ON SEMI-SIMPLE ABELIAN GATEGORIES

Dedicated to Professor Keizo Asano for his 60th birthday

MANABU HARADA

(Received October 29, 1969) (Revised December 25, 1969)

Let $\mathfrak A$ be an abelian category. We can define an ideal $\mathfrak C$ in $\mathfrak A$ similarly to the ring (cf. [3]). Especially, Kelly has defined the Jacobson radical of $\mathfrak A$ in [7], and we call $\mathfrak A$ semi-simple if its radical is equal to zero.

In the first section of this note we shall show that $\mathfrak A$ is semi-simple if and only if $\mathfrak A$ is completely reducible under a condition that $\mathfrak A$ is artinian or noetherian, which is defferent from Theorem 1 in [9], and give a characterization of completely reducible C_3 -abelian category (see [10], p. 82 for the definition).

In the section 2, we shall consider a C_3 -abelian category. For every artinian projective object P we show that any idempotent subobject of P (see the definition in §2) contains a direct summand of P, which is a well known theorem in the case where P is equal to a ring, and show that $\mathfrak A$ is equivalent to the category of the right modules over an artinian ring if and only if $\mathfrak A$ contains a projective artinian generator, (cf. [8]).

Finally, we shall apply this argument to the case of module and show that the endomorphism ring of an artinian projective module is also artinian.

1 Semi-simple categories

Let \mathfrak{A} be an additive category. We call \mathfrak{A} semi-simple, if the ring [A, A] is semi-simple in the sense of Jacobson for every object A in \mathfrak{A} , (cf. [7] and [9]).

Lemma 1.1 Let $\mathfrak A$ be an additive semi-simple category with coproduct. If $\alpha: M \to N$ is not zero, then there exists $\beta: N \to M$ (resp. $\beta': N \to M$) such that $\beta\alpha \neq 0$ (resp. $\alpha\beta' \neq 0$). If [M, N] = 0, [N, M] = 0.

Proof. We assume $[N, M]\alpha = 0$. Put $P = M \oplus N$ and R = [P, P]. Then $R\begin{pmatrix} 0 & 0 \\ \alpha & 0 \end{pmatrix}$ is a nilpotent left ideal, and hence a = 0, which proves the lemma.

We call \mathfrak{A} completely reducible if every object is a directsum of minimal objects and \mathfrak{A} is called artinian (resp. noetherian) if every object in \mathfrak{A} is artinian (resp. noetherian).

90 M. Harada

Theorem 1.2 Let $\mathfrak A$ be an artinian or noetherian abelian category. Then A is completely reducible if and only if $\mathfrak A$ is semi-simple.

Proof. If $\mathfrak A$ is completely reducible and artinian or noetherian, then [M,M] is a semi-simple ring and hence, $\mathfrak A$ is semi-simple. Next, we assume that $\mathfrak A$ is noetherian and semi-simple. Let N be a maximal subobject of M and $\alpha: M \to M/N$ a natural epimorphism. Since $\alpha \neq 0$, there exists $\beta \in [M/N, M]$ such that $\alpha\beta \neq 0$ by (1.1). However, M/N is a minimal object and hence, $\alpha\beta$ is isomorphic and we may assume that $\alpha\beta = 1_{M/N}$. Therefore, $M = \operatorname{Im} \beta \oplus \operatorname{Ker} \alpha = \operatorname{Im} \beta \oplus N$ and $\operatorname{Im} \beta$ is minimal. Repeating this argument to N, finally we obtain $M = \sum \oplus N_i$; N_i is minimal, since M is noetherian. We assume that $\mathfrak A$ is artinian and semi-simple. Let N be a minimal subobject of M and α the inclusion of N into M. Then there exists $\beta \in [M, N]$ such that $\beta\alpha \neq 0$. Hence, $M = N \oplus \operatorname{Ker} \beta$. From the same reason as above, M is completely reducible.

We note from the above proof that every minimal subobject is a direct summand if $\mathfrak A$ is semi-simple.

Lemma 1.3 Let \mathfrak{A} be a semi-simple abelian category. If [M, M] is a division ring for some $M \in \mathfrak{A}$, then M is minimal.

Proof. Let N be a proper subobject of M. Then [M, N]=0. Therefore, [N, M]=0 by (1.1). Hence, M is minimal.

We shall give a characterization of a special completely reducible abelian category.

Theorem 1.4 Let $\mathfrak A$ be a C_3 -abelian category. Then the following statements are equivalent.

- 1) A is completely reducible.
- 2) [M, M] is a product of closed primitive rings¹⁾ for every object M in \mathfrak{A} .
- 3) [M, M] is a product of primitive rings with non-zero socle.²⁾

Furthermore, $\mathfrak A$ is equivalent to the category of right modules over a semi-simple artinian ring if and only if [M, M] is a directsum of finite many of primitive rings with non-zero socle for every object M in $\mathfrak A$.

Proof. We note first that every minimal object N in a C_3 -category is small, since if $N \subseteq \sum_{\alpha \in I} \oplus M_{\alpha}$, then $N = N \cap (\sum \oplus M_{\alpha}) = \bigcap_{J} (N \cap \sum_{\alpha_i \in J} \oplus M_{\alpha_i})$, where J runs through all finite set of I, and hence, $N \subseteq \sum_{J} \oplus M_{\alpha_i}$ for some J'.

1) \rightarrow 2) If $\mathfrak A$ is completely reducible, then $M = \sum \oplus M_{\alpha}$, and $M_{\alpha} = \sum \oplus M_{\alpha\beta}$, where $M_{\alpha\beta}$'s are minimal objects such that $M_{\alpha\beta} \approx M_{\alpha\beta'}$ and $M_{\alpha\beta} \approx M_{\alpha'\beta'}$ if $\alpha \neq \alpha'$. Then $[M, M] = \Pi[M_{\alpha}, M]$. On the other hand $[M_{\alpha}, M_{\beta}] = 0$ if

¹⁾ The ring of all linear transformation of a vector space over a division ring.

²⁾ See [6] for the definition.

 $\alpha \neq \beta$. Hence, $[M, M] = \Pi[M_{\alpha}, M_{\alpha}]$. Since $M_{\alpha\beta}$ is small, we can prove by using matrices that $[M_{\alpha}, M_{\alpha}]$ is isomorphic to the ring of row finite matrices over a division ring.

- $2) \rightarrow 3$) It is clear.
- 3) \rightarrow 1). We assume that $[M, M] = \prod R_{\alpha}$ and R_{α} is a primitive ring with non-zero socle. Let e be a primitive idempotent in R_{α} , then $[eM, eM] = eR_{\alpha}e$ and $eR_{\alpha}e$ is a division ring, (cf. [6], p. 68). Hence, eM is a minimal object in M from (1.3). Conversely if N is a minimal object of M, then N is a direct summand of M from the remark after (1.2). Hence N=fM for some primitive idempotent f. Since $f \in \Pi R_{\alpha}$, $f \in R_{\alpha}$ for some α . Hence, the representative class of all minimal subobjects in M is a set. Therefore, we can take the sum S(M) of all minimal subobjects in M. If $M \neq S(M)$, then there exists a subobject M_1 of M such that $M_1 \supseteq S(M)$ and $M_1/S(M)$ is minimal from the above, (replace M by M/S(M)). Then $M_1 \rightarrow M_1/S(M)$ splits from the proof of (1.2), which is a contradiction. Hence, M=S(M). It is clear that M is completely reducible. Furthermore, we assume that [M, M] is a direct sum of finite many of primitive rings for every $M \in \mathfrak{A}$. If there was a infinite set of non-isomorphic minimal objects M_i of \mathfrak{A} , then $[\Sigma \oplus M_i, \Sigma \oplus M_i]$ was a product of infinite many of division rings. Hence $\mathfrak A$ contains a finite set F' of minimal objects of $\mathfrak A$ such that every minimal object is isomorphic to some object in F'. Put $U = \sum_{i \in F'} M_i$, then U is a small generator. Since every object is projective, it is equivalent to the right modules over R=[U, U] and R is artinian semi-simple.

2 Abelian category with projective generator

In the structure of an artinian ring R, the following theorem is very important:

no nilpotent one sided ideal contains a non-zero idempotent.

We consider, in this section, this property in a cocomplete abelian category \mathfrak{A} . Let A be a object in \mathfrak{A} and R=[A,A]. For any subset S in R, we can define a morphism

$$\varphi:\sum_{\lambda\in\mathcal{S}}\oplus A_{\lambda} o A$$
, $\varphi|A_{\lambda}(=A)=\lambda$.

We denote $\operatorname{Im} \varphi$ by SA, then it is clear that $SA = \bigcup_{\lambda \in S} \operatorname{Im} \lambda$. It is clear from the definition that (SS')A = S(S'A) for any subset S, S' in R, where $S(S'A) = \bigcup_{\lambda} \operatorname{Im} (\lambda \mid S'A)$.

Furthermore, for any subobject B of A, $\mathfrak{r}_B=[A,B]$ is a right ideal in R. We call \mathfrak{r}_B a right ideal of a subobject B. If $B=\mathfrak{r}A=\mathfrak{r}^2A$ for some right ideal \mathfrak{r} in R, then we call B idempotent and \mathfrak{r} quasi-idempotent. In this case $B\supseteq\mathfrak{r}_BA\supseteq\mathfrak{r}_B^2A\supseteq\mathfrak{r}^2A=B$ since $\mathfrak{r}_B\supseteq\mathfrak{r}$ and hence, $B=\mathfrak{r}_BA=\mathfrak{r}_B^2A$. If \mathfrak{r}_B is nilpotent, we call B nilpotent.

92 M. Harada

Proposition 2.1 Every minimal subobject B of A is either a direct summand of A or nilpotent.

Proof. We assume $\mathfrak{r}_B^2 \neq 0$. Then there exist x, y in \mathfrak{r}_B such that $xy \neq 0$. Since B is minimal, B = xA = xyA. We consider a morphism $x: A \to xA = B$. Since yA is minimal, $x \mid yA$ is isomorphic. Hence, $A = \text{Ker } x \oplus yA = \text{Ker } x \oplus B$.

DEFINITION. Let A be an object in $\mathfrak A$. If for any subobject B of A and the following diagram with row exact

$$A \xrightarrow{f} B \xrightarrow{Q} 0$$

$$\bigwedge_{A} g$$

there exists $h: A \rightarrow A$ such that fh=g, then A is called *semi-projective*. Every projective object is semi-projective.

Proposition 2.2 Let A be an object in A. Then A is semi-projective if and only if every principal right ideal of R is an ideal of subobject, where R = [A, A].

Proof. We put $\mathfrak{r}=[A, xA]$ for $x \in R$. For $r \in \mathfrak{r}$ we have

$$A \xrightarrow{x} xA \longrightarrow 0.$$

$$\uparrow r$$

If A is semi-projective, there exists y in R such that $r=xy\in xR$. Hence, xR is of a subobject. The converse is clear.

Proposition 2.3. Let A be a semi-projective object in \mathfrak{A} . If A is artinian, then every non-zero quasi-idempotent right ideal in R=[A,A] contains a non-zero idempotent, (every non-zero idempotent subobject contains a direct summand of A).

Proof. Let b be a quasi-idempotent right ideal and B be a minimal one among idempotent subobjects in A such that $B = \alpha A = \alpha^2 A$ and $b \supseteq \alpha$; say $B = \alpha A = \alpha^2 A \neq 0$. Since α is not nilpotent, there exists $x \in \alpha$ such that $x\alpha \neq 0$. Now we take a minimal one among x'A, where $x' \in \alpha$ and $x'\alpha \neq 0$; say xA. Since $x\alpha\alpha A = x\alpha A \neq 0$, there exists $y \in x\alpha \subseteq \alpha$ such that $y\alpha \neq 0$ and $yA \subseteq x\alpha A \subseteq xA$. Therefore, yA = xA. From the assumption and (2.2), we obtain x = xa for some $a \in \alpha$. $0 \neq x = xa^2 = \cdots = xa^n = \cdots$, and hence a is not nilpotent and $x(a-a^2)=0$. We put $n=a-a^2$. If n=0, a is idempotent. We assume $n \neq 0$. Put $x=\{z \mid \alpha, xz=0\}$. Then $\alpha \supseteq x$ and $\alpha A \neq xA$. Therefore, we know from the minimality of αA that x is nilpotent, since $xA \supseteq x^2A \supseteq \cdots$ and hence a is

nilpotent. By using the same argumet in the case of ring, we can prove that a contains a non-zero idempotent, (see [2], p. 160).

Proposition 2.4 Let P be an artinian semi-projective object in \mathfrak{A} . Then [P, P] is a semi-primary ring.

Proof. Since P is artinian, P is a directsum of finite many of directly indecomposable object P_i . It is clear that P_i is also semi-projective. First we assume that P is directly indecomposable. Let R=[P, P] and N the radical of R. Since P is artinian, there exists n such that $N^nP=N^{n+1}P$. Hence, N is nilpotent by (2.3). Let \mathfrak{r} be a right ideal containing N. Then $\mathfrak{r}=N$ or \mathfrak{r}^n is quasi-idempotent for some n. Therefore, \mathfrak{r} contains an idempotent e if $\mathfrak{r} \neq N$ and hence $P=eP \oplus (1-e)P$. Which means e=1, since P is directly indecomposable. Therefore, R/N is a division ring, and R is semi-primary. Next, we assume $P=\sum \oplus P_i$, where P_i 's are directly indecomposable and $P_i \approx P_j$ if $i \neq j$. We put $R_{ij} = [P_j, P_i]$ and denote the radical of R_{ii} by N_i . Then $R = (R_{ij})$. If we put

$$N = \begin{pmatrix} N_1 R_{12} \cdots R_{1n} \\ R_{21} N_2 \cdots R_{2n} \\ \cdots \\ R_{n1} \cdots N_{nn} \end{pmatrix},$$

then by using the usual argument in the endomorphism ring of indecomposable modules (cf. [1], p. 23), we can prove that N is nilpotent, since N_i 's are nilpotent and R_{ii}/N_i are division rings. In general, we assume that $P = \sum \bigoplus P_{ij}$, where P_{ij} are directly indecomposable and $P_{ij} \approx P_{ik}$, $P_{ij} \approx P_{i'k}$ if $i \neq i'$. We put $P_0 = \sum_i \bigoplus P_{i1}$ and $R_0 = [P_0, P_0]$. Then R_0 is a basic ring of R. Hence, R is semiprimary from the second argument.

Theorem 2.5 Let \mathfrak{A} be a C_3 -abelian category with projective artinian generator U. Then \mathfrak{A} is equivalent to the category of right R-modules, where R=[U, U] is a right artinian ring, (cf. [11]).

Proof. U is a semi-primary generator from (2.4). We can define a function φ of \mathfrak{A} such that $M/\varphi(M)$ is completely reducible for every object M in \mathfrak{A} and $\varphi^n(U)=0$ for some n by [5], Theorem 7 and Lemma 5. Since U is artinian, U is noetherian. Therefore, U is small, (cf. [10], p. 83, 1.6).

We shall consider an analogous proposition to (2.4) for noetherian objects.

Lemma 2.6 Let P be a projective object, then every finitely generated right ideal \mathfrak{r} in R=[P,P] is the ideal of subobject of P, namely $\mathfrak{r}=[P,\mathfrak{r}P]$. Furthermore, if P is small, then every right ideal of R is of subobject (cf. [11]).

Proof. We assume that $\mathfrak{r}=\sum_{i=1}^n x_i R$. Then, we have a diagram with row

94 M. HARADA

exact for any $x \in [P, \mathfrak{r}P]$

$$\sum_{i'} \bigoplus P_i \xrightarrow{\varphi} rP \longrightarrow 0$$

$$\downarrow x$$

$$\downarrow x$$

where $P_i = P$ and $\varphi \mid P_i = x_i$. Since $x = \varphi h = \varphi \sum_{i} i_j p_j h = \sum_{i} x_i p_i h$, $x \in \mathfrak{r}$ since $p_i h \in R$. If P is small, we can replace $\sum_{i} P_i$ by $\sum_{k \in P'} P$ for any right ideal \mathfrak{r}' .

Proposition 2.7 Let P be a projective noetherian object in a C_3 -category \mathfrak{A} . Then [P, P] is a right noetherian ring.

Proof. If P is noetherian, then P is small, and hence $[P, \tau P] = \tau$ for every right ideal τ in R = [P, P] from (2.6). Therefore, R is right noetherian. Finally we shall give an application of (2.4) for the case of modules.

Theorem 2.8 Let R be a ring. If M is a non-zero projective and artinian right R-module, then $Hom_R(M, M)$ is a right artinian ring and M is a directsum of finite many of right principal ideals of R which is generated by an idempotent.

Proof. First, we assume that M is directly indecomposable. Since M is R-projective, $M=M\tau(M)$ and $\tau(M)^2=\tau(M)$, where $\tau(M)$ is the trace ideal of M. We put $S = \operatorname{Hom}_R(M, M)$. Then S is a semi-primary ring with radical N_S such that S/N_S is a division ring by (2.4). We define $\mu: M \otimes \operatorname{Hom}_R(M, R)$ $\rightarrow S$ by setting μ $(m \otimes f)m' = mf(m')$. If Im $\mu \neq S$, then Im $\mu \subseteq N_S$ and hence, Im μ is nilpotent. For any element $s = \mu(m_1 \otimes f_1)\mu(m_2 \otimes f_2)\cdots\mu(m_n \otimes f_n)$ in $(\operatorname{Im} \mu)^n$, we have $sm = m_1 f_1(m_2) \cdots f_{n-1}(m_n) f_n(m)$ for $m \in M$. Therefore, if $(\operatorname{Im} \mu)^m = 0$, $M\tau(M)^m = 0$, which is a contradiction. Hence, M is finitely generated projective R-module. Next, we put $\bar{M}=M/MN$, where N is the radical of R. Then \bar{M} is $\bar{R}=R/N$ -projective and $\text{Hom}_{\bar{R}}(\bar{M},\bar{M})=S/N_S=\bar{S}$. Since \bar{M} is finitely generated projective \bar{R} -module, there exist $f_i \in \operatorname{Hom}_{\bar{R}}(\bar{M}, \bar{R})$ and $\overline{m}_i \in \overline{M}$ such that $\overline{m} = \sum \overline{m}_i f_i(\overline{m})$ for every $\overline{m} \in \overline{M}$. If f_i is not monomorphic, then for any element $x \neq 0$ in Ker f_i and any $y \in \overline{M}$, $\mu(y \otimes f_i) = z \in \overline{S}$ is not monomorphic, since $zx=zf_i(x)$. However, \overline{S} is a division ring and hence, $\mu(y \otimes f_i) = 0$ for every $y \in \overline{M}$. This means $\overline{M} f_i(\overline{M}) = 0$. Therefore, there exists some f_j such that f_j is monomorphic. Hence, we may assume that \overline{M} is a right ideal of \bar{R} . Since R is semi-simple, $\bar{M}^2 \neq 0$. Hence, there exists $\bar{m} \in \bar{M}$. such that $\overline{m}\overline{M} \neq 0$. The natural homomorphism φ of \overline{M} to $\overline{m}\overline{M}$ defined by $\varphi(x) = mx$ is not zero. Hence, φ is isomorphic and $\overline{M} = \overline{m}\overline{M} = \overline{m}\overline{R}$, since \overline{S} is a division ring. Therefore, M=mR. Furthermore, M is R-projective, $M\approx$ Re for some idempotent e in R. Next, we assume $M=\sum \bigoplus M_i$, where M_i are

all directly indecomposable. Since M is a finitely generated R-module from the above, M is small. Hence S is right artinian from the proof of (2.7)

Universidad de Buenos Aires and Osaka City University

References

- [1] N. Bourbaki: Algèbre, Chap 8, Hermann, Paris, 1958.
- [2] C.W. Curtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebra, Interscience, New York, 1962.
- [3] C. Ehresmann: Catégories et Structures, Dunod, Paris, 1965.
- [4] P. Gabriel and N. Popesco: Carectérisation des catégories abéliennes avec générateures et limites inductives exactes, C.R. Acad. Sci. Paris, 258 (1964), 4188-4190.
- [5] M. Harada: On semi-primary abelian categories, Osaka J. Math. 5 (1968), 189-198.
- [6] N. Jacobson: Structure of Rings, Amer. Math. Soc. 1957.
- [7] G.M. Kelly: On the radical of a category, J. Austral. Math. Soc. 4 (1964), 299–307.
- [8] T.Y. Lam: The catégory of noetherian modules, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 1038-1040.
- [9] P.Y. Leduc: Catégories semi-simples et catégories primitives, Canad, J. Math. 20 (1968), 612-628.
- [10] B. Mitchell: Theory of Categories, Academic Press, New York and London, 1965.