent to

idxh: Dp+1xS2q-l^Dp+1xCPq~l

where h: S2q~1^CPq~1 is the Hopf map, i.e. the principal bundle N-*N is
induced by the map Ty^*CPq~l of the homotopy equivalence.

Hence we have shown the following

Lemma 3.1. Let (Σw, φ, Sl) be a send-free action on a homotopy sphere
Σ™, with fixed point set F a homotopy p-sphere. Then the normal bundle of F
in Σ has a complex structure such that the induced action of S1 on it, is the scalar

multiplication when we regard Sl as {#eC \z\ =1}. In particular m~p=2q.

Let N be the complement of an invariant open tubular neighbourhood of F in
Σw. // q>l and m>6, then N is equivariantly diffeomorphic to Dp+lxS2q~\
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with the standard action on S29~\ trivial action on Dp+1. In particular Σ™ is
diffeomorphic to B(η}[lDp+lχS2q~l where f is an equivarίant dίffeomorphism

f: QB^-^S^xS29-1 and U means we identify QB(η)c:B(η) with SpxS29~1

/
C Dp+1 xS29'1 via the diffeomorphίsm /.

4. Proof of Theorem 2.1

When q=l, Theorem 2.1 trivially holds (see §3). Hence we may assume
that q>l. Let (Σw, φ, S1) be a semi-free 5 ̂ action on a homotopy sphere Σw,
with fixed point set F a homotopy ^-sphere. Let η be the normal complex
g-plane bundle of F in Σw, 2q = m — p. Then we have an equivariant
diffeomorphism /: S(η) -» Sp xS29'1 such that B(η) (JDP+1X S29'1 is diffeomor-

phic to the homotopy sphere Σw by Lemma 3.1. We write B(η) (resp. Sp X D29)
in the form

(resp. S* X D*« = Dξ X DM \JD$X Z)2')
id

where U means we identify (dDζ)χD2q with (dDξ)χD2q via the diffeomor-
η

phism h obtained as follows. Let l^τrp-ι(Ug) be the characteristic map of
the bundle 17. Then the diffeomorphism

h : (dDf) X D2q - > (9D{) X D29

is defined by

h(X,y)=(x,ϊ(X)y).

We can assume that

f \DίxS2'-1: DξxS2*-1 - >DpχS29~l

and thatf\DξχS2<I~1=id by making use of the relative λ-cobordism theorem.
Let BSM be D{ X D*9 U Dξ X D\9 where D\q denotes the disk of radius ε,

•η'

0<(S<1 and η ' denotes the restriction of η. Canonically we can extend the
diffeomorphism / to the equivariant diffeomorphism

/": J5(?)-Int B,(η) - > SpχD29-Spχlnt

Hence we have the following equivariant diffeomorphism

Dξ X D\* U (B(η)-lΊA Bζ(η)] U Dp



184 K. KAWAKUBO

It is clear that DξxD2,1 U (B(η) — IntBε(ι?)) (jD^xS2"-1 is diffeomorphic to

Σw-Int(DfxZ)8

2ί)and

is diffeomorphic to Sm— Int (D£xD\q). It follows that the obstruction to
extending the diffeomorphism

ά / U / U t f : Σ^-Int (DtχD\*) - > SM-lnt (DfxD?)

to Σm-> Sm is nothing but Σw. Here we identified θm with the pseudo isotopy
group TZ\) (Diff S™'1) of diffeomorphisms of S"*'1 due to Smale [22]. Conse-
quently we have

Lemma 4.1. The obstruction to extending the diffeomorphism

f:

to B(n)-^SpχD2q is nothing but Σw.

Let ί*S(i70C), φ19 S
1) denote the S ^action which is given as follows.

By making use of a local trivialization, we can represent each point of

by (x, #!,-•-, Zq, z) with Σl#ί l 2 + l#| 2 =l where x is a point of F. Then the
1 = 1

action

>S(η®C)

is defined by

<Pι(g> (x> z» ~ , ̂ »>)) = (̂  ̂ i, •" » £**>

Since the bundle ^7φC is a complex vector bundle, this operation does not
depend on the choice of local trivializations.

Let (S(η)xD2\jB(η)xS\φΛ9 S1}, (S*xS2*+l, φ3, S
1), (S'xS^xΣPv

^ id ' id

SpχD2gχS1

9 φ^ Sl) denote the iS^actions which are given in similar ways.

Denote by iS^φC) (resp. S2(ηQ)C)} the following invariant submanifold of

for f, Q<ε<l:

Since the structural group of the fibre bundle S(ηφC) is the unitary group
t/(<7+l)> the above set does not depend on trivializations. Let d^\ S^ηξ&C)-*

S(η)χD2 (resp. d2: S2(η®C)-+B(η)χS1} be the diffeomorphism defined by
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dl(x9 *!, — , zqjz) = (*>-^> > ^ f > y)

(resp. d2(X, »„ .- , ,„ ») = (*, ̂ i-, .- , -j*i=, ^i

where α = V \ z1 \ 2-\ ----- h I %q \ 2 -

Since for g^S\ (x , *„ •••, #*, ̂ eS^ΘC)

x ^ - ^V ' « ' ' a' ε

rfx is equivariant. Similarly d2 is equivariant,, Hence we have the following
equivariant diffeomorphism

- > (S(i7) X D2 U fi^) X S \ φ2, S ') .

Similar arguments prove that there exists an equivariant diffeomorphism

</': (S*xSM+1,9»a,5
1)^(5*x5M-1x/>1!uS*xDlwxS1,9)4,S

1). Define a map

(resp. rf4: 5^xD 2 ^χS ] - - > SpχD2qx S1)

by

(resp. έ/4( j, z) = (̂ 4(5, y), ar) for 3;̂  5^ X D2^, *GΞ S1)

where φ2 (resp. < 4̂) denotes the action defined by

Φ2(g, (x,*ι,~ , ̂ )) = (x* g%» , <?̂ ) for (ΛJ, 0,, , %g) e S(ι?)

(resp. ^4(^, (Λ?, ,̂ — , *,)) - (Λ?, ̂ 1? ••• ,̂  for (Λ?, ,̂ — , zq)^SpxD2

Let (5(τ?)χS1, 9>5, S^resp. (S^xD^xS1, <?6J S1)} be the action defined by

^5 (g, (y, z)} = (y, g%) for
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) = (y,gx)' for

Then we have

Lemma 4.2. dz (resp. d4) is an equίvarίant diffeomorphism

d3 : (B(η) X S\ φj, S1) - * (B (77) χS\ φ» S1)

(resp. d4: (Sp X Ώ2q xS1, φ/, S1) - > (S* X D2q X S1, φ,y S1)}

where φz' (resp. φ/) denotes the restriction of φ2 (resp. φ4).

Proof

d*°<p2r(g, (y, z)) — d3(φ2(g, y), gz)

, Φ2(g, y)}> gz) = (Φ2(gzg, y), gz)

> y\ gz} = <p*(g, (ΦA*> y\ *}}

= <ps(g> d*(y> z)) .

This shows that J3 is equivariant with respect to <p2', φ5. On the other hand,
define a map

d5:B(η)χSl - >B(η)χSl

by
d*(y> z) = (Φ2(z, y), z .

Then we have ds<>d3(y, z)=ds(φ£s9 y), z} = (φ2(z, Φ2(s, y}\ z) = (φ2(s z, y\ z)

= (y, z) and d^^(y, z) = dt(φ£z,y), z) = (φ2(s, Φ2(z,y)), z) = (φ,(B z9y), z)

=(y, ^), i.e., J5orf3=J3oJ5=identity. Obviously d3 and d5 are diίferentiable,
hence d3 is an equivariant diffeomorphism. As for J4, the proof is left to the
reader.

It follows from Lemma 4.2 that we can construct a semi-free differentiable
action

(S(τj) X D2 U B(v) X S1, φ2" U φt, S
1

"4

where d,' = d3 \ S(η) X S1 (resp. dt' = d4\S*x S^x S1)

and 9>2" = φz \ S(y) X D* (resp. φt" = φ4\S*X S29'1 X D2) .

Then we have
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Lemma 4.3. id U dz (resp. id U d4) is an equίvaήant dίffeomorphίsm

idUd3: (S^xDy^B^xS^φ,, S1)

- > (S(rj) X D* (jB(r,) XS1, φ2" U φ>, S1)
d3

(resp. id(Jdt: (Si'xS<!'>-1xD2\jSί'xD2''xS1, φ,, S1}
* id

- > (S* x S29~lxD2 U S^xD^xS1, φ4"\Jφβ S1)} .
J / J
</4

Proof. Since the map is well-defined, this lemma follows easily from

Lemma 4.2.

It is clear that the orbit space S(η^C)lφ1 is diίfeomorphic to CP(??0C)
and SpxS2«+1/φ3 is difϊeomorphic to SpxCPg.

Lemma 4.4. The composition ^4°(/X id] °dϊl \QB(η) x S1 is equal to
fXld\dB(η)χSl.

Proof. For y e QB(η), z<=S\ we have

= (Φ<(*,Φ<(*,f(y))),*)

= (f(y\ *),

completing the proof of Lemma 4.4.

Lemma 4.5. The composition (dJ~)°{(fxid)/~}o(dii/~)\dB(v) of the

maps induced by the equίvarίant maps, is equal to f.

Proof. Since the action φ5 (resp. φβ) is trivial on the first factor B(ΎJ) of

B(η)xSl (resp. SpxD2g of SpxD2gχS1)9 this lemma follows directly from
Lemma 4.4.

Now we prove Theorem 2.1. It is clear that the orbit space S(ηφC)lφl is

diffeomorphictoCP^eC), hence (S(η)xDtvB(ιι)xS1)l(φa"\JφB) is diffeomor-

phic to CP(n®C) by Lemma 4.3. Similarly (SpxS2q-lxD2^SpχD2qχSl)l
<//

(<p" U φ6) is diffeomorphic to Sp X CPq by Lemma 4.3. Hence the composition

T = {(id U dt)l~}o{(fχid)l~}o{(id U4Γ/
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gives a diffeomorphism

>S*χCP*-S*xIntD**

such that T\dB(η}=f by Lemma 4.5. It follows from Lemma 4.1 that the
obstruction to extending the diffeomorphism

T 1 8 (̂17) : QB(η) - > S p X dD2g

to B(η) -» Sp X D2q is nothing but Σ^+2*. Thus we have a diffeomorphism

T U S: CP(n®C) - > (Sp x CPq) % 2p+2g

where S denotes a diffeomorphism obtained by Lemma 4.1. This makes the
proof of Theorem 2.1 complete.

5. Proof of Theorems 2.2, 2.3, 2.4 and 2.5

5.1. Proof of Theorem 2.2

According to Theorem 5.5 of Browder [5], the normal complex bundle η
of the fixed point set F in Σw is stably trivial. Therefore this theorem follows
directly from Theorem 2.1.

5.2. Proof of Theorem 2.3

In the proof of theorem 6.1 of Browder [5], it is shown that FpxCPg is
diffeomorphic to SpχCPg for Fp<=θp(dπ) and for q: odd. Applying Theorem
2.1, it follows that SpχCPg=FpχCPg=(SpxCPg) # Zp+2g, i.e., Σ^1 2^ belongs
to the inertia group I(SpχCPg), completing the proof of Theorem 2.3.

5.3 Proof of Theorem 2.4

Let W*p be a parallelizable manifold with QW=F4p~l. Let U be a paral-
lelizable (4/>+4<?)-manifold such that Index W= Index U and θ f/ i s a homotopy
sphere. Remark that there always exists such a manifold U (see Milnor [16]).
Then it is shown that F*p~lχCP2g is diffeomorphic to (S*p~lxCP2q} % dU in
the proof of Theorem 6.2 of Browder [5]. Applying theorem 2.1, it follows that

(S*p-lxCP2*) %dU=(S*p-lxCP2q) % Σ4*-1+4<7, i.e., 2 if (-ΘE/Je/OS^xCP2*),
completing the proof of Theorem 2.4.

5.4 Proof of Theorem 2.5

We first show the following

Lemma 5.4.1. There exists a parallelizable (4k-\-2)-manifold M4k+2 with
boundary a homotopy sphere dM4k+2 such that Arf invariant of M is equal to 1 for
any integer A(Φ1, 3)>0.

Proof. Let ι\ 7r2k(SO2k+1)->τr2k(SO) be the natural homomorphism induced



DlFFERENTIABLE ACTIONS 189

by the inclusion SO2k+1(^SO. Let z/eKer ι be the unique non trivial element
(see Kervaire [12]) and let (B, S2k+\ D2k+\ p) be the disk bundle over sphere
with the characteristic map v^π2k(SO2k+1). Let Ba, Bβ be two copies of B.
When we regard

BΛ as

and Bβ as Df*+ 1xZ>i ί + 1UZ>f +1xZ)|*+1 ,
V

the plumbing manifold of B^ and Bβ is defined to be the oriented differentiable
(4&+2)-manifold obtaind as a quotient space of B^ljBβ by identifying Z>i*+1X
Dlk+l and Z>l* + 1 xD§* + 1 by the relation (x, y) = (yy X)(XΪΞ D2

z

k+l= Dlk+\
yς=Dlk+l=Dl'+l) and is denoted by B^Bβ (=B^B). Let M4k+2 be the
manifold B^Bβ. Since i; belongs to Ker ι and 8M4*+2Φφ, M4*+2 is paralleli-
zable. It is easy to prove that dM4k+2 is a homotopy sphere. According to
Lemma 8.3 of Kervaire and Milnor [14], Arf invariant of M is equal to 1.
This completes the proof of Lemma 5.4.1.

Now we prove Theorem 2.5. Let W4p+2 denote a parallelizable manifold
with dW=F4p+l. Let WQ=W-lntD4p+2. Regarding W0 as a parallelizable
cobordism between F4p+1 and the natural sphere S4p+1, we can construct a
normal map

G: (W0;F
4*+1\JS'*+1) - >(S4p+1xI; S^+1χO\j S4p+lx 1)

with G \ S4p+1 = identity. Multiplying by CP2q we get a normal map

G x l : (Wt\F\jS'*+*)xCP*q-+(S'p+lxI\ S4p+1xQuS4p+1xl) xCP2g with
Gx 1 1 S4p+1 X CP2q= identity. Then the invariant σ(G X 1) of Theorem 2.6 of
Browder [5] is defined. Since the index of CP2q is equal to one, σ(Gx 1) is
equal to σ(G) by Sullivan's product formula (see Rourke [21]). By the defini-
tion cr(G) is nothing but Arf W. If 4p+2+4grΦ 14, we can find a parallelizable
(4/)+2+45r)-manifold U such that Arf C7=Arf W and dU is a homotopy sphere
by Lemma 5.4.1. It follows as in the proof of Novikov's Classification
Theorem [20] that F4p+1 X CP2q is diffeomorphic to (S4g+1 X CP2q) $dU. Hence
Σ # (-3C/) belongs to the inertia group I(S4p+1xCP2q) by Theorem 2.1. When
4p+l +4(7=13 or 29, Ker(Gx 1)^ can be killed by surgeries (see Theorem 2.10
of Browder [5] and [6]), hence F4p+1χCP2g is diffeomorphic to S4p+1xCP2.
Therefore the homotopy sphere £4/>+1+4(7 belongs to the inertia group
I(S 4p+1 X CP2q). This completes the proof of Theorem 2.5.

6. Proof of Corollary 2.6

If a homotopy sphere ΣpΛ~2q admits a semi-free ^-action with Fp<=θp(dπ)
as untwisted fixed point set for q: odd, then
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by Theorem 2.3. Since the second Stiefel- Whitney class W2(SpxCPg) is zero
for q: odd, SpxCP* is a spin-manifold (see Lemma 1 of Milnor [17]). Clearly
πl(SpxCPq)^{\] forpΦl . It follows from Lemma 9.1 of Kawakubo [10] that
the homotopy sphere Σp+2g bounds a spin-manifold. This completes the proof
of Corollary 2.6.

7. Proofs of Propositions

7.1. Proof of Proposition 2.9

Let us recall the explicit description of homotopy spheres in
given by Brieskorn and Hirzebruch [4], [8]:

LV = {(*„ - ,

Let ΛΣSPcΛΣSΓ1-1-4' be the imbedding defined by

ι» 0—0)

Consider the action of S1 on the last 2q variables of ΣsfβΐL"!4* defined as follows.
Let A: S1-* SO(2) be the representation defined by

/cos0 — sin^\
^(«'θ) =^ J \sin<9 cos(9/

and let φ : S1 -* SO(2q) be the representation defined by

ιA(<εf ) 0

0

Then 51 acts on the last 2q variables of ΣSfβϊi"!4* by means of the representa-
tion φ. It is obvious that this action is semi-free and the fixed point set is

This completes the proof of Proposition 2.9.

7.2 Proof of Proposition 2.10

Let us reall the explicit description of homotopy spheres in θ4/,+1+4^(3τr)

given by Brieskorn [4]

= 0,

Let Σ4^+1cΣ4^+1+4g be the imbedding defined by
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(#1, ••• » *2/H-2)^(#l> — , %2P+2> 0—0).

Let 9?: Sl->SO(2q) be the representation defined in the proof of Proposition

2.9. Then S1 acts on the last 2q variables of 2^+1+4* by means of the repre-

sentation φ. It is obvious that this action is semi-free and the fixed point set

is ΣM+I On the other hand there always exists the natural semi-free S1-

action on S*p+l+4q with S*p+l as fixed point set. This completes the proof of

Proposition 2.10.

8. A concluding remark

Concerning semi-free 53-actions, it is shown in F. Uchida [23] that the

normal bundle of the fixed point set becomes the quaternionic vector bundle.

Hence similar results are obtained about semi-free 53-actions.
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