Kawakubo, K. Osaka J. Math. 7 (1970), 179-192

ON HOMOTOPY SPHERES WHICH ADMIT DIFFERENTIABLE ACTIONS II

KATSUO KAWAKUBO*

(Received November 20, 1969) (Revised February 26, 1970)

1. Introduction

A differentiable action *(M^m , φ,* G) is called semi-free if it is free outside the fixed point set, i.e., there are two types of orbits, fixed points and *G.* We shall study the situation where (Σ^m, φ, S^1) is a semi-free differentiable action of S^1 on a homotopy sphere Σ^m , and the fixed point set F^p is a homotopy sphere. Concerning semi-free differentiable actions, Browder has studied in [5] and has posed the following problem.

"What are the homotopy spheres which are being operated on in our constructions?"

On this problem we shall prove some theorems (see Theorems 2.1-2.5), generalizing a theorem stated in [11]. They give a partial answer to this problem of Browder. As corollaries we shall give non existence theorems of semi-free S^1 -actions on some homotopy spheres (see Corollaries 2.6, 2.7). They give an answer to a problem of Bredon (see [19, problem 4, page 235]) and a partial answer to a problem of Hirzebruch (see [19. problem 12, page 236]).

The author wishes to express his warmest thanks to Professor M. Nakaoka for his constant encouragement.

2. Definitions, notations and statement of results

Let us denote by (M^m, φ, G) a differentiable action of the Lie group G on the smooth manifold M, i. e., $\varphi: G \times M \to M$ such that, if $m \in M$, $x, y \in G$,

- (i) $\varphi(x, \varphi(y, m)) = \varphi(xy, m),$
- (ii) $\varphi(e, m) = m$, e =identity of G,
- (iii) φ is a C^{∞} -map.

A smooth submanifold $N \subset M^m$ is called *invariant* if $\varphi(G \times N) \subset N \subset M^m$. An

^{*} The author is partially supported by the Yukawa Foundation.

action is called *semi-free* if it is free off of fixed point set, i. e., there are two types of orbits, fixed points and *G.* All manifolds, with or without boundary, are to be compact, oriented and differentiable of class *C°°.* The boundary of *M* will be denoted by ∂M . We write $M_1 = M_2$ for manifolds M_1 , M_2 , if there is an orientation preserving diffeomorphism $f: M_1 \rightarrow M_2$. Let Θ_n be the group of homotopy /z-spheres and *θⁿ (dπ)* be the subgroup consisting of those homotopy spheres which bound parallelizable manifolds. The inertia group of an oriented closed differentiable manifold *Mⁿ* is defined to be the group $\{\Sigma \in \Theta_n | M^n \sharp \Sigma = M^n\}$ which is denoted by $I(M)$. Let Σ_M^n be the generator of *θn (dτr)* due to Kervaire and Milnor [14]. *Dⁿ* and *Sⁿ ~ l* denote, respectively, the unit disk and the unit sphere in euclidean n -space and \mathbb{CP}^n denotes the complex projective *n*-space. Denote by $S(\xi)$, $B(\xi)$, $\mathbb{CP}(\xi)$, the total space of the sphere bundle, the total space of the disk bundle, the total space of the projective space bundle, respectively, associated to a complex vector bundle *ξ.* Let (Σ^m, φ, S^1) be a semi-free action on a homotopy sphere Σ^m , with fixed point set *F* a homotopy p -sphere. Let η be the normal complex q -plane bundle of *F* in Σ^m , $2q=m-p$. The fixed point set F^p is called *untwisted* when η is the trivial complex q -plane bundle.

Then we shall have

Theorem 2.1. If a homotopy sphere Σ^{p+2q} admits a semi-free S^1 -action with p *some* F^p \in Θ_p *as fixed point set for* $p\!+\!2q$ \geq *7, then*

$$
\boldsymbol{C} \boldsymbol{P}(\eta \oplus \boldsymbol{C}) = (S^{\,p} \! \times \! \boldsymbol{C} \boldsymbol{P}^{\,q}) \, \sharp \, \Sigma^{\,p+2q} \ ,
$$

where η is the normal complex q-plane bundle of F^p in Σp+2q and C denotes the trivial complex line bundle.

Theorem 2.2. *If a homotopy sphere Σp+29 admits a semi-free S^l -action* with some $F^p{\in} \Theta_p$ as fixed point set, for $p{+}2q{\geq}7$, $p{\leq}2q{-}1$, then

$$
F^p\times CP^q=(S^p\times CP^q)\,\sharp\,\Sigma^{p+2q}
$$

Theorem 2.3. If a homotopy sphere Σ^{p+2q} admits a semi-free S¹-action with F^p \in Θ_p $(\partial \pi)$ as untwisted fixed point set for $p+2q$ \geq 7 and q: odd,, then

$$
\Sigma^{p+2q} \!\!\in\! I(S^p\!\times\!{\bm{C}}{\bm{P}}^q) \, .
$$

Theorem 2.4. If a homotopy sphere $\Sigma^{4p-1+4q}$ admits a semi-free S^{*l*}-action</sub> \mathbb{R}^{n} *with* $F^{4p-1} \in \Theta_{4p-1}(\partial \pi)$ as untwisted fixed point set for $4p-1+4q \geq 7$, then

$$
\Sigma \sharp (-\partial U) \in I(S^{4p-1} \times \mathbb{C}P^{2q}),
$$

where U is a manifold constructed as follows. Let W4p be a parallelizable manifold with $\partial W = F$. Then U is a parallelizable $(4p+4q)$ -manifold such that Index U *=* Index *W and QU is a homotopy sphere.*

Theorem 2.5. If a homotopy sphere $\Sigma^{4p+1+4q}$ admits a semi-free S^1 -action *with* $F^{4p+1} \in \Theta_{4p+1}(\partial \pi)$ as untwisted fixed point set for $4p+1+4q$ ($\neq 13$) ≥ 7 , then

$$
\Sigma \sharp (-\partial U) \in I(S^{4p+1} \times CP^{2q}),
$$

where U is a manifold constructed as follows. Let W4p+2 be a parallelίzable manifold with $\partial W = F$ *. Then U is a parallelizable* $(4p+2+4q)$ –manifold such *that* Arf $U=$ Arf W and ∂U is a homotopy sphere. When $4p+1+4q=13$ or 29, $\Sigma \in I(S^{4p+1} \times CP^{2q}).$

Corollary 2.6. *Any homotopy sphere Σp+2q which is not a spin boundary, does not admit any semi-free S¹-action with* $F^p \in \Theta_p(\partial \pi)$ *as untwisted fixed point set for* $p \neq 1$ *, q: odd and* $p+2q \geq 7$ *.*

Milnor [17] and Anderson, Brown and Peterson [1] have proved that there exist homotopy spheres Σ_0^{8k+1} , Σ_0^{8k+2} not bounding spin-manifolds for any $k \geq 1$. Hence Corollary 2.6 brings about the following

Corollary 2.7. The homotopy sphere Σ_0^{8k+1} (resp. Σ_0^{8k+2}) does not admit any *semi-free* S^{*1*}-action with $F^p \in \Theta_p(\partial \pi)$ as untwisted fixed point set, if $p\! \pm \! 1$ and $(8l+1-p)/2$ (resp. $(8k+2-p)/2$ *) is odd.*

REMARK 2.8. When $(8k+2-p)/2$ is even, G.E. Bredon has constructed some examples in [2]. For example, the homotopy sphere Σ_0^{10} (resp. Σ_0^{18}) admits a semi-free $S¹$ -action with the natural sphere as untwisted fixed point set of any codimension divisible by 4.

On the other hand we can construct some semi-free S^1 -actions on homotopy spheres by making use of the results of Brieskorn and Hirzebruch [4], [8].

Proposition 2.9. For any $k \in \mathbb{Z}$, $k \sum_{M}^{4p-1+4q}$ admits a semi-free S¹-action *with* $k \sum_{M}^{4p-1}$ *as fixed point set.*

Proposition 2.10. For any $k \in \mathbb{Z}$, $k \sum_{M}^{4p+1+4q}$ admits a semi-free S¹-action with $k \sum_{M}^{4p+1}$ as fixed point set.

REMARK 2.11. Theorem 2.1 is a generalization of H. Maehara [15],

3. Preliminaries

In this section we shall, for the benefit of the reader, prove a lemma of Browder [5] which will be necessary afterward. For a general discussion of semi-free $S¹$ -actions we refer to [3] and [5].

Let (Σ^m, φ, S^1) be a semi-free action, with fixed point set $F^p \subset \Sigma^m$, F^p a homotopy p -sphere. According to Uchida [23], the normal bundle of F^p has a complex structure such that the induced action of $S¹$ on it, is the scalar multiplication when we regard S^1 as $\{z{\in}C \big||z|{=}1\}.$ In particular the codimension

 $m-p=2q$. Let η be the complex bundle over *F* defined by the action. It is shown by Hsiang [9] and Montgomery-Yang [18] that if $q=1$ and $m>6$. then $\Sigma^m = S^m$ and $F = S^{m-2}$ embedded as usual, and the action is linear. Therefore we may restrict ourselves to $q>1$. Let $B(\eta)$ be an invariant tubular neighbourhood of *F* in Σ^m (see [7, page 57]) (here we identified an invariant tubular neighbourhood with the total space of the normal disk bundle), and let S^{2q-1} be the boundary of a fibre of $B(\eta)$. When $q>1$, it follows from a general position argument that $\pi_1(\Sigma - F) \approx \{1\}$. By making use of the Alexander duality theorem, we can prove that the inclusion S^{2q-1} ⊂Σ–F induces isomorphisms $H_*(S^{2q-1}) \cong H_*(\Sigma - F)$ of homology groups. It follows from J.H.C. Whitehead [24] that if $q>1$, then $S^{2q-1} \subset \Sigma - F$ is a homotopy equivalence. Now let $N = \Sigma - B_0(\eta)$ where $B_0(\eta)$ is the interior of an invariant tubular neighbourhood of F, with $\overline{B_{0}(\eta)}$ \subset Int $B(\eta)$. Then S^{1} acts freely on N, and on S^{2q-1} \subset *N*, and S^{2q-1} is homotopy equivalent to *N*. It follows from the exact homotopy sequence of the fibre maps, using the diagram

that $S^{2q-1}/S^1 \rightarrow N/S^1$ is a homotopy equivalence. Set $\overline{N}=N/S^1$. Since the action of S^1 on S^{2q-1} is standard, $S^{2q-1}/S^1 = CP^{q-1}$, and since S^{2q-1} is the fibre of $B(\eta)$ over *F* it follows that its normal bundle is equivariantly trivial, so that we get an embedding $D^{p+1} \times CP^{q-1} \subset \overline{N}^{m-1}$, and it is a homotopy equivalence. Similarly it is easy to prove that the region between $\partial \overline{N}$ and $\overline{S^p}{\times}\overline{{\bm{CP}}^{q-1}}$ is an *h*-cobordism, so if $m>6$, by the *h*-cobordism theorem of Smale if $p>1$ [22], or its generalization, the *s*-cobordism theorem if $p=1$ [13], it is diffeomorphic to the product S^p \times \mathbb{CP}^{q-1} \times *I*, and hence \overline{N} is diffeomorphic to D^{p+1} \times \mathbb{CP}^{q-1} , and $N \rightarrow \overline{N}$ is equivalent to

$$
id \times h \colon D^{p+1} \times S^{2q-1} \to D^{p+1} \times \mathbb{C}P^{q-1}
$$

where *h*: $S^{2q-1} \rightarrow CP^{q-1}$ is the Hopf map, i.e. the principal bundle $N \rightarrow \overline{N}$ is induced by the map $\overline{N} \rightarrow CP^{q-1}$ of the homotopy equivalence.

Hence we have shown the following

Lemma 3.1. Let (Σ^m, φ, S^1) be a semi-free action on a homotopy sphere Σ™, *with fixed point set F a homotopy p-sphere. Then the normal bundle of F in* Σ *has a complex structure such that the induced action of S¹ on it, is the scalar* multiplication when we regard $S^{\text{-}}$ as $\{z{\in}C\, \vert\, |z|\!=\!1\}.$ In particular m $-p{=}2q.$ *Let N be the complement of an invariant open tubular neighbourhood of F in* Σ^m . If $q > 1$ and $m > 6$, then N is equivariantly diffeomorphic to $D^{p+1} \times S^{2q-1}$,

with the standard action on S²⁹~\ trivial action on Dp+1 . In particular Σ™ *is* $diffeomorphic$ to $B(\eta) \cup D^{p+1} \times S^{2q-1}$ where f is an equivariant diffeomorphism *f*: $\partial B(\eta) \rightarrow S^p \times S^{2q-1}$ and U means we identify $\partial B(\eta) \subset B(\eta)$ with $S^p \times S^{2q-1}$ / $\subset D^{p+1} \times S^{2q-1}$ via the diffeomorphism f.

4. Proof of Theorem 2.1

When $q=1$, Theorem 2.1 trivially holds (see §3). Hence we may assume that $q>1$. Let (Σ^m, φ, S^1) be a semi-free S^1 -action on a homotopy sphere Σ^m , with fixed point set F a homotopy p -sphere. Let η be the normal complex q-plane bundle of F in Σ^m , $2q = m - p$. Then we have an equivariant diffeomorphism $f: S(\eta) \to S^p \times S^{2q-1}$ such that $B(\eta) \cup D^{p+1} \times S^{2q-1}$ is diffeomorphic to the homotopy sphere Σ^m by Lemma 3.1. We write $B(\eta)$ (resp. $S^p \times D^{2q}$) in the form

$$
B(\eta) = D_1^{\rho} \times D^{2q} \underset{\eta}{\cup} D_2^{\rho} \times D^{2q}
$$

(resp. $S^{\rho} \times D^{2q} = D_3^{\rho} \times D^{2q} \underset{\text{id}}{\cup} D_4^{\rho} \times D^{2q}$)

where \bigcup_{η} means we identify $(\partial D_1^p) \times D^{2q}$ with $(\partial D_2^p) \times D^{2q}$ via the diffeomorphism *h* obtained as follows. Let $l \in \pi_{p-1}(U_q)$ be the characteristic map of

the bundle η . Then the diffeomorphism
 $h: (\partial D_1^p) \times D^{2q} \longrightarrow (\partial D_2^p) \times D^{2q}$ the bundle η . Then the diffeomorphism

$$
h\colon(\partial D_1^{\rho})\!\times\! D^{_2q}\!\longrightarrow (\partial D_2^{\rho})\!\times\! D^{_2q}
$$

is defined by

$$
h(x, y) = (x, l(x)y).
$$

We can assume that

$$
h(x, y) = (x, l(x)y).
$$

it

$$
f | D_2^p \times S^{2q-1} : D_2^p \times S^{2q-1} \longrightarrow D_4^p \times S^{2q-1}
$$

and that $f \mid D_2^b \times S^{2q-1} = id$ by making use of the relative *h*-cobordism theorem. Let $B_{\epsilon}(\eta)$ be $D_1^{\rho} \times D_{\epsilon}^{2q} \cup_{\eta'}^{\rho} D_2^{\rho} \times D_{\epsilon}^{2q}$ where D_{ϵ}^{2q} denotes the disk of radius ε , $0 < \varepsilon < 1$ and *η'* denotes the restriction of *η*. Canonically we can extend the diffeomorphism *f* to the equivariant diffeomorphism
 F: *B*(*η*)−Int *B*_ε(*η*) → *S*^{*p*} × *D*^{2*q*} − *S*^{*p*} × Int *D*^{2*q*}. diffeomorphism f to the equivariant diffeomorphism

$$
\overline{f}
$$
: $B(\eta)$ —Int $B_{\epsilon}(\eta) \longrightarrow S^p \times D^{2q} - S^p \times$ Int D_{ϵ}^{2q} .

Hence we have the following equivariant diffeomorphism

$$
\begin{aligned} &D^{\bm{\ell}}_2 \!\times\! D^{2\bm{q}}_{\bm{\mathfrak{e}}} \cup \left(B(\eta) \!-\! \text{Int}\, B_{\bm{\mathfrak{e}}}(\eta) \right) \mathop{\cup}\limits_{f} D^{\bm{\ell}+1} \!\times\! S^{2\bm{q}-1} \\ &\xrightarrow[\bm{id}\, \cup \overline{f} \cup \vec{id}]\, D^{\bm{\ell}}_4 \!\times\! D^{2\bm{q}}_{\bm{\mathfrak{e}}} \cup \left(S^{\bm{\ell}} \!\times\! D^{2\bm{q}} \!-\! S^{\bm{\ell}} \!\times\! \text{Int}\, D^{2\bm{q}}_{\bm{\mathfrak{e}}} \right) \mathop{\cup}\limits_{\bm{\mathfrak{i}}} D^{\bm{\ell}+1} \!\times\! S^{2\bm{q}-1}\, . \end{aligned}
$$

It is clear that $D_2^p \times D_{\epsilon}^{2q} \cup (B(\eta) - \text{Int }B_{\epsilon}(\eta)) \cup D^{p+1} \times S^{2q-1}$ is diffeomorphic to $\Sigma^{\textit{m}}$ — $\text{Int}\, (D_1^{\textit{p}} \!\times\! D_{\textit{e}}^{\textit{2q}})$ and

$$
\displaystyle D^{\textit{b}}_4\times D^{2\textit{q}}_{\epsilon}\cup_{id} (S^{\textit{b}}\times D^{2\textit{q}}-S^{\textit{b}}\times \text{Int}\, D^{2\textit{q}}_{\epsilon})\bigcup_{id} D^{\textit{b}+1}\times S^{2\textit{q}-1}
$$

is diffeomorphic to S^m —Int $(D_3^p \times D_{\epsilon}^{2q})$. It follows that the obstruction to extending the diffeomorphism
 $id \cup \overline{f} \cup id$: Σ^m —Int $(D_3^p \times D_{\epsilon}^{2q})$ — \rightarrow S^m —Int $(D_3^p \times D_{\epsilon}^{2q})$ extending the diffeomorphism

$$
id \cup \overline{f} \cup id \colon \Sigma^{\mathbf{m}} - \text{Int}(D_3^{\rho} \times D_{\epsilon}^{2q}) \longrightarrow S^{\mathbf{m}} - \text{Int}(D_3^{\rho} \times D_{\epsilon}^{2q})
$$

to $\Sigma^m \to S^m$ is nothing but Σ^m . Here we identified Θ_m with the pseudo isotopy group $\widetilde{\pi}_{0}$ (Diff S^{m-1}) of diffeomorphisms of S^{m-1} due to Smale [22]. Consequently we have

Lemma 4.1. *The obstruction to extending the diffeomorphism*

 $f: S(\eta) \longrightarrow S^p \times S^{2q-1}$

to $B(\eta) \to S^p \times D^{2q}$ *is nothing but* Σ^m .

Let $\big(S(\eta \oplus \mathcal{C}), \varphi_1, S^1\big)$ denote the S^1 -action which is given as follows. By making use of a local trivialization, we can represent each point of $S(\eta \oplus \mathcal{C})$ by (x, z_1, \dots, z_q, z) with $\sum_{i=1}^q |z_i|^2 + |z|^2 = 1$ where *x* is a point of *F*. Then the action

$$
\varphi_1\colon S^1 \times S(\eta \oplus \mathbf{C}) \longrightarrow S(\eta \oplus \mathbf{C})
$$

is defined by

$$
\varphi_{\rm l}\bigl(g,\,(x,\,z_{\scriptscriptstyle 1},\,\cdots,\,z_{\scriptscriptstyle q},\dot\,z})\bigr)= (x,\,gz_{\scriptscriptstyle 1},\,\cdots,\,gz_{\scriptscriptstyle q},\,gz) \,.
$$

Since the bundle $\eta \oplus \mathbf{C}$ is a complex vector bundle, this operation does not depend on the choice of local trivializations.

 $\bigcup_{i \in I} B(\eta) \times D^2 \bigcup_{i \in I} B(\eta) \times S^1, \ \varphi_2, \ \ S^1 \big), \ (S^{\, \not\! p} \times S^{2q+1}, \ \varphi_3, \ \ S^1), \ (S^{\, \not\! p} \times S^{2q-1} \times D^2 \bigcup_{i \in I} B(\eta) \big) \big)$ $S^p \times D^{2q} \times S^1$, φ_4 , S^1) denote the S^1 -actions which are given in similar ways. Denote by $S_\text{\tiny 1}(\eta\oplus\mathcal{C})\left(\text{resp.}~ S_\text{\tiny 2}(\eta\oplus\mathcal{C})\right)$ the following invariant submanifold of $S(\eta \oplus C)$ for ε , $0 < \varepsilon < 1$:

$$
\begin{aligned}\n\left\{(x, z_1, \cdots, z_q, z) \middle| |z_1|^2 + \cdots + |z_q|^2 + |z|^2 = 1, |z| \le \varepsilon\right\} \\
\left(\text{resp.}\left\{(x, z_1, \cdots, z_q, z) \middle| |z_1|^2 + \cdots + |z_q|^2 + |z|^2 = 1, |z| \ge \varepsilon\right\}\right).\n\end{aligned}
$$

Since the structural group of the fibre bundle $S(\eta \oplus \mathcal{C})$ is the unitary group $U(q+1)$, the above set does not depend on trivializations. Let $d_1: S_1(\eta \oplus \mathbb{C}) \rightarrow$ $S(\eta)\times D^{\text{z}} \ \left(\text{resp.}\ d_2\colon S_{\text{z}}(\eta\oplus\mathcal{C}){\rightarrow} B(\eta)\times S^{\text{1}}\right) \text{ be the diffeomorphism defined by}$

$$
d_1(x, z_1, \cdots, z_q, z) = \left(x, \frac{z_1}{a}, \cdots, \frac{z_q}{a}, \frac{z}{\varepsilon}\right)
$$

$$
\left(\text{resp. } d_2(x, z_1, \cdots, z_q, z) = \left(x, \frac{z_1}{\sqrt{1 - \varepsilon^2}}, \cdots, \frac{z_q}{\sqrt{1 - \varepsilon^2}}, \frac{z}{|z|}\right)\right)
$$

$$
a = \sqrt{|z_1|^2 + \cdots + |z_q|^2}.
$$

 $where$

Since for $g \in S^1$, $(x, z_1, \dots, z_q, z) \in S_1(\eta \oplus C)$

$$
d_1 \circ \varphi_1(g, (x, z_1, \cdots, z_q, z))
$$

= $d_1(x, gz_1, \cdots, gz_q, gz)$
= $\left(x, \frac{gz_1}{a}, \cdots, \frac{gz_q}{a}, \frac{gz}{\varepsilon}\right)$
= $\varphi_2\left(g, \left(x, \frac{z_1}{a}, \cdots, \frac{z_q}{a}, \frac{z}{\varepsilon}\right)\right)$
= $\varphi_2(g, d_1(x, z_1, \cdots, z_q, z)),$

 d_1 is equivariant. Similarly d_2 is equivariant. Hence we have the following equivariant diffeomorphism

It is different from a linear combination of the following matrices:

\n
$$
d = d_1 \cup d_2 \colon S(\eta \oplus \mathcal{C}) = S_1(\eta \oplus \mathcal{C}) \cup S_2(\eta \oplus \mathcal{C})
$$
\n
$$
\longrightarrow \left(S(\eta) \times D^2 \underset{id}{\cup} B(\eta) \times S^1, \varphi_2, S^1 \right).
$$

Similar arguments prove that there exists an equivariant diffeomorphism

$$
d': (S^p \times S^{2q+1}, \varphi_3, S^1) \to (S^p \times S^{2q-1} \times D^2 \cup S^p \times D^{2q} \times S^1, \varphi_4, S^1). \quad \text{Define a map}
$$
\n
$$
d_3: B(\eta) \times S^1 \longrightarrow B(\eta) \times S^1
$$
\n
$$
(\text{resp. } d_4: S^p \times D^{2q} \times S^1 \longrightarrow S^p \times D^{2q} \times S^1)
$$

by

$$
\begin{aligned} d_{\mathfrak{z}}(y,\,z) &= \big(\phi_{\mathfrak{z}}(z,\,y),\,z\big) \qquad &\text{for}\quad y\!\in\! B(\eta),\,z\!\in\! S^{\, \mathfrak{z}}\\ \text{(resp. } d_{\mathfrak{z}}(y,\,z) &= \big(\phi_{\mathfrak{z}}(z,\,y),\,z\big) \qquad &\text{for}\quad y\!\in\! S^{\,\mathfrak{p}}\!\times\! D^{\mathfrak{z}\boldsymbol{q}},\,z\!\in\! S^{\, \mathfrak{z}} \big) \end{aligned}
$$

where $\phi_\text{\tiny 2}$ (resp. $\phi_\text{\tiny 4}$) denotes the action defined by

$$
\phi_2(g, (x, z_1, \cdots, z_q)) = (x, gz_1, \cdots, gz_q) \text{ for } (x, z_1, \cdots, z_q) \in B(\eta)
$$

$$
(\text{resp. } \phi_4(g, (x, z_1, \cdots, z_q)) = (x, gz_1, \cdots, gz_q) \text{ for } (x, z_1, \cdots, z_q) \in S^p \times D^{2q}.
$$

Let $\big(B(\eta)\times S^1,\,\varphi_{\mathfrak{s}},\,S^1\big)\big($ resp. $(S^{\, \not\! p}\!\times\! D^{2q} \!\times\! S^1,\, \varphi_{\mathfrak{s}},\, S^1)\big)$ be the action defined by

$$
\varphi_{\mathfrak{s}}\bigl(g,\,(y,\,z)\bigr)= (y,\,g z) \qquad \qquad \text{for} \quad y\!\in\! B(\eta),\,z,\,g\!\in\! S^{\scriptscriptstyle 1}
$$

$$
\left(\text{resp. }\varphi_{\mathfrak{s}}(g,(y,z)\right)=(y,gz)\qquad \qquad \text{for}\quad y{\in}S^p{\times}D^{2q},\quad z,g{\in}S^1\right).
$$

Then we have

Lemma 4.2. *d*₃ (resp. *d*₄) is an equivariant diffeomorphism

$$
\mathbf{nma 4.2.} \quad d_{3} \text{ (resp. } d_{4} \text{) is an equivariant diffeomorphism} \\ d_{3} \colon \left(B(\eta) \times S^{1}, \varphi_{2}, S^{1} \right) \longrightarrow \left(B(\eta) \times S^{1}, \varphi_{5}, S^{1} \right) \\ \left(\text{resp. } d_{4} \colon (S^{\rho} \times D^{2q} \times S^{1}, \varphi_{4}, S^{1}) \longrightarrow (S^{\rho} \times D^{2q} \times S^{1}, \varphi_{6}, S^{1}) \right)
$$

where $\varphi_{\scriptscriptstyle 2}^{\scriptscriptstyle \,\prime}$ (resp. $\varphi_{\scriptscriptstyle 4}^{\scriptscriptstyle \,\prime}\rangle$ denotes the restriction of $\varphi_{\scriptscriptstyle 2}$ (resp. $\varphi_{\scriptscriptstyle 4}^{\scriptscriptstyle \,\prime}\!\}$.

Proof

$$
\begin{aligned} d_3 \circ \varphi_2{}^\prime\bigl(g,\,(y,\,z)\bigr) & = d_3\bigl(\phi_2(g,\,y),\,g z\bigr) \\ & = \bigl(\phi_2\bigl(\overline{gz},\,\phi_2(g,\,y)\bigr),\,g z\bigr) = \bigl(\phi_2(\overline{g\bar{z}}g,\,y),\,g z\bigr) \\ & = \bigl(\phi_2(\overline{z},\,y),\,g z\bigr) = \varphi_\mathrm{s}\bigl(g,\bigl(\phi_2(z,\,y),\,z\bigr)\bigr) \\ & = \varphi_\mathrm{s}\bigl(g,\,d_\mathrm{s}(y,\,z)\bigr)\,. \end{aligned}
$$

This shows that d_3 is equivariant with respect to φ_2 ['], φ_5 . On the other hand, define a map *h* respect to φ_2' ,
¹ —*>* $B(\eta) \times S^1$

$$
d_{\scriptscriptstyle{5}}\colon B(\eta)\!\times\!S^{\scriptscriptstyle{1}}\!\longrightarrow B(\eta)\!\times\!S^{\scriptscriptstyle{1}}
$$

by

$$
d_{\scriptscriptstyle{5}}(y,z)=\big(\phi_{\scriptscriptstyle{2}}(z,\,y),\,z\big)\,.
$$

Then we have $d_s \circ d_s(y, z) = d_s(\phi_z(z, y), z) = (\phi_z(z, \phi_z(z, y)), z) = (\phi_z(z \cdot z, y), z)$ $=(y, z) \text{ and } d_{s} \circ d_{s}(y, z) = d_{s}\big(\phi_{2}(z, y), z\big) = \big(\phi_{2}\big(z, \phi_{2}(z, y)\big), z\big) = \big(\phi_{2}(z \cdot z, y), z\big)$ $=(y, z)$, i.e., $d_s \circ d_s = d_s \circ d_s =$ identity. Obviously d_s and d_s are differentiable, hence d_3 is an equivariant diffeomorphism. As for d_4 , the proof is left to the reader.

It follows from Lemma 4.2 that we can construct a semi-free differentiable action

$$
\left(S(\eta)\times D^2\mathop{\cup}_{d_3} B(\eta)\times S^1,\,\varphi_2{''}\cup\varphi_5,\,S^1\right)\\ \text{(resp. } S^{\,p}\times S^{2q-1}\times D^2\mathop{\cup}_{d_4} S^{\,p}\times D^{2q}\times S^1,\,\varphi_4{''}\cup\varphi_6,\,S^1\text{)}\\ \text{where}\qquad \quad d_3{'}=d_3\,|S(\eta)\times S^1\,(\text{resp. }d_4{'}=d_4\,|\,S^{\,p}\times S^{2q-1}\times S^1\text{)}
$$

and

$$
\varphi_{{\scriptscriptstyle 2}}^{\; \prime\prime} = \varphi_{{\scriptscriptstyle 2}} | \, S\!(\eta) \!\times\! D^{\scriptscriptstyle 2} \! \left(\text{resp.} \, \varphi_{{\scriptscriptstyle 4}}^{\; \prime\prime} = \varphi_{{\scriptscriptstyle 4}} | \, S^{\, {\scriptscriptstyle 2}} \!\times\! S^{{\scriptscriptstyle 2}}{}^{\! {\scriptscriptstyle 2}}{}^{\!\textrm{--1}} \!\times\! D^{\scriptscriptstyle 2} \! \right) .
$$

Then we have

Lemma 4.3. *id* \cup *d*₃ (resp. *id* \cup *d*₄) *is an equivariant diffeomorphism*

$$
id \cup d_{3}: \left(S(\eta) \times D^{2} \cup B(\eta) \times S^{1}, \varphi_{2}, S^{1}\right)
$$
\n
$$
\longrightarrow \left(S(\eta) \times D^{2} \cup B(\eta) \times S^{1}, \varphi_{2} \cup \cup \varphi_{5}, S^{1}\right)
$$
\n
$$
\left(\text{resp. } id \cup d_{4}: \left(S^{p} \times S^{2q-1} \times D^{2} \cup S^{p} \times D^{2q} \times S^{1}, \varphi_{4}, S^{1}\right)
$$
\n
$$
\longrightarrow \left(S^{p} \times S^{2q-1} \times D^{2} \cup S^{p} \times D^{2q} \times S^{1}, \varphi_{4} \cup \cup \varphi_{6} S^{1}\right).
$$

Proof. Since the map is well-defined, this lemma follows easily from Lemma 4.2.

It is clear that the orbit space $S\!(\eta\!\oplus\!\mathcal{C})\!/\!\varphi_{1}$ is diffeomorphic to $\mathcal{CP}(\eta\!\oplus\!\mathcal{C})$ and $S^p \times S^{2q+1}/\varphi_3$ is diffeomorphic to $S^p \times \mathbb{CP}^q$.

Lemma 4.4. The composition $d_4 \circ (f \times id) \circ d_3^{-1} \circ (\partial R(\eta) \times S^1)$ is equal to $f \times id \mid \partial B(\eta) \times S$

Proof. For $y \in \partial B(\eta)$, $z \in S^1$, we have

$$
\begin{aligned} d_*\circ & (f\times id)\circ d^{-1}_3(y,\,z) \\&=d_*\circ & (f\times id)\circ \big(\phi_2(z,\,y),\,z\big) \\&=d_*\circ \big(\phi_*\big(z,\,f(y)\big),\,z\big) \\&=\big(\phi_*\big(z,\,\phi_*\big(\,z,\,f(y)\big)\big),\,z\big) \\&=\big(f(y),\,z\big), \end{aligned}
$$

completing the proof of Lemma 4.4.

Lemma 4.5. The composition $(d_4/\sim) \circ \{(f \times id)/\sim\} \circ (d_3^{-1}/\sim) | \partial B(\eta)$ of the *maps induced by the equίvarίant maps, is equal to f.*

Proof. Since the action φ_5 (resp. φ_6) is trivial on the first factor $B(\eta)$ of $B(\eta) \times S^1$ (resp. $S^p \times D^{2q}$ of $S^p \times D^{2q} \times S^1$), this lemma follows directly from Lemma 4.4.

Now we prove Theorem 2.1. It is clear that the orbit space $S(\eta \oplus \boldsymbol{C})|\varphi_{\scriptscriptstyle{1}}$ is diffeomorphic to $\pmb{CP}(\eta\oplus\pmb{C}),$ hence $\big(S(\eta)\times D^{\mathfrak{s}}\cup B(\eta)\times S^{\mathfrak{t}}\big)/(\pmb{\varphi}_\mathfrak{s}''\cup\pmb{\varphi}_\mathfrak{s})$ is diffeomorphic to $\mathbb{CP}(\eta \oplus \mathbb{C})$ by Lemma 4.3. Similarly $(S^p \times S^{2q-1} \times D^2 \cup S^p \times D^{2q} \times S^1)$ $(\varphi$ ["] $\cup \varphi$ ₆) is diffeomorphic to $S^p \times CP^q$ by Lemma 4.3. Hence the composition

$$
T = \bigl\{(id \cup d_\ast)/\!\!\sim\!\bigr\} \!\circ\! \bigl\{(f \!\times\! id)/\!\!\sim\!\bigr\} \!\circ\!\bigl\{(id \cup d_3)^{-1}/\!\!\sim\!\bigr\}
$$

gives a diffeomorphism

$$
T\colon\boldsymbol{CP}(\eta\!\oplus\!\boldsymbol{C})\mathrm{-Int}\,B(\eta)\mathrm{\longrightarrow}\,S^{\,p}\!\times\!\boldsymbol{CP}^{q}\mathrm{-}S^{\,p}\!\times\!\mathrm{Int}\,D^{\text{2q}}
$$

such that $T|\partial B(\eta)=f$ by Lemma 4.5. It follows from Lemma 4.1 that the obstruction to extending the diffeomorphism
 $T|\partial B(\eta): \partial B(\eta) \longrightarrow S^p \times \partial D^{2q}$ obstruction to extending the diffeomorphism

 $T | \partial B(\eta) : \partial B(\eta) \longrightarrow S^p \times \partial D^{2q}$

to $B(\eta) \to S^p \times D^{2q}$ is nothing but Σ^{p+2q} . Thus we have a diffeomorphism $T | \partial B(\eta) : \partial B(\eta) \longrightarrow S^{\eta}$
 is nothing but Σ^{p+2q} . Thus
 $T \cup S : \mathbf{CP}(\eta \oplus \mathbf{C}) \longrightarrow (S^p \times \mathbf{C}^p)$

 $\bm{CP^q})$ # Σ^{p+2q}

where *S* denotes a diffeomorphism obtained by Lemma 4.1. This makes the proof of Theorem 2.1 complete.

5. Proof of Theorems 2.2, 2.3, **2.4 and 2.5**

5.1. Proof of Theorem 2.2

According to Theorem 5.5 of Browder [5], the normal complex bundle *η* of the fixed point set F in Σ^m is stably trivial. Therefore this theorem follows directly from Theorem 2.1.

5.2. Proof of Theorem 2.3

In the proof of theorem 6.1 of Browder [5], it is shown that F^p \times CP^q is diffeomorphic to S^p \times \mathbb{CP}^q for F^p \in $\Theta_p(\partial \pi)$ and for q : odd. Applying Theorem 2.1, it follows that $S^p {\times} {\bm C} {\bm P}^q {=} F^p {\times} {\bm C} {\bm P}^q {=} (S^p {\times} {\bm C} {\bm P}^q) \sharp \Sigma^{p+2q},$ i.e., Σ^{p+2q} belongs to the inertia group $I(S^p \times \mathbb{CP}^q)$, completing the proof of Theorem 2.3.

5.3 Proof of Theorem 2.4

Let W^{i} be a parallelizable manifold with $\partial W = F^{i}$. Let U be a parallelizable (4p+4q)-manifold such that Index W =Index U and ∂U is a homotopy sphere. Remark that there always exists such a manifold *U* (see Milnor [16]). Then it is shown that $F^{i p - 1} \times CP^{i q}$ is diffeomorphic to $(S^{i p - 1} \times CP^{i q}) \sharp \partial U$ in the proof of Theorem 6.2 of Browder [5]. Applying theorem 2.1, it follows that $(S^{4p-1} \times CP^{2q}) \sharp \partial U = (S^{4p-1} \times CP^{2q}) \sharp \Sigma^{4p-1+4q}$, i.e., $\Sigma \sharp (-\partial U) \in I(S^{4p-1} \times CP^{2q})$, completing the proof of Theorem 2.4.

5.4 Proof of Theorem 2.5

We first show the following

Lemma 5.4.1. There exists a parallelizable $(4k+2)$ -manifold M^{4k+2} with *boundary a homotopy sphere dM4k+2 such that* Arf *invariant of M is equal to* 1 *for any integer* $k(\pm 1, 3)$ > 0.

Proof. Let $\iota: \pi_{2k}(SO_{2k+1}) \rightarrow \pi_{2k}(SO)$ be the natural homomorphism induced

by the inclusion $SO_{2k+1} \subset SO$. Let $\nu \in \text{Ker } \iota$ be the unique non trivial element (see Kervaire [12]) and let $(B, S^{2k+1}, D^{2k+1}, p)$ be the disk bundle over sphere with the characteristic map $\nu \in \pi_{2k}(SO_{2k+1})$. Let B_{α} , B_{β} be two copies of *B*. When we regard

$$
B_{\alpha} \quad \text{as} \quad D_1^{2k+1} \times D_2^{2k+1} \underset{\nu}{\cup} D_3^{2k+1} \times D_4^{2k+1}
$$

$$
B_{\beta} \quad \text{as} \quad D_5^{2k+1} \times D_6^{2k+1} \underset{\nu}{\cup} D_7^{2k+1} \times D_8^{2k+1} \,,
$$

V the plumbing manifold of B_ϕ and B_β is defined to be the oriented differentiable

and

 $(4k+2)$ -manifold obtaind as a quotient space of $B_{\alpha} \cup B_{\beta}$ by identifying $D_3^{2k+1}\times$ D_4^{2k+1} and $D_5^{2k+1} \times D_6^{2k+1}$ by the relation $(x, y) = (y, x)(x \in D_3^{2k+1} = D_5^{2k+1},$ $y \in D_4^{2k+1} = D_6^{2k+1}$ and is denoted by $B_{\alpha} \vee B_{\beta}$ (=B $\vee B$). Let M^{4k+2} be the manifold $B_{\alpha} \times B_{\beta}$. Since *v* belongs to Ker *ι* and $\partial M^{4k+2} \neq \phi$, M^{4k+2} is parallelizable. It is easy to prove that ∂M^{4k+2} is a homotopy sphere. According to Lemma 8.3 of Kervaire and Milnor [14], Arf invariant of *M* is equal to 1. This completes the proof of Lemma 5.4.1.

Now we prove Theorem 2.5. Let W^{4p+2} denote a parallelizable manifold with $\partial W = F^{4p+1}$. Let $W_0 = W - \text{Int } D^{4p+2}$. Regarding W_0 as a parallelizable with $\partial W = F^{-\mu}$. Let $W_0 = W - \ln D^{\mu}$. Regarding W_0 as a parametrizable
cobordism between F^{4p+1} and the natural sphere S^{4p+1} , we can construct a
normal map
 $G: (W_0; F^{4p+1} \cup S^{4p+1}) \longrightarrow (S^{4p+1} \times I; S^{4p+1} \times 0 \cup S^{4$ normal map

$$
G\colon (W_\mathfrak{o}\,;\,F^{\,\ast p+1}\cup S^{\,\ast p+1})\longrightarrow (S^{\,\ast p+1}\!\times\! I;\,S^{\,\ast p+1}\!\times\!0\cup S^{\,\ast p+1}\!\times\!1)
$$

with $G \mid S^{4p+1} =$ identity. Multiplying by \mathbb{CP}^{2q} we get a normal map $G\times 1\colon (W_\mathfrak{o};\,F\cup S^{\text{\tiny{4}}p+1})\times\mathbf{CP}^{\text{\tiny{2}}q}\to (S^{\text{\tiny{4}}p+1}\times I;\,\,S^{\text{\tiny{4}}p+1}\times 0\cup S^{\text{\tiny{4}}p+1}\times 1)\times\mathbf{CP}^{\text{\tiny{2}}q}\quad\text{with}\quad$ $G \times 1$ | $S^{4p+1} \times$ CP^{2q} = identity. Then the invariant σ ($G \times 1$) of Theorem 2.6 of Browder [5] is defined. Since the index of \mathbb{CP}^{2q} is equal to one, $\sigma(G \times 1)$ is equal to $\sigma(G)$ by Sullivan's product formula (see Rourke [21]). By the definition $\sigma(G)$ is nothing but Arf W. If $4p+2+4q+14$, we can find a parallelizable (4p+2+4q)-manifold U such that Arf $U=$ Arf W and ∂U is a homotopy sphere by Lemma 5.4.1. It follows as in the proof of Novikov's Classification Theorem [20] that $F^{4p+1} \times CP^{2q}$ is diffeomorphic to $(S^{4q+1} \times CP^{2q}) \sharp \partial U$. Hence $\Sigma \sharp (-\partial U)$ belongs to the inertia group $I(S^{4p+1} \times \mathbb{C}P^{2q})$ by Theorem 2.1. When $4p+1+4q=13$ or 29, Ker($G\times 1$)_{*} can be killed by surgeries (see Theorem 2.10) of Browder [5] and [6]), hence $F^{4p+1} \times CP^{2q}$ is diffeomorphic to $S^{4p+1} \times CP^2$. Therefore the homotopy sphere $\Sigma^{4p+1+4q}$ belongs to the inertia group $I(S^{4p+1} \times CP^{2q})$. This completes the proof of Theorem 2.5.

6. Proof of Corollary 2.6

If a homotopy sphere Σ^{p+2q} admits a semi-free S^1 -action with $F^p {\in} \Theta_p(\partial \pi)$ as untwisted fixed point set for *q:* odd, then

$$
\Sigma^{\textit{p+2q}}\!\!\in\!I\!(S^{\,\textit{p}}\!\times\!{\bm{C}}{\bm{P}}^{\textit{q}})
$$

by Theorem 2.3. Since the second Stiefel-Whitney class $W_2(S^p \times \mathbb{CP}^q)$ is zero for *q:* odd, *S^p xCP** is a spin-manifold (see Lemma 1 of Milnor [17]). Clearly π ₁(S^{*p*} \times CP^{*q*}) \cong {1} for *p*+1. It follows from Lemma 9.1 of Kawakubo [10] that the homotopy sphere Σ^{p+2q} bounds a spin-manifold. This completes the proof of Corollary 2.6.

7. Proofs of Propositions

7.1. Proof of Proposition 2.9

Let us recall the explicit description of homotopy spheres in $\Theta_{4n-1+4q}(\partial \pi)$ given by Brieskorn and Hirzebruch [4], [8]:

$$
\begin{aligned} \Sigma_{3,6k-1}^{4p-1+q}=&\left\{(z_1,\cdots,\,z_{2p+2q+1})\!\!\in\! C^{2p+2q+1}\,\Big|\,z_1^3\!+\!z_2^{6k-1}\!+\!z_3^2\!+\cdots\right.\\ &\left.\cdots\!+\!z_{2p+2q+1}^2=0,\,\,\left.\mid z_1\!\mid^2\!+\cdots\!+\left.\mid z_{2p+2q+1}\!\mid^2=1\right\}\right]=k\,\Sigma_M^{4p-1+4q}\end{aligned}
$$

Let $k \sum_{M}^{4p-1} \subset k \sum_{M}^{4p-1+4q}$ be the imbedding defined by

$$
(z_{_1},\cdots, z_{_{2\,p+1}})\mapsto (z_{_1},\cdots, \,z_{_{2\,p+1}}, \,0\cdots 0)\,.
$$

Consider the action of S^1 on the last $2q$ variables of $\Sigma_{3.6k-1}^{4p-1+4q}$ defined as follows. Let $A: S^1 \rightarrow SO(2)$ be the representation defined by

$$
A(e^{i\theta}) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}
$$

and let $\varphi \colon S^1 \to SO(2q)$ be the representation defined by

$$
\varphi(e^{i\theta}) = \begin{pmatrix} A(e^{i\theta}) & 0 \\ & A(e^{i\theta}) \\ & \ddots & \\ 0 & & A(e^{i\theta}) \end{pmatrix}.
$$

Then S^1 acts on the last 2q variables of $\Sigma_{3,6k-1}^{4p-1+4q}$ by means of the representation φ . It is obvious that this action is semi-free and the fixed point set is $\Sigma_{3.6k-1}^{4p-1}$. This completes the proof of Proposition 2.9.

7.2 Proof of Proposition 2.10

Let us reall the explicit description of homotopy spheres in $\Theta_{4p+1+4q}(\partial \pi)$ given by Brieskorn [4]

$$
\Sigma_M^{4p+1+4q}=\big\{(z_1,\cdots,z_{2p+2q+2})\!\in\!C^{2p+2q+2}\Big|\,z_1^3\!+\!z_2^2\!+\!\cdots\!+z_{2p+2q+2}^2=0,\\ |z_1|^2\!+\!\cdots\!+|z_{2p+2q+2}|^2=1\big\}
$$

Let $\Sigma_M^{4p+1} \subset \Sigma_M^{4p+1+4q}$ be the imbedding defined by

 $(z_{_1},\cdots,z_{_{2p+2}})\!\mapsto\! (z_{_1},\cdots,z_{_{2p+2}},\,0\!\cdots\!0)$.

Let $\varphi: S^1 \to SO(2q)$ be the representation defined in the proof of Proposition 2.9. Then S^1 acts on the last 2q variables of Σ^{p+1+4q} by means of the representation φ . It is obvious that this action is semi-free and the fixed point set is Σ_M^{4p+1} . On the other hand there always exists the natural semi-free S^1 action on $S^{4p+1+4q}$ with S^{4p+1} as fixed point set. This completes the proof of Proposition 2.10.

8. A concluding remark

Concerning semi-free S^3 -actions, it is shown in F. Uchida [23] that the normal bundle of the fixed point set becomes the quaternionic vector bundle. Hence similar results are obtained about semi-free $S³$ -actions.

OSAKA UNIVERSITY

Bibliography

- [1] D.W. Anderson, E.H. Brown and P.P. Peterson: *The structure of the spin cobordism ring,* Ann. of Math. 86 (1967), 271-298.
- [2] G.E. Bredon: *A π*-module structure for Θ* and application to transformation groups,* Ann. of Math. 86 (1967), 434-448.
- [3] G.E. Bredon: *Exotic actions on spheres,* Proc. of the Conference on Transformation Groups, Springer-Verlag, New York, 1968, 47-76.
- [4] E. Brieskorn: *Beispiele zur Differentialtopologie von Singularitaten,* Invent. Math. 2 (1966/67), 1-14.
- [5] W. Browder: *Surgery and the theory of differentiable transformation groups,* Proc. of the Conference on Transformation Groups, Springer-Verlag, New York, 1968, 1-46.
- [6] W. Browder: *The Kervaire invariant of framed manifolds and its generalization,* Ann. of Math. 90 (1969), 157-186.
- [7] P.E. Conner and E.E. Floyd: Differentiable Periodic Maps, Berlin-Göttingen-Heidelberg-New York, Springer 1964.
- [8] F. Hίrzebruch: *Singularities and exotic spheres,* Seminaire Bourbaki, 1966/67, No. 314.
- [9] W.Y. Hsiang: On the unknottedness of the fixed point set of differentiable circle *group actions on spheres-P.A. Smith conjecture,* Bull. Amer. Math. Soc. 70 (1964), 678-680.
- [10] K. Kawakubo: Smooth structures on $S^p \times S^p$, Osaka J. Math. 6 (1969), 165–196.
- [11] K. Kawakubo: Free and semi-free differentiable actions on homotopy spheres, Proc. Japan Acad. 45 (1969) 651-655.
- [12] M. Kervaire: *Some non-stable homotopy groups of Lie groups,* Illinois J. Math. 4 (1960), 161-169.
- [13] M. Kervaire: *Le theorem de Barden-Mazur-Stallings,* Comment. Math. Helv. 40 (1966), 31-42.

- [14] M.A. Kervaire and J. Milnor: *Groups of homotopy spheres,* I, Ann. of Math. 77 (1963), 504-537.
- [15] H. Maehara: *On the differentίable involution on homotopy spheres,* (to appear).
- [16] J. W. Milnor: Differentiable manifolds which are homotopy spheres, mimeographed notes, Princeton, 1958.
- [17] J.W. Milnor: *Remarks concerning spin manifolds.* Differential and Combinatorial Topology, Princeton University Press, 1965, 55-62.
- [18] D. Montgomery and C.T. Yang: *Differentiable transformation groups on homotopy spheres,* Michigan Math. J. 14 (1967), 33-46.
- [19] P.S. Mostert (ed.): Proceedings of the Conference on Transformation Groups, Springer-Verlag, New York, 1968.
- [20] S.P. Novikov: *Homotopically equivalent smooth manifolds* I, Izv. Akad. Nauk. SSSR, Ser. Math. 28 (1964), 365-474. English transL, Amer. Math. Soc. Transl. (2) 48 (1965), 271-396.
- [21] C.P. Rourke: *On the Kervaire obstruction,* (to appear).
- [22] S. Smale: *Generalized Poincare conjecture in dimension greater than four, Ann.* of Math. 74 (1961), 381-406.
- [23] F. Uchida: Cobordism groups of semi-free $S¹$ and $S³$ -actions, (to appear).
- [24] J.H.C. Whitehead: *Combinatorial homotopy* I, Bull. Amer. Math. Soc. 55 (1949), 213-245.