όyama, T. Osaka J. Math. 7 (1970), 41-56

ON MULTIPLY TRANSITIVE GROUPS IX

TUYOSI OYAMA

(Received September 5, 1969)

1. Introduction

Let *G* be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$, and let *P* be a Sylow 2-subgroup of a stabilizer of four points in *G.* In a previous paper [6] the following theorem has been established: If *P* fixes exactly six points, then *G* must be $A_{\scriptscriptstyle{6}}$.

The purpose of this paper is to prove the following

Theorem. *Let G be a 4-fold transitive group. If a Sylow 2-subgroup* of a stabilizer of four points in G fixes exactly eleven points, then G must be M_{11} .

Therefore, by a theorem of M. Hall [1. Theorem 5.8.1], this theorem implies the following

Corollary. *Let G be a 4-fold transitive group. If a Sylow 2-subgroup P of a stabilizer of four points in G is not identity, then P fixes exactly four, five or seven points.*

We shall follow the notations of T. Oyama [5] and [6].

2. Preliminary lemmas

Lemma 1. *Let R be a 2-subgroup of a group G and H a subgroup of G.* If $R \le N_G(H)$ and $|H|$ is even, then there exists an involution a of H such that $R \leq C_G(a)$.

Proof. Since the number of Sylow 2-subgroups of *H* is odd, by assumption *R* normalizes some non-identity Sylow 2-subgroup *Q* of *H.* Since the number of central involutions of *Q* is also odd, *R* centralizes some involution of *Q.*

Lemma 2. *Let G be a permutation group and H a stabilizer of some points in G. Suppose that a subgroup U of H has the following property :*

(*) *If a subgroup V of H is conjugate to U in G, then it is conjugate to U in H.* Then there is a subgroup N of $N_G(U)$ such that N fixes $I(H)$ as a set and $=N_c(H)^{I(H)}$.

42 T. OYAMA

Proof. Let *N* be a subgroup of *N^G (U)* consisting of all the elements of $N_G(U)$ which fix $I(H)$ as a set. Obviously $N^{I(H)} \le N_G(H)^{I(H)}$. Let *x* be any element of $N_G(H)$. Then U^* is a subgroup of H. By (*), there is an element *y* of *H* such that $U^* = U^y$. Then $xy^{-1} \in N_G(U)$. Since xy^{-1} fixes $I(H)$ as a set, $xy^{-1} \in N$. Furthermore $(xy^{-1})^{I(H)} = x^{I(H)} \cdot (y^{-1})^{I(H)} = x^{I(H)}$. Hence *x* $N^{I(H)}$. Thus $N^{I(H)} = N_G(H)^{I(H)}$.

3. Proof of the theorem

Let *G* be a 4-fold transitive group. By the theorem of M. Hall, if a stabilizer of four points in G is of odd order, then *G* must be one of the following groups : S_4 , S_5 , A_6 , A_7 or M_{11} . Therefore to prove our theorem we may assume that a Sylow 2-subgroup of a stabilizer, of four points in *G* is not identity.

Lemma 3. Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$, and *P* a Sylow 2–subgroup of G_{1234} . Suppose that *P* is not identity and $N_G(P)^{I(P)}$ $=M_{11}$. For a point t of a minimal orbit of P in $\Omega-I(P)$ let $P_t=Q$, $N_G(Q)=N$ and $I(Q) = \Delta$. Then a Sylow 2-subgroup R of N_{ijkl} satisfies the following con*ditions, where* $\{i, j, k, l\} \subset \Delta$.

- (a) $I(R)=I(P')$, where P' is some Sylow 2-subgroup of G_{ijkl} .
- (b) R^{Δ} *is a Sylow 2-subgroup of* $(N^{\Delta})_{ijkl}$ *.*
- (c) R^{Δ} *is a non-identity semi-regular group.*
- *(d)* $N_{N}(R)^{I(R)} \leq M_{11}$

Proof, (a), (b) and (c) follow from Lemma 1 in [6],

(d). Obviously $N_N(R)^{I(R)} \le N_G(G_{I(R)})^{I(R)}$. By (a) and Lemma 2 $N_G(G_{I(R)})^{I(R)} = N_G(P')^{I(P')}$. Hence $N_N(R)^{I(R)} \leq M_{11}$.

In the following lemma we consider a permutation group *G* on $\Omega = \{1, 2, \dots, n\}$, which is not necessarily 4-fold transitive.

Lemma 4. *Let P be a Sylow 2-subgroup of any stabilizer of four points in G. Then there is no group, which satisfies the following conditions.*

- $I(P) = 11$ and $N_G(P)^{I(P)} \leq M_{11}$.
- *(b) P is a non-identity semi-regular group.*

The proof will be given in various steps. Suppose by way of contradiction that G is a counterexample to Lemma 4.

(1) *P has only one involution.*

Proof. By the same argument as in Case I of [5] we have this assertion.

(2) *Any involution of G fixes exactly eleven points.*

Proof. Let *x* be an arbitrary involution of G. If $|I(x)| \ge 4$, then $|I(x)|$

 $=$ 11 by assumption. Since $|\Omega|$ is odd, $|I(x)|$ is odd and so $|I(x)|=1,3$ or 11.

Suppose $|I(x)|=1$ or 3. We may assume that x is of the form

$$
x=(1\ 2)\,(3\ 4)\cdots.
$$

Since $x \in N_G(G_{1234})$, x normalizes some Sylow 2-subgroup P' of G_{1234} . Let $I(P') = \{1, 2, \dots, 11\}.$ By assumption $x^{I(P')} \in M_{11}$. Hence we may assume that *x* is of the form

 $x = (1\ 2) (3\ 4) (5\ 6) (7\ 8) (9) (10) (11) (i\ i) \cdots$

Thus $|I(x)| \neq 1$. Let *a* be a involution of P'. Then *x* commutes with *a* by (1). Suppose $x^{\Omega-I(P')}$ $\neq a^{\Omega-I(P')}$. Then we may assume that x and a have two 2- α cycles $(ij)(k\ell)$ and $(ik)(j\ell)$ respectively. Since $\langle x, a \rangle \langle N_G(G_{ijkl}), \langle x, a \rangle$ normalizes some Sylow 2-subgroup P'' of G_{ijkl} . Since $x^{I(P'')}$ is an involution of M_{11} and x fixes only three points 9, 10 and 11, $x^{I(P'')}$ fixes these three points. Therefore $(N_G(P'')^{I(P'')})_{91011} \geq \langle x, a \rangle^{I(P'')}$ and $x^{I(P'')} \neq a^{I(P'')}$. But this is a contradiction, because a stabilizer of three points in *Mⁿ* is a quaternion group. Therefore $x^{\Omega^{-}I(P')}=a^{\Omega^{-}I(P')}$, and so $a=(1)(2)\cdots(11)(ij)\cdots$. Then $\langle a, x \rangle$ also normalizes some Sylow 2-subgroup P''' of G_{12ij} . In the same way we get $I(P''')\supset$ {9, 10, 11}. Since $I(P''')\supset$ {1, 2, 9, 10, 11, i, j}, $a^{I(P''')}=(1)(2)$ $(9)(10)(11)(ij)$... By assumption (*a*) this is a contradiction.

Thus $|I(x)| = 11$.

(3) $|Ω|≥27$.

Proof. Let *x* be an involution. By (2), we may assume that *x* is of the form

$$
x = (1)(2)\cdots(11)(12\;13)\cdots.
$$

By Lemma 1, *x* commutes with some involution *y* of G_{121213} . By (2), $|I(y)|$ = 11. Since $x^{I(y)} \in M_{11}$ and $y^{I(x)} \in M_{11}$, we may assume that *x* and *y* are of the forms

$$
y = (1)(2)(3)(4\ 5)(6\ 7)(8\ 9) (10\ 11)(12)(13) \cdots (19) \cdots ,x = (1)(2) \cdots (11)(12\ 13)(14\ 15)(16\ 17)(18\ 19) \cdots .
$$

Then xy is also an involution. Hence $|I(xy)| = 11$. Therefore xy must be of the following form

$$
xy = (1)(2)(3)(4\ 5)(6\ 7) \cdots (18\ 19)(20)(21) \cdots (27) \cdots.
$$

Thus $|\Omega| \ge 27$.

(4) $N_G(P)^{I(P)}$ is one of the following:

Case I. $(P)^{I(P)}$ is transitive. $N_G(P)^{I(P)} = M_{11}$ or $LF_2(11)$.

Case II. $N_G(P)^{I(P)}$ has exactly two orbits, say Δ and Γ .

 (h) $|\Delta| = 1$ and $|\Gamma| = 10$. $N_G(P)^{I(P)} = M_{10}$ or M'_{10} , where M'_{10} is a com m *utator subgroup of* M_{10} .

 (ii) $|\Delta| = 2$ and $|\Gamma| = 9$. $N_G(P)^{I(P)} = N(M_{s})$ or $N(M_{s}^{*})$, where $N(M_{s})$ $=N_{M_{11}}(M_{9})$ and $|N(M_{9})$: $N(M_{9}^{*})|=2$.

(iii) $|\Delta| = 5$ and $|\Gamma| = 6$. $N_G(P)^{I(P)} = S_{5} \cdot S_{6}^{*}$, where $S_{5} \cdot S_{6}^{*}$ is isomorphic $to S₅$.

Proof. Let $I(P)=\{1,2,\dots,11\}$. Then we may assume that an involution a of P is of the form

$$
a=(1)(2)\cdots(11)(i j)\cdots.
$$

For any two points i_1 , i_2 in $I(P)$ *a* normalizes $G_{i_1 i_1 j_2 k_1}$. By Lemma 1, there is an involution $x_{i_1 i_2}$ of $G_{i_1 i_2 i_3}$ such that $x_{i_1 i_2}$ commutes with *a*. We denote the restriction of $x_{i_1 i_2}$ on $I(P)$ by $a_{i_1 i_2}$. By assumption (a) $a_{i_1 i_2}$ fixing a point i_3 , is o the form

$$
a_{i_1 i_2} = (i_1)(i_2)(i_3)(i_4 i_5)(i_6 i_7)(i_8 i_9)(i_{10} i_{11})\ .
$$

Let $T = \langle \{a_{i_1 i_2} | \{i_1, i_2\} \subset I(P) \} \rangle$. Then $T \le N_G(a)^{I(P)}$. Since a is a unique involution of P, by Lemma 2 $N_G(a)^{I(P)} = N_G(G_{I(P)})^{I(P)} = N_G(P)^{I(P)}$. Therefore $T \leq N_G(P)^{I(P)} \leq M_{11}$.

Case I. Let $N_G(P)^{I(P)}$ be transitive. Since there exists an involution in *T* fixing three points, by a theorem of Galois [7. Theorem 11.6] $N_{\boldsymbol{G}}(P)^{I(P)}$ is nonsolvable. Since a nonsolvable transitive group of degree 11 in M_{11} is M_{11} or $LF_{2}(11)$ (see [2]),

$$
N_G(P)^{I(P)} = M_{12} \quad \text{or} \quad LF_2(11).
$$

Case II. Let $N_G(P)^{I(P)}$ be intransitive. Since $T \le N_G(P)^{I(P)}$, T is also intransitive. Therefore we denote one of the T-orbits by Δ .

i) Suppose $|\Delta|=1$. Let $\Delta=\{1\}$ and $\Gamma=\{2, 3, \cdots, 11\}$. For any two points i_1 , i_2 in Γ there is an involution $a_{i_1 i_2}$ of the following form

$$
a_{i_1 i_2} = (1)(i_1)(i_2)(i_3 i_4)(i_5 i_6)(i_7 i_8)(i_9 i_{10}).
$$

By a lemma of D. Livingstone and A. Wagner [3. Lemma 6] *T* is doubly transitive on Γ. Since $T \le M_{10}$, $|T| = 10 \cdot 9 \cdot 2k$, where $k=1, 2$ or 4. By a theorem of G. Frobenius [4. Proposition 14.5],

$$
\sum_{x\in T}\alpha_{2}(x)=\frac{|T|}{2}=10\cdot 9\cdot k.
$$

On the other hand since any two points j_1 , j_2 in Γ determin uniquely an in-

volution $a_{j_1 j_2}$ and conversely any involution x' of T determins exactly two points of Γ, which are fixed by x', the number of involutions is $\binom{10}{2}$. Therefore

$$
\sum_{x'} \alpha_2(x') = {10 \choose 2} 4 = 10 \cdot 9 \cdot 2 ,
$$

where *x'* ranges over all involutions of *T*. Since $\sum_{x} \alpha_{x}(x) \geq \sum_{x'} \alpha_{x}(x')$, $k \geq 2$. Thus $T=M_{10}$ or M'_{10} , where M'_{10} is a commutator subgroup of M_{10} . Since

 $N_G(P)^{I(P)}$ is intransitive and $T \le N_G(P)^{I(P)}$, $N_G(P)^{I(P)} = M_{10}$ or M'_{10} .

ii) Suppose $|\Delta|=2$. Let $\Delta = \{1,2\}$ and $\Gamma = \{3,4,\dots,11\}$. For any point i_1 of Γ there is an involution a_{1i_1} of the form

$$
a_{1i_1} = (1)(2)(i_1)(i_2 i_3)(i_4 i_5)(i_6 i_7)(i_8 i_9)
$$

By Lemma 6 of [3] T_{12} is transitive on Γ . Since $T_{12} \leq M_{9}$, $|T_{12}| = 9 \cdot 2k$, where $k=1, 2$ or 4. Since T contains an involution $a_{34} = (1\ 2)(3)(4) \cdots$, $T = T_{12} + T_{12}a_{34}$ and so $|T|=2.9.2k$. From the theorem of G. Frobenius

$$
\sum_{x \in T} \alpha_1(x^{\Gamma}) = 9.4k,
$$

$$
\sum_{x' \in T_{1,2}} \alpha_1(x'^{\Gamma}) = 9.2k,
$$

On the other hand since two points j_1, j_2 in Γ determine uniquely an involution $a_{j_1 j_2}$, which fixes three points of Γ, the number of involutions of $T_{12}a_{34}$ is $\begin{pmatrix} 9 \\ 2 \end{pmatrix}$ $\frac{1}{3}$. Hence

$$
\sum_{x''}\alpha_1(x''^{T}) = \binom{9}{2} \cdot \frac{1}{3} \cdot 3 = 9 \cdot 4,
$$

where x'' ranges over all involutions of $T_{12}a_{34}$. Since

$$
\sum_{x} \alpha_1(x^{\mathrm{r}}) \geq \sum_{x'} \alpha_1(x'^{\mathrm{r}}) + \sum_{x''} \alpha_1(x''^{\mathrm{r}}),
$$

9.4 $k \geq 9.2k+9.4$.

Hence $k \ge 2$ or 4. Thus $T=N_{M_{11}}(M_{\mathfrak{s}})$ or $N(M_{\mathfrak{s}}^*),$ where $N(M_{\mathfrak{s}}^*)$ is the following group: The index of $N(M_{9}^{*})$ in $N_{M_{11}}(M_{9})$ is 2 and $N(M_{9}^{*})$ -orbits are Δ and Γ . Similarly to i) $N_G(P)^{I(P)} = N(M_{\mathfrak{s}})$ or $N(M_{\mathfrak{s}}^*).$

iii) Let $|\Delta| = 3$ and $I(P) - \Delta = \Gamma$. For any two points i_1, i_2 in Γ since $|\Gamma|$ is even, there is an involution such that it's restriction on Γ fixes exactly these two points. Therefore again by Lemma 6 of [3], T^{Γ} is doubly transitive and so $|T| = 8 \cdot 7 \cdot k$. But this is impossible since $7 \nmid M_{11}|$. Therefore there is no such T that $|\Delta|=3$.

iv) Let $|\Delta|=4$ and $I(P)-\Delta=\Gamma$. From the results above the length of a *T*-orbit in Γ is not 1, 2 or 3. Therefore T^{Γ} is transitive. Since $|\Gamma| = 7$, in the same way as in iii) we have a contradiction. Thus $|\Delta| = 4$.

v) Suppose $|\Delta| = 5$. Let $\Delta = \{1, 2, ..., 5\}$ and $\Gamma = \{6, 7, ..., 11\}$. For any two points i_1 , i_2 of Γ since $|\Gamma|$ is even, there is an involution such that it's restriction on Γ fixes exactly these two points. Therefore again by Lemma 6 of [3], T^{Γ} is doubly transitive. Since $T \leq M_{11}$, $T_{\Delta}=T_{\Gamma}={1}$. Hence $|T|=$ $|T^{\Delta}| = |T^{\Gamma}| \ge 6.5.2k$. Since $|\Delta| = 5$, $|T^{\Delta}| = 60$ or 120, namely $T^{\Delta} = A_5$ or S_5 . On the other hand T^{Δ} has a transposition $(1)(2)(j_1)(j_2j_3)$. Therefore $T^{\Delta}=S_5$. Thus T is isomorphic to S_5 . We denote this group by S_5 Similarly to i) $N_G(P)^{I(P)} = S_s \cdot S_6^*$.

vi) If $|\Delta| \ge 6$, then $|I(P)-\Delta| \le 5$. Considering the length of T-orbit in $I(P)$ — Δ , we have that $N_G(P)^{I(P)}$ is one of the groups above.

REMARK. Every involution $x_{i_1 i_2}$ has the following property: $x_{i_1 i_2}$ commutes with *a* and fixes two points *i*, *j*, where (ij) is a 2-cycle of *a*. Therefore from now on we denote T by \mathcal{F}_{ij} (a) or \mathcal{F}_{i} .

(5) *P is cyclic or a generalized quaternion group.*

Proof. This follows immediately from (1).

(6) *If P is cyclic, then the automorphism group A(P) of P is a 2-group. If P is a quaternion group, then A(P)=S⁴ . If P is a generalized quaternion group and* $|P| > 8$ *, then A(P) is a 2-group.*

Proof. For a proof see [8. IV, § 3].

 $(7)^*$ Let b be an involution of $C_G(P) \cdot N_G(P)_{I(P)} - P$ and $|P| \geq 4$. If there is an involution c of $C_G(P){\cdot}N_G(P)_{I(P)}{-}P$ such that c commutes with b and $b^{I(P)} \neq c^{I(P)}$, then $b \notin C_G(P)$.

Proof. Let R be a Sylow 2-subgroup of $C_G(P)$. Then $R^{I(P)}$ is a Sylow 2-subgroup of $C_G(P)^{I(P)}$. Set $S=R\cdot P$. Then S is a 2-group and $S^{I(P)}$ $=R^{I(P)}$. Furthermore $S_{I(P)} = (R \cdot P)_{I(P)} = P$ is a Sylow 2-subgroup of $N_G(P)_{I(P)}$. Since

$$
\frac{|C_G(P)\cdot N_G(P)_{I(P)}|}{|S|} = \frac{|C_G(P)^{I(P)}|\cdot|N_G(P)_{I(P)}|}{|R^{I(P)}|\cdot|P|},
$$

S is also a Sylow 2-subgroup of $C_G(P) \cdot N_G(P)_{I(P)}$. Let *S'* be an arbitrary Sylow 2–subgroup of $C_G(P) \cdot N_G(P)_{I(P)}$. Then $S^* = S'$, where *x* is some element of $C_G(P) \cdot N_G(P)_{I(P)}$. Since $C_G(P)$ is a normal subgroup of $C_G(P) \cdot N_G(P)$

^{* (7)} and (8) are due to Professor H. Nagao. The auther is grateful to Professor H, Nagao for communicating these results.

 $R^x = R'$ is a Sylow 2-subgroup of $C_G(P)$ contained in *S'*. Since $I(P)^x = I(P)$ and $R^{\prime I(P)} = S^{\prime I(P)}$. Thus an arbitrary Sylow 2-subgroup S' of $C_G(P)$ contains a Sylow 2-subgroup R' of $C_G(P)$ such that $R^{\prime I(P)} = S^{\prime I(P)}$.

Suppose by way of contradiction that *b* belongs to $C_G(P)$. Since $|P|$, P has an element of order 4 by (5). If $c \in C_G(P)$, then c commutes with an element of P, whose order is at least 4. If $c \in C_G(P)$, then above remark yields that a Sylow 2–subgroup of $C_G(P)\cdot N_G(P)_{I(P)}$ containing b and c has an element *c*' of $C_G(P)$ such that $c'^{I(P)} = c^{I(P)}$. Then $cc' \in P$ but $cc' \notin C_G(P)$. Since $c' \in C_G(P)$, c' commutes with cc' , and so c commutes with cc' . Since cc' does not belong to the center of P, the order of cc' is at least 4. In any case, *c* commutes with some element *y* of *P*, where $|y| \ge 4$. Since $b \in C_G(P)$, *b* also commutes with *y*. Since *b* commutes with *c*, $I(b) \neq I(c)$ by (1). Hence $c^{I(b)}$ fixes exactly three points, namely $|I(b) \cap I(c)| = 3$. Since $(I(b) \cap I(c))^y = I(b)$ *Γil(c)* and jy has no 2-cycle, *y* fixes *I(b)ΓiI(c)* pointwise. Thus *I(P)=I(y)* $\supset I(b) \cap I(c)$. Therefore $b^{I(P)}$ and $c^{I(P)}$ fix the same three points. But this is impossible since $b^{I(P)} + c^{I(P)}$ and the stabilizer of three points in M_{11} has only one involution. Therefore $b \in C_G(P)$.

(8) If $N_G(P)^{I(P)} = M_{11}$, then $|P| = 2$.

Proof. Since $N_G(P)/C_G(P) \leq A(P)$ and *P*) by (6). Hence $\{1\} \nsubseteq (C_G(P) \cdot N_G(P)_{I(P)})/N_G(P)_{I(P)} \nsubseteq N_G(P)$ Since M_{11} is a simple group, $(C_G(P) \cdot N_G(P)_{I(P)})/N_G(P)_{I(P)}$ $=N_G(P)/N_G(P)$ _{*I*(*P*)} and so $C_G(P) \cdot N_G(P)$ _{*I*(*P*) $=$ $N_G(P)$. Furthermore from this} r elation we get $M_{11} = N_G(P)^{I(P)} = (C_G(P) \cdot N_G(P)_{I(P)})^{I(P)} = C_G(P)^{I(P)}.$

Suppose by way of contradiction that $|P| \geq 4$. Let *a* be an involution of P and $I(P) = \{1, 2, \dots, 11\}$. We may assume that *a* is of the form

 $a = (1)(2)\cdots(11)(12\ 13)\cdots$.

First assume that P is cyclic. Then $C_G(P)_{I(P)} \ge P$. From $N_G(P) = C_G(P)$ $N_G(P)_{I(P)}$ we get $N_G(P)/C_G(P) \cong N_G(P)_{I(P)}/C_G(P)_{I(P)}$. Since P is a Sylow 2-subgroup of $N_G(P)_{I(P)}$ and $C_G(P)_{I(P)} \ge P$, the order of $N_G(P)/C_G(P)$ is odd. On the other hand by (6), $A(P)$ is a 2-group. Therefore $|N_G(P)|C_G(P)|=1$. Thus $N_G(P) = C_G(P)$.

Now since *a* normalizes $G_{1\,2\,12\,13}$, there is an involution b of $G_{1\,2\,12\,13}$ commuting with α by Lemma 1. We may assume that *b* is of the form

 $b = (1)(2)(3)(4\ 5)(6\ 7)(8\ 9)(10\ 11)(12)(13)\cdots$.

Since $\langle a, b \rangle$ $<$ N_G ($G_{\texttt{451213}}$), there is also an involution c of $G_{\texttt{451213}}$ commuting with both *a* and *b* by Lemma 1. Since $\langle b, c \rangle \langle N_G(G_{I(P)})$, $\langle b, c \rangle$ normalizes some Sylow 2-subgroup P' of $G_{I(P)}$. Obviously $I(P)=I(P')$, $b^{I(P')}\neq c^{I(P')}$ and

 $=C_G(P')$. Hence both *b* and *c* belong to $C_G(P') - P'$, which is a contradiction by (7) .

Next assume that P is a generalized quaternion group. Since $C_G(P)^{I(P)}$ $=M_{11}$, there are two 2-elements *d* and *f* of $C_G(P)$ such that $d^{I(P)}$ and $f^{I(P)}$ are involutions, $d^{I(P)}$ commutes with $f^{I(P)}$ and $d^{I(P)} \neq f^{I(P)}$. Let $I(d^{I(P)})$ $= \{i, j, k\}.$ Let Q be a Sylow 2-subgroup of $C_G(P)_{ijk}$ containing d. Since $Q_{I(P)} = Q \cap (P \cap C_G(P)) = \langle a \rangle, \ Q^{I(P)} \cong Q/Q_{I(P)} = Q \langle \langle a \rangle.$ On the other hand from $C_G(P)^{I(P)} = M_{11}$, $Q^{I(P)}$ is a quaternion group. Suppose that d is not an involution. Then *a* is only one involution of *Q.* Therefore *Q* is cyclic or a generalized quaternion group. Hence $Q/\langle a \rangle$ is cyclic or a dihedral group, which is a contradiction. Therefore d is an involution of $C_G(P)$. The same is true for f and af . But this is impossible by (7) .

Thus $|P| = 2$.

(9) If $N_G(P)^{I(P)}$ is $LF_2(11)$, M_{10} or M'_{10} , then P is a generalized quaternion *group.*

Proof. Let *a* be an involution of *P*, and $I(P) = \{1, 2, \dots, n\}$. In the following proof if $N_G(P)^{I(P)}$ $=$ M_{10} or M'_{10} , then we assume that it's orbits are $\{1\}$ and $\{2, 3, \dots, 11\}$. We may assume that *a* is of the form

$$
a = (1)(2)\cdots(11)(12\;13)\cdots.
$$

Since $a{\in}N_{G}(G_{\scriptscriptstyle{1\,2\,12\,13}})$, there is an involution b of $G_{\scriptscriptstyle{1\,2\,12\,13}}$ commuting with a . We may assume that *b* is of the form

$$
b = (1)(2)(3)(4\ 5)(6\ 7)(8\ 9)(10\ 11)(12)(13)\cdots(19)\cdots.
$$

Hence

$$
a = (1)(2)\cdots(11)(12\ 13)(14\ 15)(16\ 17)(18\ 19)\cdots.
$$

Since $\langle a, b \rangle \langle N_G(G_{451213})$, there is an involution *c* of G_{451213} commuting with both *a* and *b.* We may assume that *c* is of the form

 $c = (1)(2\ 3)(4)(5)(6\ 7)(8\ 10)(9\ 11)(12)(13)(14\ 15)(16\ 18)(17\ 19)\cdots$

First assume that $N_G(P)^{I(P)} = LF_2(11)$. Then $\mathscr{F} \leq LF_2(11)$, where \mathscr{F} is one of the groups obtained in the proof of (4). Comparing the orders of these groups of (4) we have $\mathcal{F} = LF_2(11)$. Since $c^{I(P)} \in LF_2(11)$, there is a 2-element c' such that $c^{I(P)} = c'^{I(P)}$ and $c'^{I(P)} \in \mathcal{F}_{16,17}(a)$. Since $I(c'^2) \supset \{1, 2, \dots, 11, 16, 17\}$ *, c* is an involution. Next assume that $N_G(P)^{I(P)} = M_{10}$ or M'_{10} . Similarly $\mathcal{F} = M_{10}$ or M'_{10} , and so we get the same element c' . Thus c' is an involution of the form

$$
c' = (1)(2 \ 3)(4)(5)(6 \ 7)(8 \ 10)(9 \ 11)(16)(17)...
$$

Since

$$
bc' = (1)(2\ 3)(4\ 5)(6)(7)(8\ 11)(9\ 10)(16)(17)\cdots,
$$

the order of *be'* is also *2k,* where *k* is odd. Therefore *(bc')^k* is a central involution of a dihedral group $\langle b, c' \rangle$. Thus we get an involution

 $c'' = b(bc')^* = (1)(2\ 3)(4)(5)(6\ 7)(8\ 10)(9\ 11)(16)(17) \cdots$,

commuting with both *a* and *b*. Then $cc'' \in G_{I(P)}$ and $(cc'')^{I(b)}$ is of order 4. Thus $G_{I(P)}$ has an element of order 4. Hence $|P| \ge 4$.

Suppose that *P* is cyclic. If $N_G(P)^{I(P)} = LF_2(11)$ or M'_{10} , then $N_G(P)^{I(P)}$ is a simple group. Since $|P| \geq 4$, by the same argument as in (8) we have a contradiction. If $N_G(P)^{I(P)} = M_{10}$, then M'_{10} is only one non-identity normal subgroup of $M_{\scriptscriptstyle 10}$. Therefore similary to (8) we have $C_G(P)^{I(P)}{\geq}M_{\scriptscriptstyle 10}'$ and $C_G(P) \ge N_G(P)_{I(P)}$. Thus *b* and *c* belong to $C_G(P)$. But this is a contradiction by (7).

Thus P must be a generalized quaternion group.

 (10) *If* $N_G(P)^{I(P)}$ is $S_s \cdot S_6^*$, $N(M_s)$ or $N(M_s^*)$, then P is a generalized *quaternion group whose order is at least* 16.

Proof. Let $I(P) = \{1, 2, \dots, 11\}$. We may assume that if $N_G(P)^{I(P)}$ is $S_s \cdot S_6^*$, then $N_G(P)^{I(P)}$ -orbits are $\{1, 2, ..., 5\}$ and $\{6, 7, ..., 11\}$, and if $N_G(P)^{I(P)}$ is $N(M₉)$ or $N(M[*]₉)$, then $N_G(P)^{I(P)}$ -orbits are $\{1, 2\}$ and $\{3, 4, \cdots, 11\}$. Let an involution *a* of P be of the form

$$
a = (1)(2)\cdots(11)(12\ 13)(14\ 15)(16\ 17)(18\ 19)\cdots.
$$

Since $a \in N_G(G_{341213})$, there is an involution *b* of G_{341213} commuting with *a*. By assumption on $N_G(P)^{I(P)}$ -orbits we may assume that *b* is of the form

 $b = (1\ 2)(3)(4)(5)(6\ 7)(8\ 9)(10\ 11)(12)(13)\cdots(19)\cdots$.

Since $\langle a, b \rangle \langle N_G (G_{671213})$, there is an involution *c* of G_{671213} commuting with both *a* and *b.* In the same way *c* is of the form

 $c = (1\ 2)(3)(4\ 5)(6)(7)(8\ 10)(9\ 11)(12)(13)(14\ 15)(16\ 18)(17\ 19)\cdots$

On the other hand since $\langle a, b \rangle \langle N_G(G_{671617}),$ there is an involution d of G_{671617} commuting with both *a* and *b*. In the case $N_G(P)^{I(P)} = N(M_9)$ or $N(M_9^*),$ by assumption on $N_G(P)^{I(P)}$ -orbits $d^{I(P)} = (1\ 2)(6)(7) \cdots$. Since $c^{I(P)} = (1\ 2)(6)(7) \cdots$, $d^{I(P)} = c^{I(P)}$. In the case $N_G(P)^{I(P)} = S_5 \cdot S_6^*$, since the restriction of c on the orbit {6, 7, ..., 11} is (6)(7)(8 10)(9 11), $S_5 \cdot S_6^*$ has no element of a form (6)(7) $(89)(1011)\cdots$. Hence the restriction of d on $\{6, 7, \cdots, 11\}$ is the same form as *c*. Therefore $c^{I(P)} = d^{I(P)}$. Thus in both cases $c^{I(P)} = d^{I(P)}$. On the other hand since $c^{I(b)} = (3)(4\ 5)(12)(13)(14\ 15)(16\ 18)(17\ 19)$ and $d^{I(b)} = (3)(4\ 5)(16)(17) \cdots$, $(cd)^{I(b)}$ is of order 4. Thus *d* is of the form

$$
d = (1\ 2)(3)(4\ 5)(6)(7)(8\ 10)(9\ 11)(12\ 14)(13\ 15)(16)(17)(18\ 19)\cdots.
$$

Hence

 $f = cd = (1)(2)...(11)(12141315)(16191718)...$

Next since $\langle a, b \rangle \langle N_G(G_{s_91213})$, there is an involution c' of G_s muting with both *a* and *b*. By assumption on $N_c(P)^{I(P)}$ -orbits $c^{I(P)} = (1\ 2)(3)$ $(4\ 5)(8)(9)\cdots$ or $c'^{(P)}=(1\ 2)(4)(3\ 5)(8)(9)\cdots$. But $c'^{(P)}+(1\ 2)(3)(4\ 5)(8)(9)\cdots$, since $c^{I(P)} = (1\ 2)(3)(4\ 5)(6)(7)(8\ 10)(9\ 11)$. Therefore c' is of the form

 $c' = (1\ 2)(4)(3\ 5)(8)(9)(6\ 10)(7\ 11)(12)(13)\cdots$

Since $(cc')^{I(b)} = (3\ 5\ 4)(12)(13) \cdots$, $|(cc')^{I(b)}| = 3$. Therefore

$$
c' = (1\ 2)(4)(3\ 5)(8)(9)(6\ 10)(7\ 11)(12)(13)(14\ 16)(15\ 17)(18\ 19) \cdots
$$
or

$$
c' = (1\ 2)(4)(3\ 5)(8)(9)(6\ 10)(7\ 11)(12)(13)(14\ 18)(15\ 19)(16\ 17) \cdots.
$$

Let c' be of the first form. Then c' f c'=f' is of the form

 $f' = (1)(2)\cdots(11)(12161317)(14181519)\cdots$

Let c' be of the second form. Then $c'fc' = f'$ is of the form

 $f' = (1)(2)\cdots(11)(12 \ 18 \ 13 \ 19)(14 \ 17 \ 15 \ 16) \ldots$

Thus in any case $H=\langle f, f'\rangle$ is a subgroup of $G_{I(P)}$, and a Sylow 2-subgroup *P r* of *H* is a quaternion group, because the restrictions of *P'* and *H* on $\{12, 13, \dots, 19\}$ have the same form. From now on we may assume that c' is of the first form.

Suppose $|P|=8$. Then P' is a Sylow 2-subgroup of $G_{I(P)}$. Since $\langle b, c' \rangle$ $\langle N_G(H)$, there is a Sylow 2-subgroup *P"* of *H* such that $\langle b, c' \rangle \langle N_G(P'')$. Since $b \in C_G(H)$, $b \in C_G(P'')$. By the conjugacy of Sylow 2-subgroups of $G_{I(P)}, N_G(P'')^{I(P'')} = S_{5} \cdot S_{6}^{*}, N(M_{9})$ or $N(M_{9}^{*}).$

First assume that $N_G(P'')^{I(P'')}=S_5 \cdot S_6^*$. Since $N_G(P'')^{I(P'')} \subseteq C_G(P'')^{I(P'')}$, $C_G(P'')^{I(P'')} \cong S_s$, A_s or {1}. On the other hand $C_G(P'')^{I(P'')}$ has an involution $b^{I(P'')}$, whose restriction on $\{1, 2, \cdots, 5\}$ is a transposition. Therefore $C_G(P'')^{I(P'')}$ $=N_G(P'')^{I(P'')} \cong S_{\mathfrak{s}}$. Hence $N_G(P'')=C_G(P'') \cdot N_G(P'')^{I(P'')}$. Thus the involution c' belongs to $C_G(P''){\cdot}N_G(P'')_{I(P'')}\!\!\rightarrow\!P''$ and commutes with $b,$ which is impossible by (7).

Next assume that $N_G(P'')^{I(P'')} = N(M_{\text{s}})$ or $N(M_{\text{s}}^*)$. Since $\langle b, c' \rangle^{I(P'')}$ $<$ $(N_G(P'')^{I(P'')})_{124}$, $N_G(P'')^{I(P'')}$ has the following element

 $x = (1)(2)(4)(3859)(610117)$.

Then $(b^{I(P'')})^* = c'^{I(P'')}$. Since $b \in C_G(P'')$ and $N_G(P'')^{I(P'')} \subseteq C_G(P'')^{I(P'')}$,

 $(P'')^{I(P'')}$. Therefore there is an element $y \in C_G(P'')$ such that P'' *p*^{*M*} *p*^{*M*} *m yc'* $\in N_G(P'')$ _{*KP''*}, and so $c' \in y^{-1}$ $N_G(P'')$ _{*KP''*}, Thus $C_G(P'') \cdot N_G(P'')_{I(P'')}$, which is a contradiction by (7).

Thus we have $|P| \ge 16$.

(11) The case $N_G(P)^{I(P)} = S_5 \cdot S_6^*$ does not occur. If $N_G(P)^{I(P)} = LF_2(11)$, M_{10} or M'_{10} , then P is a quaternion group.

Proof. Let $N_G(P)^{I(P)} = S_5 \cdot S_6^*$, $LF_2(11)$, M_{10} or M'_{10} . By (9) and (10) P is a generalized quaternion group. Since $N_G(P)/C_G(P)$ is a subgroup of $A(P)$ and $N_G(P)^{I(P)}$ is a simple group or $N_G(P)^{I(P)}$ has a simple normal subgroup of index 2, $N_G(P)^{I(P)}/C_G(P)^{I(P)}$ is of order 1 or 2 by (6). Hence $C_G(P)$ has 2-element x such that $x^{I(P)}$ is an involution.

If *x* is an involution, then *x* fixes eight points of $\Omega - I(P)$. Since *P* is semiregular and $x \in C_G(P)$, $|P| = 8$.

If x is not an involubiton, then $x^2 = a$, where a is an involution of P. Let b and *c* be the generators of *P* such that $b^{2k} = c^2 = a$. Set $y = b^{2k-1}$. Then *y* is of order 4. Since $x \in C_G(P)$, $(xy)^2 = x^2y^2 = a \cdot a = 1$. Thus xy is an involution commuting with *b*. Since xy fixes eight points of $\Omega - I(P)$, the order of *b* is at most 8. If *b* is of order 8, then $b^{I(x,y)}$ has a 8-cycle and three fixed points. But M_{11} has no such element. Therefore *b* is of order 4. Thus $|P|=8$.

In particular by (10) there is no group such that $N_G(P)^{I(P)} = S_{5} \cdot S_{6}^{3}$

(12) The case $N_G(P)^{I(P)} = M_{10}$ or M'_{10} does not occur.

Proof. Suppose by way of contradiction that $N_G(P)^{I(P)} = M_{10}$ or M'_{10} . In the proof of (11) we have showed that $C_G(P)^{I(P)} \ge M'_{10}$. Hence let *x* be a 2element of $C_G(P)$ such that $x^{I(P)}$ is an involution.

Suppose that x is not an involution. Since $C_G(P)^{I(P)} \geqq M'_{10}$, there is a 2-element *y* of $C_G(P)$ such that $(y^2)^{I(P)} = x^{I(P)}$. Then a Sylow 2-subgroup of $\langle x, y \rangle$ containing x has an element x such that $z^{I(P)} = y^{I(P)}$. Since z^4 and xz^2 are 2-elements of $G_{I(P)}$ centralizing P, $z^4=1$ or a and $xz^2=1$ or a, where a is an involution of P. If $z^4=1$, then $xz^2\neq 1$ because x is not an involution. Therefore $xz^2=a$. Then $z^4=(x^{-1}a)^2=x^{-2}a^2=x^{-2}=1$, which is also a contradiction. Therefore $z^4 = a$. By (11) P has an element b of order 4. Then $(bz^2)^2$ $=b^2z^4=a\cdot a=1$. Thus bz^2 is an involution commuting with *z*. Since $z^4=a$, *z* is of order 8. Then $z^{I(P)}$ has two 4-cycles and three fixed points, hence $z^{\Omega-I(P)}$ has only 8-cycles. Since bz^2 fixes three points in $I(P)$, bz^2 fixes eight points in $\Omega - I(P)$. Thus $z^{I(\delta z^2)}$ has one 8-cycle and three fixed points. But M_{11} has no such element. Therefore *x* must be an involution.

Now since $C_G(P)^{I(P)}{\geq}M'_{10}$, there are two 2–elements *u* and v in $C_G(P)$ such that $u^{I(P)}$, $v^{I(P)}$ and $(uv)^{I(P)}$ are all different involutions. Then by the above proof *u*, *v* and *uv* are involutions. Thus *u* commutes with *v*. But this is a contradiction by (7).

This contradiction shows that there is no group such that $N_G(P)^{(P)} = M_{10}$ or M'_{10} .

(13) *If* $N_G(P)^{I(P)} = M_{11}$, then there are four points i, j, k and l of Ω such that $N_G(P')^{I(P')} = N(M_a)$ or $N(M_a^*)$, where P' is a Sylow 2-subgroup of G_i_{ijkl} .

Proof. Let $I(P) = \{1, 2, \dots, 11\}$, and *a* be an involution of *P*. By (8) $|P| = 2$. We may assume that *a* is of the form

$$
a = (1)(2)\cdots(11)(12\ 13)(14\ 15)(16\ 17)(18\ 19)(20\ 21)(22\ 23)(24\ 25)(26\ 27)\ldots
$$

Since $a \in N_G(G_{121213})$, there is an involution *b* of G_{121213} commuting with *a*. Since $|I(ab)| = 11$, we may assume that *b* is of the form

$$
b = (1)(2)(3)(4\ 5)(6\ 7)(8\ 9)(10\ 11)(12)(13)\cdots(19)(20\ 21)(22\ 23)(24\ 25)(26\ 27)\cdots
$$

Since $\langle a, b \rangle$ $<$ N_G (G_{451213}), there is an involution c of G_{451213} commuting with both *a* and *b.* We may assume that *c* is of the form

$$
c = (1\ 2)(3)(4)(5)(6\ 7)\ (8\ 10)(9\ 11)(12)(13)(14\ 15)(16\ 18)(17\ 19)(20)(21)
$$

(22\ 23)(24\ 26)(25\ 27)...

Since there is a Sylow 2-subgroup of $N_G(P)^{I(P)}$ such that it contains $\langle b, c \rangle^{I(P)}$ and two elements (1)(2)(3)(4 6 5 7)(8 10 9 11), (1)(2)(3)(4 10 5 11)(6 879), there is a 2-group of $N_G(P)$ containing $\langle a, b, c \rangle$ and the following two elements

$$
x = (1)(2)(3)(4 6 5 7)(8 10 9 11)...
$$

$$
y = (1)(2)(3)(4 10 5 11)(6 8 7 9)...
$$

Since $x^2b \in P$, $x^2b = 1$ or *a*. Set $\Delta = \{12, 13, \dots, 19\}$ and $\Gamma = \{20, 21, \dots, 27\}$. If $x^2 = b$, then $x^2 = 1$ or x^2 has four 2-cycles. In the later case since $\langle x, a \rangle$ $\langle N_G(G_{I(b)})$ and $I(x^{I(b)}) = I(a^{I(b)}) = \{1, 2, 3\}, x^{I(b)} = a^{I(b)}$. Thus xa fixes Δ pointwise. If $x^2b=a$, then $x^2=ab$. In the same way x or xa fixes Γ pointwise. Therefore if necessary we take *xa* instead of *x,* we may assume that *x* fixes Δ or Γ pointwise. The same is true for *y.*

Suppose that *x* fixes Δ pointwise and *y* fixes Γ pointwise. Since both *x* and *y* are of order 4, x^p has two 4-cycles and y^{Δ} has two 4-cycles. Since $(y^{-1}xy)^{I(P)} = (x^{-1})^{I(P)}$, $x^{\Delta} = 1$ and $y^{P} = 1$, $y^{-1}xyx$ fixes {1, 2, ..., 19} pointwise and has 2-cycles on Γ . This is a contradiction by (2).

Therefore x and y fixes the same eleven points. Let P' be a Sylow 2-subgroup of $G_{I(\langle x,y\rangle)}$ containing $Q=\langle x, y\rangle$. Then P' is a generalized quaternion group. By (8), (11) and (12) $N_G(P')^{I(P')} = N(M_s)$, $N(M_s^*)$ or $LF_{2}(11).$

Suppose that $N_G(P')^{I(P')} = LF_2(11)$. By (11) $P' = Q$. Simiraly to the proof in (11) $N_G(P')^{I(P')} = C_G(P')^{I(P')}$. Since $c \in \widetilde{N}_G(P')$, $c \in C_G(P')$. $N_G(P')_{I(P')}$. On the other hand $a \in C_G(P')$ and *a* commutes with *c*. Since $a^{I(P')}$ + $c^{I(P')}$, we have a contradiction by (7).

Therefore $N_G(P')^{I(P')}=N(M_{\mathfrak s})$ or $N(M_{\mathfrak s}^*)$

(14) The case $N_G(P)^{I(P)} = LF_2(11)$ does not occur.

Proof. Suppose by way of contradiction that $N_G(P)^{I(G)} = LF_2(11)$. By (11) *P* is a quaternion group. Let *R* be a Sylow 2-subgroup of $N_G(P)$. Then the lengthes of R-orbits on $I(P)$ are at most 4, but on $\Omega - I(P)$ these lengthes are at least 8. Therefore a 2-group Λ', which contains *R* as a normal subgroup, fixes $I(P)$. Hence R' normalizes some Sylow 2-subgroup P' of $G_{I(P)}$. By the conjugacy of Sylow 2-subgroup of $G_{I(P)} |N_G(P)| = |N_G(P')|$. Since R is a Sylow 2-subgroup of $N_G(P)$, $|R'| \leq |R|$. Hence $R' = R$. This shows that R is a Sylow 2-subgroup of G. Since $R^{I(P)}$ is a Sylow 2-subgroup of $N_G(P)^{I(P)}$ $= LF_2(11)$, there are exactly three $R^{I(P)}$ -orbits of length 2. Suppose that there is a Sylow 2-subgroup P'' of G_{ijkl} such that $N_G(P'')^{l(P'')}$ \neq $LF_2(11)$, where *i. j, k* and l are some points in Ω . By (13), we may assume that $N_G(P'')^{I(P'')} = N(M_{\mathfrak{s}})$ or $N(M_5^*)$. Then by (10) $|P| \ge 16$. In the same way a Sylow 2-subgroup *R*^{*''*} of *N_G*(*P*^{*''*}) is also a Sylow 2-subgroup of *G*. Since $N_G(P'')^{I(P'')}=N(M_9)$ or $N(M_2^*)$, there is only one R'' -orbit of length 2, which contradicts the conjugacy of Sylow 2-subgroups. Thus for any points i, j, k and $l N_G(P'')^{I(P'')} = LF_2(11)$, where P'' is a Sylow 2-subgroup of G_{ijkl} .

Now by (11) P has an element x of order 4. For a 4-cycle $(i_1 i_2 i_3 i_4)$ of x $x \in N_G(G_{i_1 i_2 i_3 i_4})$. Therefore x normalizes some Sylow 2-subgroup $P^{\prime\prime\prime}$ of $G_{i_1 i_2 i_3 i_4}$. Then $N_G(P''')^{I(P''')}$ has the element $x^{I(P''')}$ of order 4. Hence $N_G(P''')^{I(P''')}$ \neq $LF_2(11)$, which is a contradiction.

Thus there is no group such that $N_G(P)^{I(P)} = LF_2(11)$.

(15) *If* $N_G(P)^{I(P)} = N(M_9)$ or $N(M_9^*),$ then G has two orbits, say Γ_1 and Γ_{2} . The length of Γ_{1} is odd and the length of Γ_{2} is 2.

Proof. By (10), $|P| \ge 16$. Let R be a Sylow 2-subgroup of $N_G(P)$. Then the lengthes of R-orbits in $I(P)$ are at most 8 and in $\Omega - I(P)$ these lengthes are at least 16. Therefore in the same way as in (14) R is a Sylow 2-subgroup of G. Let $N_G(P)^{I(P)}$ -orbit of length 2 be $\{1, 2\}$. Since R fixes exactly one point *i*, which does not belong to $\{1, 2\}$, R is also a Sylow 2-subgroup of G_i . *.* Since $R_{\scriptscriptstyle 1}$ is a Sylow 2–subgroup of $N_{\scriptscriptstyle G}(P)_{\scriptscriptstyle 1}$, in the same way $R_{\scriptscriptstyle 1}$ is also a Sylow 2–subgroup of G_1 . If G is transitive, then G_i is conjugate to G_i . Hence R is conjugate to $R₁$, which is a contradiction. Thus G is intransitive.

Let three points i_1 , i_2 and i_3 belong to different orbits. For a point i_4 in $\Omega - \{i_{\scriptscriptstyle 1}, i_{\scriptscriptstyle 2}, i_{\scriptscriptstyle 3}\}$ let P' be a Sylow 2-subgroup of $G_{i_1 i_2 i_3 i_4}$ Since $N_G(P')^{I(P')}$ is M_{11} , $N(M_s)$ or $N(M_s[*])$, at least two points of $\{i_1, i_2, i_3\}$ belong to the same orbit of $N_G(P)^{I(P)}$, which is a contradiction. Therefore G has exactly two orbits, say Γ_1 and Γ_2 . Since $|\Omega|$ is odd, we may assume that $|\Gamma_1|$ is odd and $|\Gamma_2|$ is even.

Suppose that $|\Gamma_z| \geq 2$. Then for three points j_1, j_2 and j_3 of Γ_2 and a point j_4 of Γ_1 let P'' be a Sylow 2-subgroup of $G_{j_1j_2j_3j_4}$. Since $I(P'')\cap \Gamma_1\supseteq j_4$ and $I(P'') \cap \Gamma_2 \ni j_1, N_G(P'')^{I(P'')}$ is intransitive. Hence $N_G(P'')^{I(P'')}$ is $N(M_s)$ o $N(M_9^*)$. Since the lengthes of Γ_2 and P"-orbits in $\Omega - I(P'')$ are even, $|\Gamma_2|$ $\cap I(P'')|$ is even or 0. On the other hand the length of a $N_G(P'')^{I(P'')}$ -orbit is 2 or 9. Hence $|\Gamma_z \cap I(P'')|=0$ or 2. But $\Gamma_z \cap I(P'')\supseteq \{i_1, i_2, i_3\}$, which is a contradiction. Therefore $|\Gamma_2|=2$.

(16) The case $N_G(P)^{I(P)} = N(M_9)$ or $N(M_9^*)$ does not occur.

Proof. Suppose by way of contradiction that $N_G(P)^{I(P)} = N(M_s)$ or $N(M_s^*)$. Then by (15) G has two orbits, say Γ_1 and Γ_2 . Let $\Gamma_1 = \{3, 4, \dots, n\}$ and $\Gamma_2 = \{1, 2\}$. Set $G^{r_1} = \overline{G}$, then \overline{G} is transitive. Let P' be a Sylow 2-subgroup of G_{1,i_1,i_2,i_3} , where $\{i_1, i_2, i_3\} \subset \Gamma_1$. Since $I(P') \supseteq 1$, $I(P') \supseteq \Gamma_2$. Hence $N_G(P')^{I(P')}$. is intransitive, and so $N_G(P')^{I(P')} = N(M_{\mathfrak{s}})$ or $N(M_{\mathfrak{s}}^*)$. We may assume that $I(P') = \{1, 2, 3, \dots, 11\}.$

Now let $a_1 = (1)(2)(3)(4657)(810911)$, $a_2 = (1)(2)(3)(4\ 10\ 5\ 11)(6\ 8\ 7\ 9)$, $a_3 = (1\ 2)(3)(4)(5)(6\ 7)(8\ 10)(9\ 11)$, $a_4 = (1)(2)(3\ 4\ 5)(6\ 10\ 9)(7\ 8\ 11).$

Then we may assume that if $N_G(P')^{I(P')} = N(M_{\mathfrak{s}})$ then $N_G(P')^{I(P')} = \langle a_{\mathfrak{s}}, a_{\mathfrak{s}}, a_{\mathfrak{s}} \rangle$, and if $N_G(P')^{I(P')} = N(M_9^*)$ then $N_G(P')^{I(P')} = \langle a_1, a_3, a_4 \rangle$ (see [1], P. 83). Let α be an involution of P'. Then *a* is of the form

 $a = (1)(2)(3)\cdots(11)(i\,i)\cdots$.

Since $a \in N_G(G_{s+i,j})$, an involution b of $G_{s+i,j}$ commuting with a is of the form

$$
b = (1\ 2)(3)(4)(5)(6\ 7)(8\ 10)(9\ 11)(i)(j)\cdots.
$$

Since $\{1, 2\}$ is a G-orbit and $I(b) \cap \{1, 2\} = \phi$, every element $(1, 1)$ of a Sylow 2-subgroup of $G_{I(b)}$ has a 2-cycle (1 2). By (10) $N_G(G_{I(b)})^{I(b)} = M_{11}$. Since M_{11} is 4-fold transitive, 4, 5 and *i* belong to the same G_3 -orbit. Since *(ij)* is an arbitrary 2-cycle of a, $\{4, 5, 12, 13, \dots, n\}$ is contained in a G_3 -orbit. On the other hand for any point i' of $\{6, 7, ..., 11\}$ since $a{\in}N_G(G_{3i'ij})$, an involution b' of $G_{3i'ij}$ commuting with *a* is of the form

$$
b'=(1\ 2)(3)(i')(i)(j)\cdots.
$$

In the same way i' and i belong to the same $G_{\scriptscriptstyle 3}$ -orbit. $\;\;$ Thus $\bar{G}_{\scriptscriptstyle 3}$ is transitive, and so \bar{G} is doubly transitive. Furthermore since $N_G(G_{I(b)})^{I(b)} = M_{11}$, 5 and *i* belong to the same G_{34} -orbit. Since (ij) is an arbitrary 2-cycle of a, {5, 12, 13, \cdots , n} is contained in a G_{34} -orbit. Set $T_5 = \{5, 12, 13, \dots, n\}$, $T_6 = \{6, 7\}$, $T_8 = \{8, 10\}$ and $T₉ = \{9, 11\}$. Then $G₃₄$ -orbits consist of some T_i 's.

Suppose that T_5 is a G_{34} -orbit. For any two points j_1 in $T_6 \cup T_8 \cup T_9$ and k_1 in {12, 13, …, *n*} let P["] be a Sylow 2-subgroup of G_{34,j,k_1} . If $I(P'') \oplus \Gamma_2$, then $|P''| = 2$. By (10) $N_G(P'')^{I(P'')} = M_{11}$. Since $I(P'') \supseteq {\{3, 4, j_1, k_1\}}, j_1$ and k_1 belong to the same G_{34} -orbit. But $j_1 \notin T_5$ and $k_1 \in T_5$, which is a contradiction. Therefore $I(P'') \supset \{1, 2, 3, 4, j_1, k_1\}$. Suppose that $I(P'')$ does not contain some point j_z of T ₆ \cup T ₈ \cup T ₉ $-\{j_1\}$. Then j_z belongs to a P"-orbit of at least length 16, which contains some point of T_s . This is impossible since $G_{34} > P''$. Thus $I(P'') = \{1, 2, 3, 4, 6, 7, 8, 9, 10, 11, k_1\}$. Set $\Delta = I(P'') - \{k_1\}$. Since k_1 is an arbitrary point in $\{12, 13, \dots, n\}$ and $I(P') = \Delta \cup \{5\}$, by the conjugacy of Sylow 2-subgroups of G_{Δ} , G_{Δ} is transitive on $\Omega - \Delta$. On the other hand since $a \in N_G(G_{671213})$, an involution *c* of G_{671213} commuting with *a* is of the form

 $c = (1\ 2)(3)(4\ 5)(6)(7)(8\ 11)(9\ 10)(12)(13)\cdots$

Since \bar{G} is doubly transitive, $\{7, 12, 13, \cdots, n\}$ is a G_{36} -orbit. Since $G_{36} > G_{\Delta}$ and \bar{G}_{Δ} is transitive on {5, 12, 13, \cdots , *n*}, 5 must belong to the G_{36} -orbit {7, 12, $13, \dots, n$, which is a contradiction.

Therefore there is a G_{35} -orbit containing T_5 and some T_i ($i=5$). We may assume that $T_{6} \cup T_{5}$ is contained in a G_{34} -orbit. Now a Sylow 2–subgroup of G_{345} containing P' fixes no point in Γ_1 —{3, 4, 5}. Since 5 and 6 belong to the same G_{34} -orbit, a Sylow 2-subgroup of G_{346} containing P' fixes no point in Γ_1 - {3, 4, 6}. On the other hand since a Sylow 2-subgroup of $N_G(P')_{3.46}$ is also a Sylow 2–subgroup of G_{346} , a Sylow 2–subgroup of G_{346} containing P' fixes $\{5, 7, 8, \dots, 11\}$ pointwise, which is a contradiction.

Thus there is no group such that $N_G(P)^{I(P)} = N(M_9)$ or $N(M_9^*$.

By (11), (12), (14) and (16), $N_G(P)^{I(P)} = M_{11}$. But this is a contradiction by (13) and (16)

Thus we complete the proof of Lemma 4.

Proof of the theorem. Suppose that there is a group G different from M_{11} . Then a Sylow 2-subgroup P of G_{1234} is not identity. Set $P_t = Q$, where t is a point of a minimal P-orbit in $\Omega - I(P)$. Then by Lemma 3 $N_G(Q)^{I(Q)}$ satisfies the conditions *(a)* and *(b)* of Lemma 4. Hence we have a contradiction by Lemma 4. Thus there is no group different from M_{11} .

YAMAGUCHI UNIVERSITY

56 T. OYAMA

References

- [1] M. Hall: The Theory of Groups, Macmillan, New York, 1959.
- [2] N. Ito: *Transitive permutation groups of degree* $p = 2q + 1$ *, p and q being prime numbers,* Bull. Amer. Math. Soc. 69 (1963), 165-192.
- [3] D. Livingstone and A. Wagner: *Transitivity of finite permutation groups on unordered sets,* Math. Z. 90 (1965), 393-403.
- [4] H. Nagao: Multiply Transitive Groups, California Institute of Technology, California, 1967.
- [5] T. Oyama: *On multiply transitive groups* VII, Osaka J. Math. 5 (1968), 155-164.
- [6] T. Oyama: *On multiply transitive groups* VIII, Osaka J. Math. 6 (1969), 315-319.
- [7] H. Wielandt: Finite Permutation Groups, Academic Press, New York, 1964.
- [8] H. Zassenhaus: The Theory of Groups, second edition, Chelsea Publishing Company, New York, 1958.