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Let M be a C°°-manifold. We denote the Lie algebra of all vector fields on

M of C°°-class by L(M). For two elements u and v of L(M), defining (adv)ku

inductively as [v, (ad^)*'1^], we consider a power series

Let c(u, v\ x) be the radius of convergence oίgf(uy v) at x on M. We consider
a Lie subalgebra L of L(M) which satisfies the following convergence condition
(C):

(C) For any pair of u and v in L and for any compact set K in M, there

exists a positive number c(u, v\ K) such that
(i) we have c(u, v\ x)^c(u, v\ K) at every x on K, and

(ii) gt(u, v) is continuously differentiable with respect to (ί, x) term by
term at every (t, x) which satisfies 1 1 \ <c(u, v\K) and x^K*, the interior of K.

Theorem. If a Lie subalgebra L satisfies the condition (C), then through

every point x on M there passes a maximal integral manifold N(x) of L. Any

integral manifold of L containing x is an open snbmanίfold of N(x).

Here an integral manifold N of L is a connected submanifold of M which

satisfies Tx(N)=L(x) at every x on TV, where L(x)={u(x)', u^L}.

The problem was solved under the following assumptions (i)^(iii) respec-
tively by Chevalley, Hermann and Nagano:

(i) dim L(x) is constant on M (Frobenius' theorem, Chevalley [1]),
(ii) dim L is finite (Hermann [2]),

(iii) M and L(M) are of Cω-class, but L is arbitrary (Nagano [3]).
If we assume (ii) or (iii), then L satisfies our condition (C) (see Remark 1 and
Remark 2).
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Proof of Theorem. We shall prove only the local existence of an integral

manifold of L passing through x, since the local uniqueness of integral manifolds

and the existence of the maximal integral manifold can be proved in the same
way as Nagano [3] and Chevalley [1].

Let U={(x\ •••, #"); \xi— x* \ <a} be a relatively compact cubic neighbour-
hood of χ0=(χ0

i) such that φt(v) gives a diffeomorphism from U to φt(v)U, if
\t\<T(v, U). Here φt(v) is a local one-parameter group of diffeomorphisms

generated by v, and T(v, U) is a positive number. By our assumption gt(u, v)

satisfies a symmetric hyperbolic partial differential equation

dt
-

Qx* 9x{

at (/, x) which satisfies 1 1 \ <c(u, v\ U) and x^ U, where v=v*—r Also φt(v)*u

satisfies the same partial differential equation at such (t, x) that 1 1 \ < T(v, U) and
#e [7. Since gt(u, v) and φt(v)*u have the same initial value u at £=0, by the
uniqueness theorem we obtain

( 1 ) Φ,(«0*« = Σ(-l)*£(ad«)*«
*=0 k \

at (t, x) such that 1 1 \ <min. {c(u, v\ U), T(v, U)} and

where ^4= ^"^ 2 on C7.

If ^0)φO, we may assume that v=£-l in Z7. Then from the identity (1)
ox

we get

2

where ^(T)=(V+T, ίc0

2, ••-, Λ;O") and a* =J .̂ This identity (2) holds for

(ί, r) such that

(3) \ t \ + \

As a function of r, W(JC(T)) is real analytic in the interval (— a, +a). Hence

we have

( 4 ) u«\X(τ-t)) = Σ ( _ l ) » * + » ( « ( τ ) )

for (ί, T) which satisfies (3) and for every l^Z+. From this identity we get
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at x(r) for every t which satisfies (3) and for every
Let us consider an integral curve C passing through x0. Take a point

y(s)= exp (sv)x0 on C. Then there exists such a positive number σ that we
have

at every j (s') on C between x0 and j(s) and for every /eZ+. We may assume that
s=mσ for a positive integer w.

Operating φcw-ι)σ(^)* on the identity (6) at y(σ], we get

at y(mσ) for every /eZ+. Then operating φCm-2)σ(^)* on the identity (6) at
2σ we havej(2σ ), we have

aty(mσ) for every /^Z+. Thus we obtain

- Σ (-l^

at y(mσ) for such (w, /) that Q^n^m—l and /eZ+. In particular for n=m— 1,
we have

ψ»*(adz;)'tt = f] (-l)*^(adz;)'+feM
*=o K !

at y(mσ) for every /^Z+. Hence inductively we obtain

( 7 ) φ^.^^ίad^z/eL (exp (^) 0̂) , (O^n^m-l)

for every /eZ+. In particular for n=l=0, we get

( 8 ) φs(v)*u<=L (exp (^)Λ?O)

Since u is arbitrary in L, we have

( 9 ) dim L (exp (^)#0) = dim L(x0) ,

on an integral curve C passing through x0 .
For a point # on Λf, we shall take such a system {«;„ •••, wr} of vector fields

in L that ^(tf), •••, ZUΓ(Λ:) are independent at # and span L(x). Let L' be the
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linear space spanned by these w{ in L. We imbed some neighbourhood of the
zero in L' into M by the mapping: zϋ— >exp (w)x. Let N be its image, which is
a submanifold of M. Take two elements u and v of L'. We put f(s, t)=
exp (t(su+v))x. Then we claim that

The left hand side of (10) is a vector field on the curve /(O, t). To prove this
identity we show that both sides of (10) satisfy the same ordinary differential
equation

<"> f -•+*•£
along the curve /(O, t). We take such a local coordinate system (%*) around

^
/(O, £) that we have ^=^-1 with respect to this coordinate system. Then for

o%>
sufficiently small Δί, we get

Φί+Λt«)*«(/(0, ί+Δί)) = φ,(ί>)*«(/(0, ί))

Hence we have

= lim -1 Γ φjυ)*υ(f(0, t+At))dr = M(/(0, ί)) .
Δ/->0 At J - Δ f

With respect to an arbitrary coordinate system (#'), the right hand side of (10)
satisfies the equation (11). The left hand side of (10) satisfies (11) along the curve
/(O, t), because we have

Since both sides of (10) have the same initial value 0 at ΐ=Q, we obtain the
identity (10).

By the identity (10) we have

(12)

The tangent space of N at/(0, t) is spanned by the left hand side of (12), if u
varies over all elements of L', Hence, by (9), we see that Λf is an integral
jnanifold of L.
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REMARK 1. Suppose dimL be finite. We shall show that c(uy v\ x)=oo

for every pair of u and v in L and for every x on M. Take a basis [u^ , ur} of L.
We get

u = ciui and (ad v) u{ — c\ Uj ,

where c* and £/' are real constants. We have

for &=0, 1, 2, ••-. Let c be the maximum of \ch\ and |^|, (l^S/z, ί,j^r). We
obtain the inequality

Hence £,(#, ^) is expressed in the form Σ βf'(ί)wf , where α*(£) (l^S/^r) is an
ί=1

entire function having a majorant series of the form 2 c*+1 ?*£*(& I)"1.
jfe=0

Our condition (C) is satisfied by L in this case.

REMARK 2. Let M and L(M) be of Cω-class. Then we have the identity

(1) as a direct consequence of the fact that φt(v)*u is real analytic with respect to
(t, x) at (0, x). Our condition (C) is satisfied by every Lie subalgebra of L(M).

REMARK 3. We shall give an example of L which is neither finite dimensional

or real analytic, but satisfies (C). Let M be S1 X S1. Take a function f(x) on S1

which vanishes at infinitely many points, but does not vanish identically. We

define L as the Lie subalgebra generated by /(ΛJ)— + (̂3;)— , where g varies over
ux uy

all real analytic functions on S1. Then L is neither finite dimensional or real
analytic, but satisfies (C).

REMARK 4. There exists a Lie subalgebra L which does not satisfy our

condition (C). Nagano [3] gave an example of L to which our theorem can not

be applied.
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