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1. Introduction

Concerning the unknotting theorem for the pair (S”, M"**) with the codi-
mension 2, there are several remarkable results; by T. Homma in the case n=1
and M*=S?, by C.D. Papakyriakopoulos in the case =1 and any 3-manifold
M?, by ]J. Stallings in the case #>3 and M"**=S""* in the topological sense
and by J. Levine in the case #=4 and M”**=S"*? in the combinatorial sense,
see [1], [2], [3], [4] and [5]. Confining ourselves to the case M"**=S"*? the
unknotting theorem has not been solved in the case n=2.

In this paper, we will prove the following theorem which is an answer under
an additional condition to the unknotting theorem in the case z=2 and M*=S":

Theorem (2, 2). For a ribbon 2-knot K*? in S*, K* is unknotted in S* if and
only if ,(S*—K?»)=2".

In this paper, everything will be considered from the combinatorial point
of view.

2. Proof of Theorem

Lemma (2,1)”. Let M* be a combinatorial 4—manifold and let v be a simple
closed curve in M* which is contractible to a point in M?*. Then, v bounds a
non-singular, locally flat 2-ball in M* ®.

Proof. Since v is contractible to a point in M*, there is a PL-map @ of
a 2-ball D? into M* satisfying the following (1), (2) and (3):

(1) @D)cM', p@dD) =1,
(2) @(D? is in a general position in M* so that the self-intersection
consists of a finite number of double points,

1) See [6] for the definition of the ribbon 2-knots in R4,
2) Cf. the result in [7], the proof of Lemma (2, 7).

3) X and 0X mean the interior and the boundary of X respectively.
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(3) there are at most a finite number of locally knotted points on @(D?)
which are different from the double points in (2).

Here, in (3), a point x of ¢(D?) is called a locally knotted point” if the pair
(Lk(x, @(D?)), Lk(x, M*)) is a knotted sphere-pair for the combinatorial trian-
gulation of M* for which @(D?) is a subcomplex and the point x is a vertex.
If there is a locally knotted point x of ¢(D?), it is possible to exchange a non-
singular 2-ball St(x, @(D?)), which may be not locally flat, for an immersed
2-ball p(B?) in a 4-ball B*=St(x, M*) by an immersion p of a 2-ball B* such
that p(0B?)=q(D?) N 8B", p(B?)C B* and that each pair (pLk(y, B?), Lk(p(y), BY))
is unknotted for a fine subdivision of B* and each virtex y of B®. Perform
the exchange for all locally knotted points of (D?). By making use of the general
position theory, we have a PL-map ¢’ of D? into M* satisfying the following (1),
(2') and (3'):

(1) @ (DIcMY, 9'@D) =1,

(2) @'(D? is in a general position in M* so that the self-intersection

consists of a finite number of double points,
(3') @’(D?) has no locally knotted point.

Let x be a double point of @'(D?) and x=¢'(y)=¢'(y’) for just two
points y, ¥ of D®. 'Then there is an arc & spanning y and a point y” on 8D” such
that the image @’(a) does not cross any double point of ¢’(D?) except for x.
Let V'* be a regular neighborhood of ¢’(a) in M*. Since V*is a 4-ball, there is
a PL-homeomorphism ¢ of V'* onto a standard 4-cube A* such that

CO R AP EAFNEAPREA Y
(ll) ¢)(p'(a); O§x1§1’ x2:x3:x4:0
(111) PP’ (x); %, = &, = %y = x, = 0

(iv) $(V*Ng'(DY) {—2§x,§1, % =% =0, |x|=2
v ;
¢ P x, =0, |x,], |%] <2, x, = 0-++(x).

Let N2 be the 2-ball in ¢p@’'(D?) defined by the equation () and let N* be
the 2-ball in A* defined as follows:
0=, <2, |x,| Z2, |x|=2, %,=0,
(V) N,z; O§x1<2’ lle = 2’ Ixsl éza X, = 0 ’
X, = 2, ,ley Ixa] éz) X, = 0.

If we consider a singular 2-ball B”=¢ " ((¢p'(D)—N?)UN "), then this
2-ball B"? is not only locally flat but also has a number of the double points. less

4) See [8] p. 34.



RiBBON 2-kNoTs III 167

than the number of those of @’(D?. Moreover we have that 9B"*=v.
Repeating this process, we have finally a locally flat, non-singular 2-ball B* such
that B°c M* and that dB*=v. The proof is thus complete.

Let K* be a ribbon 2-knot in R, then there is a 3-manifold WW* satisfying the
following properties:

(1) W~B or W~#(S'xS)—B",
(2) If W*aB®, W? has a trivial system of 2-spheres {S}, --- , S},} satisfy-
ing that

(1) a2-link {S%, ---, S%,} is trivial in R*,

(ii) S?US3;; bounds a spherical-shell N? in W* (i=1, ---, n)®,

(i) W*—Niu-UNiI~B—AlU--UAL,
see (3, 5) and (3, 6) in [6].

Let A} be a 3-ball in W*—N3U---UN3, let S? be a boundary 2-sphere
of Aj and let 3,, -++, B,, be a collection of mutually disjoint arcs spanning S§ and

3,0, S}, in W*—N3iU--- UN3UA} respectively. Moreover, let U3 be a

regular neighborhood of the arc 8, in Wi:—-N3U---UN3UA2 where U3N S2=¢?
and U3N Si=e{® are 2-balls such that e’Nel’=0 (AEpu, X, u=1, --+, 2n).
Since the 2-link {S%, -+, S},} is trivial in R*, there is an isotopy & of R* by
which £(S%) (A=0, -+, 2n) are moved into the position given by the equations
below:

E(S?); aitaitai=1 x,=0
E(S?; (v,—4)y+a3+x3=1, x,=0
E(Si); (n—4)ft+ai+af =2, x,=0
E(N?)) 1§(x1—4z)2+x§—}—x§§2, X, = 0 (Z = 1’ *tt n) .
Moreover, we may suppose that the center line £(3,) of the tube £(U3) is
given by the equations below:
x, =4, x=0 x,=1—x,, x,=0
in the neighborhood of £(8; N S%),
¥, =4, %=0 x=\V2—x, x=<0
in the neighborhood of &(3,.;N SZ.;)
=12, ,m).
Theorem (2. 2)'.  For a ribbon 2—-knot K* in R*, K* is unknotted in R*, if
and only if = (R*—K?)=Z.

5) B3 means a 3-ball and = means to be homeomorphic to.
6) N3=S2x][o0, 1].
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The proof of this theorem is divided into two steps, and the second-step of
the proof will be given later after we have proved two lemmas (2, 3) and (2, 4).
Since K*is a ribbon 2-knot in R*, it bounds a 3-manifold W* previously described,
therefore if IW*~B°, we have nothing particular to say. Hence, in the following
discussion we will consider the case that W& B°’. Consider the trivial system
{S3%, ..+, S3,} and the isotopy & of R* as before. Let K®be a 2-knot in R*
such that

KZ . 2n Sz__ 2n 2 212 2n 3 2n .9 o2
=E USK— U UE&) UE(UUR— U (& U &)).
A=0 A=1 A=1 A=1

Then, since two 2-spheres £(K?) and K*? bound a 3-manifold which is a sub-
complex of £(W?) and which is homeomorphic to S?x [0, 1] in R*, K* belongs to
the 2-knot-type {£(K?)} which coincides with the 2-knot-type {K?%.

Let B} be a 3-ball bounded by the 2-sphere £(S?):

B} (o,—4)+xi4+xi<1, x,=0 Z=0,12, -, mn).

First-step of the proof of (2,2)": Each 3-ball B} bounded by the 2-sphere
E(S?) (=1, --- ,n) in R} does not meet any arc £(3,) except for the end points
(A=1, -, 2n).

Since we can find a regular neighborhood U} of B, so fine that £(U3)N B}
=0 because £(G\) N Bi=0 for all i and A (=1, :--, n, A=1, .-+, 2n), the 2-knot
K? bounds a 3-ball BjUBIU -+ UBJUB3,, U --- UB3, UE(U U~ UE(US,),
where the 3-ball B} ; is bounded by &(S2,;) in the neighborhood of £(N?%)U B?
in R* so that By, ,NB}=0, B3,,NEUN)=0 (A*+n+i) and =£(e}) (A=n+i)
@ j=1, -+, n, x=1, -+, 2n): for a sufficiently small &(<0),

s [n—4iydaitad =2, —e<x,=<0
(e iy a3 a3 <2,  x, = —¢
(l= 1,2’ ...’n).

If there is a 3-ball B} which meets some arcs £(8)) (1=¢{ <n, 1<\ <2n),
we will consider how to remove the intersection of the 3-ball B? and the arcs
£(B,) without changing the 2-knot-type of K?.  We need following two lemmas
(2, 3) and (2, 4) to remove the intersection.

Lemma (2, 3). If there are an arc b in R*—K? and a subarc 3, of the arc
Br (1=N=2n) such that the simple closed curve y=>bUE(B}) is contractible in
R*—K?, then there exists an isotopy m of R* by which 7n(K?)=K?* and 7£(5))
=E(Br—BL) Ub.

Proof. Since @, is contained in {73 except two end points, we can triangulate

R* so that the regular neighborhood N(K?) of K? in R* does not meet £(3,).
If we apply (2, 1) to the 4-manifold M*=R*‘—N(K?) and the simple closed
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curve y=>bUE&(B4), the simple closed curve ¥ bounds a locally flat 2-ball B? in
M*. Therefore there exists a combinatorial 4-ball B* containning B’ in its
interior and contained in R*—K?2 Now, we have easily an isotopy which is
identical on 0B* and transfers the subarc £(3;) onto the arc 5. Hence, the
proof is complete.

Lemma (2, 4). If n(R*—K*=Z and an arc £(B) (1=\=<2n) pierces
through a 3-ball B} (1<i=<n) at a point A, there are an arc b in R*—K* and a
subarc (35 on the arc B\ containning A such that the simple closed curve b\UE(B})
is contractible in R*—K>.

Proof. For convenience’s sake, we may suppose that £(8,) is given in
the neighborhood of the point A as follows:

E(ﬁ)\); xl=4-z', x2=x3=0’ _1§x4§1.

Consider the cross-sections of £(S?%), £(S%,;) and £(N?) by the hyperplane
P; x,=0. Then, we have the following figure Fig. (1).

X4

A . '
ESHNP ! *2 ] 2
L /{(4;,0,0,0)

|
|
|
|
J

e L ———

Fig. 1 Fig. 2

Place £(U3) in a general position with respect to the hyperplane P, then the
cross-section E(U3)N P is at most 2-dimensional, and we can find an arc b
spanning two points 4, and 4_ in P—P N K? as follows:

x, =4, 0=x,=<2, x,=0, x,=¢&
b; i, =4, x,=2, x,=0, —£=Zx=E
x =4, 0=x,<2, x,=0, x=—E&,

see Fig. (2).
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Since the 2-knot K? bounds the orientable 3—manifold W3=§(N AURTIRY|
N3UUiU---UU3,UA}) in RY, we will give an orientation induced from the
orientation of W* for K2 Then, the trivial link £(S2US%,;)N P, which bounds
an annulus £(N?)N P in P, can be given the orientation induced from that of
E(N3)N P, see Fig. (1) again. Since K*N P is a cross-section of a 2-knot K?, the
simple closed curves ¢; and ¢,,; represent the generator of H,(R‘—K?), see Fig.
(2) again. Therefore, the loop wyw™ represents an element of the commutator
subgroup of z,(R*—K?) for any arc w from the base-point to a point on vy, where
the simple closed curve v is b U £(/34) for the segment £(35) between A, and A _
on £(B.). Now, wyw'~0 for any arc w, because z,(R‘—K?=Z; that is, v
is contractible in R*—K?2.

Second-step of the proof of (2,2)’: There is a 3-ball B} which meets
some arcs £(5))-

Since the 2-knot K? constructed by making use of W? S% and U3 and
bounding the 3-manifold W*=g(N3U--UN3UUIU---UU3,UAY) in R
belongs to the 2-knot-type {K?, it is sufficient to prove that K? is unknotted.
On the other hand, by making use of (2, 4) and (2, 5),.there exists an isotopy 7
of R* such that 7(K?)=K? and that 7E(By) (A= 1, -+, 2n) does not meet any
3-ball B} (i=1, .-, n). Since £(B)CE( Us) S0 775(,&)(: nE(U ). Take a suf-
ficiently fine tube (a regular nelghborhood in U3) U} of the arc B, in U3
that 7£(T3%) does not meet any B (z—l -,n) and that U3N Si=f? and
U3N Si=f4* are 2-balls in ¢} and e}’ respectlvely (=1, -+, 2n). 'Then, the

fusion K**—n¥( fj’ S2— fj (fruF)une G U3 — fj (fzufﬂ)) not only

belongs to {K?} Wthh commdes with {K 2} but also the tubes 28(03) (=1,
2n) does not meet any 3-ball B} /=1, ---, n). Since we can construct a 3- ball
bounded by the 2-knot K** in R* as we have done in the first-step of the proof,
the 2-knot K** is unknotted in R*. This implies that K? is unknotted, and the
proof is thus complete.

From (2, 2)’, we have easily the main theorem of this paper:

Theorem (2, 2). For a ribbon 2—-knot K* in S*, K* is unknotted in S*, if and
only if n,(S*—K?)=Z.

Corollary (2, 3). Let K*be a 2-knot in R* satisfying the following (1),
(2) and (3). Then K* is unknotted in R,

(1) a 2-node K*N\ H% containes no minimum,

(2) the 2-nodes K* N HY and K*N\ H% are symmetric each other with respect
to the hyperplane R},

(3) the knot k=K*N R} is unknotted in R}.

Proof. This follows from (2, 2)’. Since K? satisfies (1) and (2), K® is a
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ribbon 2-knot, see [6]. Moreover there is a homomorphism of z,(R3—k) onto
7 (R'*—K?), cf. p. 132-6 in [9]. Then, it is easy to see that z (R*—K?*)=Z as
z,(R3—k)=Z by the condition (3). (2, 3) is a proposition analogous to the
theorem in [11].

The converse of (2, 3) is not always true, see the remark below:

REMARK. There is an unknotted 2—-knot K* ” which satisfies (1) and (2) in
(2, 3) but does not satisfy (3) in (2, 3), see the following example.

The knot k in Rj, described in Fig. (3), is knotted in R}, although its
Alexander polynomial A(t)=1, see Fig. (13) on p. 151 in [10].

> > @ Q5
: T\@? C@}‘ T\@} (E@P {\@P '

R3, R, R} R} R
Fig. 3

3. A generalization to the higher dimensional case

Let K™ be a locally flat m-sphere in R™** and let W™** be a (m-+1)-manifold
satisfying the following (1), (2) and (3):

(1) Wm+1c Rm+2, 8Wm+1 J— Km ,

(2) Wm"=B™ or W™ a#(S'x 8™ —B"*,

(3) if Wmt'a&B™*, W™* has a trivial system of m-spheres {ST, -+, S7,}

such that

(i) the locally flat m-link {ST, ---, S¥,} is combinatorially trivial in R™*?,

(i) SPUST,.; bounds a spherical-shell N+ in W™+ ©,

(i) WmH—NpPH U UNPHAB APy - UARH

Then, we have the following theorem in the same way as (2, 2).

Theorem (3, 1). Let K™ be a locally flat m-sphere in S™** and (m+1)-
manifold W™** satisfying the above conditions. Then, K™ is unknotted' in S™*?,
if and only if n (S™V*—K™)=Z.

KoBE UNIVERSITY

7) Prof. R.H. Fox named this 2-knot Terasaka-Kinoshita 2—sphere.

8) Nm+i=S"X[0, 1].

9) AP+l ..., A are disjoint (m+1)-simplices in a(m-+1)-ball B™+1,
10) At least topologically unknotted.
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