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Let 31 be an abelian category. We can define an ideal & in 31 similarly
to the ring (cf. [3]). Especially, Kelly has defined the Jacobson radical of 31
in [7], and we call 31 semi-simple if its radical is equal to zero.

In the first section of this note we shall show that Si is semi-simple if
and only if 31 is completely reducible under a condition that Si is artinian or
noetherian, which is deίferent from Theorem 1 in [9], and give a characterization
of completely reducible C3-abelian category (see [10], p. 82 for the definition).

In the section 2, we shall consider a C3-abelian category. For every artinian

projective object P we show that any idempotent subobject of P (see the definition
in §2) contains a direct summand of P, which is a well known theorem in the case

where P is equal to a ring, and show that 31 is equivalent to the category of the
right modules over an artinian ring if and only if 31 contains a projective artinian

generator, (cf. [8]).
Finally, we shall apply this argument to the case of module and show that

the endomorphism ring of an artinian projective module is also artinian.

1 Semi-simple categories

Let 31 be an additive category. We call 31 semi-simple, if the ring [A, A]
is semi-simple in the sense of Jacobson for every object A in 3ί, (cf. [7] and [9]).

Lemma 1.1 Let 31 be an additive semi-simple category with coproduct.
If a: M—>N is not zero, then there exists β: N-*M (resp. β': N^>M) such
that /3αφO (resp. α/3'ΦO). // [M, ΛΓ|=0, [N, M]=0.

Proof. We assume [N, M]a=Q. Put P=M®N and R=[P, P]. Then

R( ft) is a nilpotent left ideal, and hence α=0, which proves the lemma.

We call Sί completely reducible if every object is a directsum of minimal
objects and SI is called artinian (resp. noetherian) if every object in 31 is artinian
(resp. noetherian).
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Theorem 1.2 Let 21 be an artinίan or noetherian abelian category. Then

A is completely reducible if and only if 21 is semi-simple.

Proof. If 31 is completely reducible and artinian or noetherian, then

[M, M} is a semi-simple ring and hence, 21 is semi-simple. Next, we assume
that 21 is noetherian and semi-simple. Let N be a maximal subobject of M
and a: M-+M/N a natural epimorphism. Since αφO, there exists β^[M/N,

M] such that α/3Φθ by (1.1). However, M/N is a minimal object and hence,
aβ is isomorphic and we may assume that aβ=lM/N. Therefore, M= Im/30
Ker a = Imβ®N and Im β is minimal. Repeating this argument to N, finally we

obtain M=20Λf, ; N* is minimal, since M is noetherian. We assume that
21 is artinian and semi-simple. Let TV be a minimal subobject of M and a the

inclusion of N into M. Then there exists βe [M, N] such that βa φO. Hence,
M=TV®Ker β. From the same reason as above, M is completely reducible.

We note from the above proof that every minimal subobject is a direct

summand if 21 is semi-simple.

Lemma 1.3 Let 21 be a semi-simple abelian category. If [M, M} is a

division ring for some Me 21, then M is minimal.

Proof. Let N be a proper subobject of M. Then [M, ΛΓ|=0. Therefore,
[TV, Λf]=0 by (1.1). Hence, M is minimal.

We shall give a characterization of a special completely reducible abelian
category.

Theorem 1.4 Let 21 be a C3-abelian category. Then the following state-
ments are equivalent.

1) 21 is completely reducible.
2) [M, M] is a product of closed primitive rίngs1^ for every object M in 21.

3) [M, M] is a product of primitive rings with non-zero socle.2)

Furthermore, 21 is equivalent to the category of right modules over a semi-

simple artinian ring if and only if [M, M] is a directsum of finite many of primitive
rings with non-zero socle for every object M in 21.

Proof. We note first that every minimal object TV in a C3-category is small,

since if TV ^Σ>®M^ then N=N Π (Σ®MΛ)= Π (TVΠ ΣθΛfΛΛ, where / runs
Λ£E7 7 Λ, er

through all finite set of /, and hence, TVci^φM^. for some /'.
7'

l)->2) If 21 is completely reducible, then M=^®MΛ, and MΛ=

2®^»/3, where MΛβ

ys are minimal objects such that Maβ^MΛβ' and MΛβφMΛy
if αΦα'. Then [M, M]=Π[MΛ, M]. On the other hand [MΛ, Mβ]=Q if

1) The ring of all linear transformation of a vector space over a division ring.
2) See [6] for the definition.
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αΦ/3. Hence, [M, M]=Π[MΛ, MΛ]. Since MΛβ is small, we can prove by
using matrices that [MΛ, MΛ] is isomorphic to the ring of row finite matrices
over a division ring.

2) ->3) It is clear.
3)->l). We assume that [M, M]=ΠRΛ and Ra is a primitive ring with

non-zero socle. Let e be a primitive idempotent in RΛ, then [eM, eM]—eRΛe
and eRΛe is a division ring, (cf. [6], p. 68). Hence, eM is a minimal object
in M from (1.3). Conversely if TV is a minimal object of M, then N is a direct
summand of M from the remark after (1.2). Hence N=fM for some primitive
idempotent/. Since /eΠ/?Λ, /el?Λ for some α. Hence, the representative
class of all minimal subobjects in M is a set. Therefore, we can take the
sum S(M) of all minimal subobjects in M. If M Φ S(M), then there exists a
subobject Ml of M such that M^S(M) and MJS(M) is minimal from the
above, (replace M by MjS(M)). Then M1-^M1/5(M) splits from the proof
of (1.2), which is a contradiction. Hence, M=S(M). It is clear that M is
completely reducible. Furthermore, we assume that [M, M] is a directsum of
finite many of primitive rings for every Me 51. If there was a infinite set of
non-isomorphic minimal objects Mt of 91, then [ΣθM, , ΣφΛfJ was a product
of infinite many of division rings. Hence §1 contains a finite set F' of minimal
objects of 31 such that every minimal object is isomorphic to some object in Fr.

Put i/=ΣΦ^ή t"ιen U is a small generator. Since every object is projective,
ίeί"

it is equivalent to the right modules over R= [[/, U] and R is artinian semi-simple.

2 Abelian category with projective generator

In the structure of an artinian ring R, the following theorem is very im-

portant :
no nίlpotent one sided ideal contains a non-zero idempotent.
We consider, in this section, this property in a cocomplete abelian category

SI. Let A be a object in 3ί and R= [Ay A]. For any subset S in R, we can define

a morphism

We denote Im<p by SA, then it is clear that SA— \J Im λ. It is clear from
λes

the definition that (SS')A=S(SΆ) for any subset S, S' in Λ, where S(SΆ)
= \JIrn (\\SΆ).

Furthermore, for any subobject B of Ay τB=[A, B] is a right ideal in
R. We call tβ a π^Aί zVfeα/ o/ # subobject B. If B = τA = τ2A for some
right ideal r in R, then we call J5 idempotent and r quasί-idempotent. In
this case B^τBA^τ%A^τ2A=B since r^r and hence, B=τBA=τ\A. If rβ is
nilpotent, we call # nίlpotent.
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Proposition 2.1 Every minimal subobject B of A is either a direct summand
of A or nilpotent.

Proof. We assume r|Φθ. Then there exist x, y in tB such that #
Since B is minimal, B=xA=xyA. We consider a morphism x: A-*xA=B.
Since yA is minimal, x\yA is isomorphic. Hence, A=Kerx(£)yA= Ker#0£.

DEFINITION. Let A be an object in St. If for any subobject B of ^4 and
the following diagram with row exact

A

there exists h: A^A such that fh=g, then ^4 is called semi-pro jective.
Every projective object is semi-projective.

Proposition 2.2 Let A be an object in A. Then A is semi-projective if
and only if every principal right ideal of R is an ideal of subobject, where R= [A, A] .

Proof. We put x=[A, xA] for x^R. For rer we have

A -̂ U xA - > 0 .

I-
A

If A is semi-projective, there exists y in jR such that r=xy^xR. Hence, xR
is of a subobject. The converse is clear.

Proposition 2.3. Let A be a semi-projective object in 31. If A is artinίan,
then every non-zero quasί-ίdempotent right ideal in R=[A9 A] contains a non-zero
idempotent, (every non-zero idempotent subobject contains a direct summand of A).

Proof. Let b be a quasi-idempotent right ideal and B be a minimal one
among idempotent subobjects in A such that B = aA = a2A and bΞ>α; say
B=aA=a2 ^4ΦO. Since α is not nilpotent, there exists x^a such that #αΦθ.
Now we take a minimal one among x'Ay where #'eα and #'αΦθ; say xA.
Since xaaA=xaA^Q, there exists y^xa^a such that jαφO and yAc:χaA
cixA. Therefore, yA=xA. From the assumption and (2.2), we obtain x=xa
for some «eα. Q^χ=χa2= =xan= -y and hence a is not nilpotent and
x(a— a2)=0. We put n=a—a2. If n=Q, a is idempotent. We assume nφO.
Put τ={z\ eα, xs=0}. Then α^r and aA^τA. Therefore, we know from
the minimality of aA that t is nilpotent, since τA^τ2A^ - and hence n is
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nilpotent. By using the same argumet in the case of ring, we can prove that

α contains a non-zero idempotent, (see [2], p. 160).

Proposition 2.4 Let P be an artίnian semi-projective object in 3H. Then

[P, P] is a semi-primary ring.

Proof. Since P is artinian, P is a directsum of finite many of directly
indecomposable object P{. It is clear that P, is also semi-projective. First we
assume that P is directly indecomposable. Let P=[P, P] and N the radical of
R. Since P is artinian, there exists n such that NnP=Nn+1P. Hence, N is
nilpotent by (2.3). Let r be a right ideal containing N. Then τ=N or τn

is quasi-ίdempotent for some n. Therefore, r contains an idempotent e if

ΓΦ7V and hence P=tfP®(l— e)P. Which means e—\, since P is directly
indecomposable. Therefore, R/N is a division ring, and R is semi-primary.

Next, we assume P = Σ0PZ , where P^s are directly indecomposable and
P,φPy if ίΦy. We put Rg~[Pj9 Pt] and denote the radical of Ri{ by TV,.
Then R^R^). If we put

then by using the usual argument in the endomorphism ring of indecomposable
modules (cf. [1], p. 23), we can prove that TV is nilpotent, since TV/s are nilpotent

and Rff/Nf are division rings. In general, we assume that P=Σ® Po*» where
P{j are directly indecomposable and Pty^P/A/, P .̂φP^ if iΦί'. We put

Λ=Σ®^/ι and Ro=[po> p<>]' Then ^o is a basic ring of P. Hence, R is
t

semiprimary from the second argument.

Theorem 2.5 Let ^ be a C3-abelian category with projectίve artίnian

generator U. Then 21 is equivalent to the categry of right R-modules, where

R=[U, U] is a right artinian ring, (cf. [11]).

Proof. U is a semi-primary generator from (2.4). We can define a function

φ of SI such that M/φ(M) is completely reducible for every object M in 31 and
φn(U)=Q for some n by [5], Theorem 7 and Lemma 5. Since U is artinian,

U is noetherian. Therefore, U is small, (cf. [10], p. 83, 1.6).
We shall consider an analogous proposition to (2.4) for noetherian objects.

Lemma 2.6 Let P be a protective object, then every finitely generated right

ideal τ in R=[P, P] is the ideal of subobject of P, namely r=[P, rP]. Further-
more, if P is small, then every right ideal of R is of subobject (cf. [U]).

n

Proof. We assume that ϊ=Σ x{R. Then, we have a diagram with row
ί=Ί
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exact for any x^ [P, rP]

where Pf=P and φ\Pi=xi. Since x=φh=φ^ijpJ.h='Σxipih9 #er since

If P is small, we can replace Σ Pi by Σ ^ f°r anY right ideal r'.

Proposition 2.7 Le/ P be a projectίve noetherian object in a C^-category Sί.

[P, P] is a right noetherian ring.

Proof. If P is noetherian, then P is small, and hence [P, rP]=r for

every right ideal X in R=[P, P] from (2.6). Therefore, R is right noetherian.

Finally we shall give an application of (2.4) for the case of modules.

Theorem 2.8 Let R be a ring. If M is a non-zero projectίve and artίnian

right R-module, then HomR(M, M} is a right artίnίan ring and M is a dίrectsum of

finite many of right principal ideals of R which is generated by an idempotent.

Proof. First, we assume that M is directly indecomposable. Since M is

jR-ρrojective, M=Mτ(M) and τ(M)2=τ(M), where τ(M) is the trace ideal of

M. We put S— Hoiϊifl (M, M). Then S is a semi-primary ring with radical

Ns such that S/NS is a division ring by (2.4). We define μ\ M(g)Hom/?(M, R)
R

-+S by setting μ (m®f)mf=mf(mf). If Im μφS, then Im μ^Ns and hence,

Imμ, is nilpotent. For any element s = μ(ml®f^)μ(m2®f^"'μ(mn®f^) in

(Im //,)*, we have sm = mj^m^) -/«_ι(wn)/Λ (nϊ) for m^M. Therefore, if

(Imμ)m=Q, Mτ(M)w = 0, which is a contradiction. Hence, M is finitely

generated projective P-module. Next, we put M=M/MN, where N is the

radical of R. Then M is .R—P/TV-projective and Hom^(M, M)=S/NS=S.

Since M is finitely generated projective .R-module, there exist /,- e Hom^ (My R)

and m^M such that m=Σ ^«/«(^) f°r every meM. If/f is not monomorphic,

then for any element JCΦO in Ker/,- and any y^M, μ(y®fί} = z^S is not

monomorphic, since zx=-zft(x). However, S is a division ring and hence,

Aft(j'®/ί)==0 for every ^eM. This means Mff(M) = 0. Therefore, there

exists some /y such that /y is monomorphic. Hence, we may assume that M is

a right ideal of R. Since R is semi-simple, M2ΦO. Hence, there exists m^M

such that mJfφO. The natural homomorphism φ of M to mM defined by

φ(x) = mx is not zero. Hence, φ is isomorphic and M=mM=ίnR, since S

is a division ring. Therefore, M=mR. Furthermore, M is jR-projective, M«

Re for some idempotent e in R, Next, we assume M=^φMi9 where Mf are
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all directly indecomposable. Since M is a finitely generated jR-module from
the above, M is small. Hence S is right artinian from the proof of (2.7)
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