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Let F(x, y) be a one-parameter formal group over the rational integer ring

Z. Then it is easy to see that there is a unique formal power series f(x)—

2 n~lanx
n with an^Z, a^=\ satisfying

and that f'(x)dx= 2 o,nx
n~ldκ is the canonical invariant differential on F. Let

»=1

Cl be an elliptic curve over the rational number field Q, uniformized by automor-

phic functions with respect to some congruence modular group T0(N). In the

language of formal groups results of Eichler [3] and Shimura [14] imply that a
formal completion C1 of Cl (as an abelian variety) is isomorphic over Z' to a

formal group whose invariant differential has essentially the same coefficients as

the zeta-f unction of Q.

In this paper we prove that the same holds for any elliptic curve C over Q

(th. 5). This follows from general theorems which allow us explicit construction

and characterization of certain important (one-parameter) formal groups over
finite fields, p-adic integer rings, and the rational integer ring (th. 2 and th. 3).

The proof of th. 5 depends only on the fact that the Frobenius endomorphism of

an elliptic curve over a finite field is the inverse of a zero of the numerator of the

zeta-function, and implies a general relation between the group law and the zeta-

function of a commutative group variety. In fact it is remarkable that the p-f actor
of the zeta-function of C for bad p also can be given a clear interpretation from our

point of view (cf. th. 5). Moreover, we prove that the Dirichlet L-function with

conductor D has the same coefficients as the canonical invariant differential on
a formal group isomorphic, over the ring of integers in Q(\/ D), to the algebroid

group x+y+\/T) xy (th. 4). In this way the zeta-function of a commutative
group variety may be characterized as the L-series whose coefficients give a normal
form of its group law.

1. Preliminaries

Let R be a commutative ring with the identity 1. We denote by R{x},
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R{x, y}, etc. formal power series rings with coefficients in R. Two formal power
series are said to be congruent (mod deg n) if and only if they coincide in terms of

degree strictly less than n. A one-parameter formal group (or a group law) over

R is a formal power series F(x, y)^R{x, y} satisfying the following axioms:

(i) F(z, 0) = F(0, z) = z

(ii)

If F(x, y)=F(y, x) moreover, F is said to be commutative. Let G be another

group law over R. By a homomorphism of F into G we mean a formal power

series φ(x)^R{x} such that <p(0)=0 and φ°F=G°φ, where we have written

G(φ(x\ φ(y))=(G°φ)(x, y). If φ has the inverse function φ~\ φ~l is also a

homomorphism of G into F. In this case we say that G is (weakly) ίsomorphίc
to F and write φ: F~G. If there is an isomorphism φ of F onto G such that
φ(x) = x (mod deg 2), we say that G is strongly isomorphίc to F and write φ: F^

G. If G is commutative, the set Hom#(F, G), consisting of all the homomorphims

of F into G over R, has a structure of an additive group by defining (cp^-

= G(φ1(x), φ2(x)) for φly φ2&HomR (F, G). In particular End^ (F) (^

(F, F)) forms a ring with the identity [1] (x)=x. We call [n]F the image of n^

Z under the canonical homomorphism of Z into EndR(F).

Writing A=R{x}, we denote by ®(̂ 4 R) the space of ^-derivations of A.

It is a free ^4-module of rank 1 and is generated by D=d/dx. We denote by

®*(^4 R) the dual ^4-module of ®(̂ 4 R) and call its element a differential of

A. ¥orf<=A the map D-*Df of ®(^4; #) into ,4 defines a differential, which

we denote by df. A differential of the form df with f^A is called an exact

differential. It is easy to see that dx is an ^4-basis of 3)*(^4; R) and df=(Df)dx

for any f^A. Let ω=^(x)dx be a differential of A and let <£>(#) e .4 with

<p(0)=0. Then Λjr(φ(x)) dφ(x) is again a differential. We denote it by φ*(ω).

The map ^>* is an /?-endomorρhism of ®*(̂ 1 R). Let F(x, y) be a (one-

parameter) formal group over R. Introducing a new variable ty F is considered

a formal group over R{t}. Define the right translation Tt of F by Tt(x)=F(x, t).

A differential ω of A is said to be an invariant differential on F if and only if

7γ*(ω)=ω. The set of all the invariant differentials on F forms an Λ-module.

We denote it by ®*(F; R).

Proposition 1. Let F(x, y) be a one-parameter formal group over R. Put

ψ(z)=(-j-F(Q9 z)\ * and ω=ψ(x)dx. Then we have ψ (0)=l and^^(F\ R) is a
\ox /

free R-module of rank one generated by ω.
r\

Proof. Since F(xy y) = x+y (mod deg 2), we have ^-- (̂0, z)=l (mod deg

1). Hence ψ(ar) is well-defined and ψ(0)=l, A differential η=\(x)dx of A
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is invariant on F if and only if \(x)dx=\(F(x, z))—F(x, z)dx, or
ox

(*) = \(F(x, *)) F(*, z) .
dx

From (1) we have

x(θ) = λ(*)/r(o,
OX

or

(2) λ(*) =

Define an Λ-homomorphism Φ of ®*(F; R) into R by Φ(ι?)=λ(0). By (2) Φ
is injective. Now differentiating F(u, F(v, w))=F(F(u, v), w) relative to u, we
obtain

(u, F(v, w)) = j-F(F(u, υ), w)j-F(u, v),
dx dx

and then

F(0, F(v, «0) = * («, *v)-F(Q, v ) ,
OX OX OX

or

Now (3) implies that ψ(#) satisfies (1). Therefore ω belongs to 2)*(F; R) and
is clearly its /?-basis.

We shall call this ω the canonical invariant differential on F.

Proposition 2. Let F be a one-parameter formal group over a Q-algebra R.
Then we have F(x, y)^=ίx-\-y over R.

Proof. As R is a Q-algebra, all the differentials of A are exact. Let ω=
df(x) with/(#)ΞΛ?(mod deg 2) be the canonical invariant differential on F. Then
we have df(F(x, t))=df(x), i.e. f(F(x, t))-f(x)€ΞR{t}. Put f(F(x, t))=f(x)+g(t).
Then we have f(F(Q, t))=Q+g(t), or g(t)=f(t). Since f(x) is inversible, this
completes the proof.

Prop. 2 was proved in Lazard [5] in an alternative way. More generally we
can prove that a commutative formal group of arbitrary dimension over a Q-
algebra is strongly isomorphic to the vector group of the same dimension.

Now let R be an integral domain of characteristic 0 and let K be the fraction
field of R. We note that, if φ(x)^R{x} satisfies the functional equation φ(x+y)
=φ(x)-}-φ(y), φ(χ) must be of the form ax with a^R. Let F and G be group
laws over /?, let φ e Hom^(F, G) and let c(φ) be the first-degree coefficient of <p,
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The additive map c:φ-*c(φ) of HomR(F, G) into R, which is a unitary ring-

homomorphism in the case F=Gy is injective, because F (resp. G)^x-\-y over K
(cf. Lubin [6]). In particular the seήes f(x) ^ K{x} such that f(x)=x (mod deg 2)

and F(#, y)=f~\f(x)+f(y)) is uniquely determined by F. For this / and for

e put [Λ]F(*)=/~^Λ/(ΛO) It *s clear tnat MF e End^F) if and only if

We now consider formal groups over a field k of char act eristic p>0.

Lemma 1. Let F and G be group laws over k. If φ<^Homk(F, G) and if

], there is q=pr such that φ(x) = axq [mod deg (#+!)] with 0ΦO. Moreover
φ(x) is a power series in xq .

Proof. See Lazard [5] or Lubin [6],

If [p]F(x) = axq [mod deg (#+!)] with 0ΦO and q=ph, h is called the height
of F. If [ρ]F=Q, then the height of F is said to be infinite (Lazard [5]). We
denote by h(F) the height of F. It is easy to see that, if A(F)ΦA(G), then
Hom^F, G)=0.

Now it is well known that k{x} has the structure of a topological ring if we
take powers of its maximal ideal as a basis of neighbourhoods at 0. Endowed
with the topology induced by it, Hom^F, G) (resp. Endfc(F)) becomes a complete

topological group (resp. ring) (Lubin [6]). It is clear that End^F) has no zero-
divisor. Moreover it is easy to see that, if h(F)<o°, the homomorphism
n->[ri\F of Z'mto End^(F) is injective and this imbedding is continuous relative

to p-adic topology of Z. Since End^(F) is complete, this extends to an imbed-
ding of the />-adic integer ring Zp into Endk(F). In this way End^F) is a

Z^-algebra and Hom^(F, G) is a Z^-module.
The following theorem is fundamental in the theory of one-parameter formal

groups over a field of positive characteristic.

Theorem 1. (Lazard [5], Dieudonne [2] and Lubin [6].)

(i) For every h(l^h^°°) there is a formal group of height h over the prime

field of characteristic p>0.

(ii) Let k be an algebraically closed field of characteristic p>Q. If F and G
are group laws over k and if h(F)=h(G), then F~G over k. Moreover, if h(F)
=h(G)=ooy then F^G over k.

(iii) Let k be as in (ii) and let F be a group law over k. If h=h(F)<°°,

Endk(F) is the maximal order in the central division algebra with invariant l/h
overQp.

Later we shall reprove (i) and (iii) as applications of our results in 2.

2. Certain formal groups over finite fields and p-adic integer rings

Let R be a complete discrete valuation ring of characteristic 0 such that the
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residue class field k=RI\n is of characteristic ^>>0, where m denotes the maximal

ideal of R. For a group law F over R we obtain a group law over k by reducing
the coefficients of F mod m. We denote it by F*. If G is another group law
over 7?, we derive the reduction map *: Hom^F, G)^Homk(F*, G*). The
following two lemmas are due to Lubin [6].

Lemma 2. The map c : HomR(F, G)-*R is an isomorphism onto a closed
subgroup of R.

This is Lemma 2.1.1. of [6].

Lemma 3. If h(F*)<o°, the reduction map *: Hom^F, G)

G*) is injective.

This is lemma 2.3.1. of [6].
From now on until the end of 2 we denote by o the integer ring in an exten-

sion field K of Qpy of finite degree n, and by £ the maximal ideal of o. Let e and

d be the ramification index and the degree of p respectively. The residue
classs field o/p is the finite field Fq with q elements, where q=pd. The following
two lemmas play essential roles in our further investigation.

Lemma 4. Let π be a prime element of o. For any integers z>2^0,
and m^l we have

mp^ (mod J>) .

Proof. It suffices to prove our lemma for a=m=l. We have to prove

for 1 ={=PV '

This is trivial if i~^v. Assume i<v. Let p* \ /!, but pμ+1 Xi\. Then we see

μ = [ilp\ + [ilf\+...<ilp+ilp*+... = i/(p-l)^i.

Hence we have

(f y-v = (p*-\)-(p'-i+\ypili\ = 0 (mod/,) ,

and a fortiori (4).
The following lemma is a trivial generalization of [7], lemma 1.

Lemma 5. Let π be a prime element of o and let a^>l be an integer.
Let f(x) and g(x) be power series in o{x} such that

( 5 ) f(x) =g(x) = πx (mod deg 2) and f(x)=g(x) = xqa (mod p) .

Moreover, let L(zly •••, zn) be a linear form with coefficients in o. Then there exists

a unique power series F(zv •••, zn) with coefficients in o such that
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F(*ι> — i z») = £(#!, •••, zn) (mod deg 2)

( 6 ) and

f(F(*ί9 .,zn)) =

Proof. See Lubin-Tate [7]. Note that F is the only power series with

coefficients in any overfield of o satisfying (6).

Denote by O the ring of integers in the maximal unramified extension of

K. We are now ready to prove the following:

Theorem 2. Let π be a prime element of o and let a^l be an integer.

Put /(A?)=Σ 7Γ~VΛV and F(xy y)=f~1(f(x)+f(y)). Then we have the following:
v=o

(i) F is a group law over o and Endo(F) is the integer ring of the unramified

extension of K of degree a.
(ii) F* is a group law of height an over Fq . Denoting by ξF* the q-th

power endomorphίsm of F* (i.e. ξF*(x)=x9), we have

(7) [*]£=&..

(iii) If G is another group law over o such that [τr]GeEnd0(G) and such

that [7r]g=£c*, then F^G over o.

Proof. We define u(x)^K{x} by

( 8 ) [π]F(x) = f-\πf(x}) = tf*+πu(x) .

We shall prove u(x)^o{x}. From (8) we have

πf(X)=f(X«
a+πu(x)),

πx+ Σ π^x9^^ = x9"+πu(x)+ f] π~\xqa ^-πu(x)\qa"
v=o v=ι

and

( 9 ) π(x-u(x)) = Σ [π-\x

Put u(x)=x-\-^] bjX* and assume b29 •••, δ^.^o. Since bk is written as a poly-
ί=2

nomial of b2y •••, bk^ by (9), we have bk^o by applying lemma 4 to (9). This

proves u(x) e O{ΛJ} .

This being proved, we can apply lemma 5 to [/τ]F(#) as is seen from (8).

First F(xy y)^o{x, y} follows from \π\F°F=F°\π\F by lemma 5. The equality
(7) follows directly from (8). Now putp=8πe. Then 8 is a unit in o. We have

hence, by (7),
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[p]F* = (automorphism of F*)°ξFf*

Since ξa/*(x)=χpda\ we have h(F*)=dae=an, which completes the proof of (ii).

Let G be as in (iii). By prop. 2 there is φ(x)^K{x} with φ(x) = x (mod deg 2)

such that φ°F=G°φ. Then we have φo[π\F= [π]G°φ. Hence φ has coefficients

in o by lemma 5.

It remains to determine Endo(F). Let w be a primitive (qa— l)-th root of
unity in £). By definition of f(x) we have f(wx)=wf(x) and so F(wx, zvy)=

wF(xy y). Hence we have wx= [w\F\x\ eEndo(F). This implies that the fraction

field L of Endo(^) contains the unramified extension of Qp of degree ad. More-
over, since [π]F e End£)(.F), the ramification index of L/Qp is a multiple of e.

Thus we have [L: Qp]^ade=an. On the other hand, as h(F*)=any we have
[L: Qp]^an by th. 1, (iii) and by lemma 3. Hence we have [L: Qp]=an. Since

Zp[wy π] is the integer ring of L, this proves (ii) and completes the proof of th. 2.

The existence of a formal group F with the properties (i), (ii) in th. 2 was
proved by Lubin ([6], th. 5.1.2.). But his construction of F is not explicit

as ours.

Corollary. Let F be a formal group over Zp such that h(F*)=l. Then we

can find a prime element π of Zp such that [π]F (x)=xp. The map: F-*π gives a
bijection Φ: [strong isomorphism classes of formal groups F over Zp such that
h(F*)=l}-*{prime elements of Zp}.

Proof. Since λ(F*)=l, the map *: Endz/,(F)->EndF/,(F*) is bijective by

th. 1, (iii). As ξF*(x)=xp ^EndFp(F*), this proves the first assertion. The

injectivity of Φ follows from th. 2, (iii) and the surjectivity from th. 2, (ii).

We now prove th. 1, (iii) assuming th. 1, (ii). Applying th. 2 to o=Zp and

f(x)= Σ/>~V#*AV> we obtain a group law F* over Fp, of height h. Let k be the

algebraic closure of Fp. Since Endk(F*) contains \w\% and ξF*, EndΛ(F*) contains
the maximal order Mh in the central division algebra Dh of rank h2 over Qp, and

invariant l/h. (For details see [6], 5.1.3.) We shall prove EndΛ(jP^)=MΛ. In the
following we write ξ instead of ξF* for simplicity. Let nh be the integer ring in

the unramified extension of degree h over Qp and let S be a system of representa-

tives of Mh modulo its maximal ideal. For β^S, we write [β] instead of [β]F

for brevity. Then we have [β](x) = β*x (mod deg 2). Let φ be any element of
End^F*) and let φ(x) = aQx (mod deg 2). Comparing the r-th degree coefficients

of φ°[p]f= [P]F°<P, where r=ph, we have α0^α0

r, i.e. a0^Fr. Hence we can
find β0^S such that (φ—[β0]) (x) = Q (mod deg 2). Then, by lemma 1, there is

φ1 eEnd k(F*) such that φ— [βo^φ^ξ Applying the same argument to φ19

we obtain β^S and φ2eEndk(F*) such that φ1—[βι]=φ2°ξ By repeating
the same procedure n-times we derive β0, βly •••, βn_1^S and φ19 φ2, •••, φn^

*) such that φi—[βi}=φi+^ξ for O^i^n— 1, where φ^=φ> Then
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we have

Hence the series [β0] + [βι]ξ~\ ----- \-[βn-ι]%"~l+ " converges and coincides with
φ. Since [/3, ]eMA, this proves

REMARK. Formal groups F* constructed in th. 2 do not exhaust all the

formal groups over finite fields (cf. Serre [13], p. 9).

3. Certain formal groups over Z

We now give explicit global construction of certain formal groups over Z.

The method is based on lemma 4 and lemma 5 as in 2.

Lemma 6. Let p be a prime number and let a^ a2, •••, any ••• be rational

integers satisfying the following conditions:

( i ) If n—p"m with pXm, then an=ap^am

(ii) β1==l. p/ap.

= 0 for v^Q .

Let π be the prime element of Zp satisfying the equation

(10) X2-apX+p = 0 .

Put f(x)=^n~1anx
n and F(x, y)=f-\f(x)+f(y)). Then we have F(x,

{x] and [π]F(x) = xp (mod p).

Proof. By HenseΓs lemma and by the assumption pXap the equation (10)

has solutions in Zp. Let π be the other root of (10). It is a unit in Zp. Since

apv+2—(π+π')apv+ι+ππ'ap » = 0 ,

we have

(11) ap-»+2— πf apv+\ = π(apv+ι — π' a^) for z^^O .

Define u(x)^Qp{x} by

(12) [π]F(x) =f~l(πf(x)) = x*+πu(x) .

The point of the proof is to prove u(x)^Zp{x} as in th. 2. From (12) we obtain

7τ Σ n~lanx
n = xp+πu(x)+ f j n-1an(xp+πu(x))M ,

»=1 »=2

or

(13) π(x—u(x)) = xp+ Σ n'1an(xp+πu(x))H—π Σ ιΓlanx
M ,

—
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Put u(x)=Σbiχi> where ^=1. Assuming ό2, •••, bk^^Zpy we shall prove

bk^Zp. By lemma 4 we have

*-ι
n~1(xp-\-π'Σ biX*)" = n~lxpn (mod^>).

Hence by (13), we have only to prove that the k-th degree coefficient ck in

(14) Σ n-1anx
pn-π^n-1anx

n

n=i n=2

is a multiple of p. If p/^k, this is clear. Assume k=p*m with z>^l,

We have

or

(15) ck=p^m-lamπ(π/a^-ι-ap^ .

Applying (11) to (15) repeatedly we have

ck = p-^m^am7^(πfa^-a^

= -p-*m->amπ^

= 0 (mod p) .

This proves bk^Zp and by induction we see in fact u(x)^Zp{x}. The fact

F(x, y)^Zp{x, y] follows from this by Lemma 5. (cf. The proof of th. 2)

Lemma 7. Let p be a prime number, let 6= + 1 or — 1, and let A^>1 be
an integer. Let aly a2, •••, any ••• be rational integers satisfying the following condi-
tions :

(i) If n=p"m with pXm, then an=ap*am.

(ii) a,= l. ap= ••• =aph-ι=0.

apv+tι=6ph-ιap'» for v^>0.

Put f(x)=^n-lanx
n and F(x, y)=f~l(f(x)+f(y)). Then we have Fix, j)eΞ

»=1

Zp{x,y} and [8p]F(x) = xph (mod p).

Proof. Repeat the same reasoning as in the proof of lemma 6. The point
is to prove u(x)^Zp{x}, where u(x) is defined by [8p]F(x)=xph-\-pu(x). The
details will be left to the reader.

Theorem 3. Assume that to every prime number p there is given a local
L-series Lp(s) of the type :
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(a) Lp(s)=l,

(b) Lf(s)=(l-atp-+p1-^-1 with ateZ, pXap,

or

(c) L,(ί)=(l-£y'-*•)-' with εp= + l or -1, h=hp^\.

Define the global (format) L-series £(ί)=Σ ann~s by L(s)=ΐl Lp(s) and put
w=l p

/(*HΣ n~lanx
n. Then the formal group F(x, y)=f~1(f(x)+f(y)) has coefficients

in Z. Denote by F* the reduction of F mod p. Then we have :

Case (a): F^x-\-y over Zp.
Case (b): h(F*)=\ and the p-th power endomorphism of F* is a root of the

equation

X*-apX+p = 0 .

Case(c): h(F*}=h and [£pp]F(x) = xph (modp).

Proof. If Lp(s)= 1, the coefficients off(x) are ̂ -integral and we have F(x, y)
z&x+y over Zp. If Lp(s) is of type (b) (resp. (c)), it is easily verified that the
sequence aly a2y •••, an, ••• satisfies the assumptions of lemma 6 (resp. lemma 7).
Therefore the coefficients of F(xy y) are ^-integral for every p. This proves
F(x, y)^Z{xy y}. The other assertions of our theorem follow from lemma 6 and

lemma 7.
The following proposition is useful in the study of algebroid commutative

formal groups over Q.

Proposition 3. Let p be a prime number and let o be the integer ring of the

quadratic unramίfied extension of Q^ Put f1(x)=^p~^xp^y /2(#)=Σ (—pY^xp^
v v=o v^o

and Fi(x, y)=f7l(fi(x)+fi(y)) for i=l, 2. Then we have the follwoίng:

(i) Ff~Ff over Fp*, but Ff^Ff over Fp. If p is odd, then F^F2

over o.
(ii) Let F be a group law over Zp such that F*(x, y)~x+y+xy over Fp*.

Then we have either F^F1 or F^F2 over Zp according as F*(x,y)~~x-}-y-\-xy
over Fp or not.

Proof. By th. 3 F, (i=l, 2) has coefficients in Z and [p]Fί(x) = [—p]F2(
x)

= xp (mod p). Let k be the algebraic closure of Fp. Since h(Ff)=h(Ff)=l,
there is an inversible series φ(x)^k{x] such that φ°Ff=Fξ°φ by th. 1, (ii).

Then we have 9>°[/>2]!^=[^*2

00>, i.e. φ(xp2) = φ (x)p2. This implies φ(x)
{x} and Ff~~Ff over Fp*. If φ(x)^Fp{x}> we should have
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and then

a contradiction. Hence Ffs&Ff over Fp. If p is odd, o contains the primitive
(p2— l)-th root of unity and there is zυ^o such that wp"1= — l. Then we have
wp*=( — iγw. Hence f1(wx)=wf2(x) and then F^wXj wy)=wF2(x, y), which
proves (i). Now the p-th power endomorphism of F* conies from an endomor-
phism of F9 say [π]Fy since λ(F*)=l. As the />-times endomorphism of the
multiplicative group x+y+xy over Fp is (l-\-x)p—l=xp, we have Ff(x, y)~x-\-
y-\-xy over Fp by th. 1, (ii) and so F*~x-\-y-\-xy~Ff over Fp*. Let ψ be an
inversible element of Fp*{x} such that tyoF*=Ff°ty. Then

which implies π2=p2. Then by th. 2, (iii) we have F^Fl or F^F2 over Z^
according as π=p or — />, i.e. according as F*~~x-\-y-}-xy or not.

4. Group laws and zeta-functions of group varieties of dimension
one

We now interprete zeta-functions of certain commutative group varieties
from our point of view. Let F(x, y) be a group law over Z. Then there is unique

f(x)£ΞQ{x} such that /(*) = # (mod deg 2) and F(x, y)=f~1(f(x)+f(y)) (cf. 1).
It is clear that df(x)=f'(x)dx is the canonical invariant differential ω on F. Let

00 00

/'(Λ?)=Σ anx
n~l and define a (formal) L-series L(ί) by L(s)=Σ ^»^~s If each

one of F, /, ω and L(s) is given, the rests are uniquely determined from it.

Theorem 4. Let K be a quadratic number field, let o be the integer ring of
00 / D \^ 0m/ let D be the discriminant of K. Then the Dίrίchlet L-function Y] — }n~s

J J ίfci V n )
is obtained from a group law G(x,y) over Z. Moreover, let F(xJy)=x-\-y+\/'Dxy.
Then we have F^G over o.

Proof. Let %(w)— ( — ) be the Kronecker symbol and define
\ n /

(16) P(u)= Π (1-Γ«), where ?=exp (2τt^^\l\D\) .
a mod D
X(α)=l

It is easy to see P(u)Eϊo[u]. Let σ be the non-trivial automorphism of K and
put

(17) φ(u) = (P*(u)-P

We have only to prove that φ(u)=u-\ ---- ̂ o{u} and
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(18) dφ(u)l(\+VDφ(u)) = Σ K(rί)un^du ,

since dx/(\J

Γ\/~Dx) is the canonical invariant differential on F. We recall

(19) Σ X(r)ζ"r = X(/zX/Z) for any n<=Z
r mod D

(Gauss sum). The first-degree coefficient of φ(u) is

(- Σ ξ"+ Σ niVD
b mod D a mod D
5C(δ) = -l X(f l ) = l

= ( Σ X(r)r)/v/Π=l
r mod£>

by (19). Let αt be the ί-th degree coefficient of Pσ—P. We shall prove #,- = ()

(mod x/Z)). Since (Pσ-P)σ=-(Pσ-P), α, is of the form c,VZ> with 2r,eZ.
If Z) is odd, we have at once c^Z. If D is even, we have D = Q (mod 4). In
this case we can easily check

X(r+D/2) = - X(r) for any r EΞ 2Γ

and so {ξ-Λ|β mod Z>, %(α)=l} coincide with {—ξb\ b mod D, X(b)= — l} as a
whole. Hence af=0 or twice an integer according as / is even or odd. This

shows Ci^Z and φ(u)^o{u}. Let us compute dφ(u)/(l-}-\/J)φ(u)). We have

dφ(u) =

V!_^>

VD Ί

= N/ZT'-P"'1!] Σ X(r)ζ'"'uM-1du
»=i r mod D

= P"'1!] X(n)u"-ldu (by (19)).

Hence we have
00

7 / \ .i^ x [ /C(71)U ClUdφ(u) _ jfcj v ;

This completes the proof of our theorem.

Now the Dirichlet L-function L(s, %) has an Euler product of the form

Π(l—£ pp~ s)~ l where ^=%(ί>). By th. 3 8p is uniquely determined by the group
P

law F. From this point of view L(s, %) can be characterized as the L-series
attached to a normal form over Z of the algebroid group F. The Euler product
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implies that the group law F is "the direct product" of group laws over Zp's

attached to p-f, actors of L(s, %).
Quite the same holds for elliptic curves over Q. In the following we mean

by an elliptic curve an abelian variety of dimension one. Let C be an elliptic
curve over Q. Neron [10] shows that there is an essentially unique (affine)

model for C of the form

(20) Y2+\XY+μY = X3+aX2+βX+j

where λ, μ, a, β, γ are integers and the discriminant of the equation (18) is as
small as possible. For this model Cp=C mod p is an irreducible curve for every
prime number p. Then local L-series Lp(s) of C are defined as follows.

( I ) If Cp is of genus 1, we put

where l—apU+pU2 is the numerator of the zeta-function of Cp.

(II) If Cp has an ordinary double point, we put 8p=-\-l or —1 according

as the tangents at the double point are rational over Fp or not and write

(III) If Cp has a cusp, we put

Lp(s) = 1 .

In case (II) the reduction of the group law of C is isomorphic to the mul-

tiplicative group over Fpz and is isomorphic to it over Fp if and only if 6p=-\-l.

In case (III) the reduction of the group law of C is the additive group ([10], Chap.

Ill, prop. 3).

Now, we take t=X/Y as a local parameter at the origin. By [15], Chap.
Ill, prop. 4 t is a local parameter at the origin of Cp for every p. Writing down

the group law of C as a formal power series relative to the variable t, we obtain a

formal group F(ocy y) over Z. (The fact F(x, y) e Z{x, y} can be verified also by

direct computation.) We shall call a formal group over Zy strongly isomorphic
to this F over Z, a formal minimal model for C over Z.

Theorem 5. Let C, Cpy Lp(s) and F be as above. Let S be any set of prime

numbers which does not contain p=2 or 3, if Cp has genus one and ap=±p, and

put Zs={\ (ZPΠQ). Write ΠLp(s)=Σ ann~s, g(x)=Σ n~λanx
n and G(x9 y)

p£=S p^S n=l n=ι

=S~1(s(x)+S(y))' Then G(x, y) is a formal group over Z and F^G over Zs.

Proof. If Cp has genus one and p \ ap, we see easily ap=0 or ap=±p with

p=2 or 3 by Riemann hypothesis | ap \ <2^/~p . The latter cases being excluded,
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we can apply th. 3 to Π Lp(s) and obtain G(x, y)^Z{x, y}. In order to show

F^G over Zs, we have only to prove F^Cover Zp for every p^S, since a
power series φ(x) such that φ(x) = x (mod deg 2) and φ°F=G°φ is unique.

If Cp has genus one for p^Sy then F^G over Z^ by th. 3 and th. 2, (iii), since

X2—apX
Jrp is the characteristic polynomial of the ^>-th power endomorphism

of Cp. In case (II) F mod^> is isomorphic to the multiplicative group x-\-y-\-xy

over Fp

z and isomorphic to it over Fp is and only if £p= +1. Hence we have

F^G over Zp by prop. 3, (ii), by th. 3 and by th. 2, (iii). In case (III) it is clear
F^G over Zp. This completes our proof.

REMARK. It seems that the assumption on S in th. 5 would be superfluous.

But I have not been able to get rid of it.

Corollary 1. Notations being as in th. 5, assume that ap^=±pfor p=2, 3.

Then the formal group attached to the zeta-functίon L(s\ C)=TlLp(s) of C has
coefficients in Z and is a formal minimal model for C.

Corollary 2. Let C and C' be elliptic curves over Q and let Shea set of primes

satisfying the assumption in th. 5 for each curve. Then formal minimal models of

C and C' are isomorphic over Zs, if and only if p-factors of L(s\ C) and L(s\

C') coincide for every

Corollary 3. Let notations be as in th. S. If Cp has genus one for

ap mod p is the Hasse invariant of Cp.

Proof. Take f(x)^Q{x} such that f ( x ) = x (mod deg 2) and F(x, y)=

f~*(f(χ}^~f(y)}' Then/'(Z)Λ is the canonical invariant differential on F, i.e. the
^-expansion of an differential of the 1st kind on C. Hence our assertion follows

from definition of Hasse invariant and from th. 5.

REMARK. Coroll. 3 is a special case of th. 1 of Manin [9]. So his theorem

is suggestive for generalization of th. 5 to an abelian variety of higher dimension
over an algebraic number field.

Corollary 4. Let C be an elliptic curve over Q and assume ap=0 for a prime

number p. Denote by o the integer ring of the quadratic unramίfied extension of Qp.
Then C has formal complex multiplications over o, i.e. End0(F)=o.

Proof. Let H be the formal group over Z attached to the L-s-ries (1 +

p1-2*)-1. We have H(x, y)=h-\h(x)+h(y)) where A(*)=Σ (-p)^xpz\ If

ap~Q, then F^H over Zp by th. 5, and our assertion follows from th. 2, (i).

REMARK. Existence of elliptic curves, which have no complex multiplication

but have formal complex multiplications over p-adic integer rings, was proved by



FORMAL GROUPS AND ZETA-FUNCTIONS 213

Lubin-Tate [8]. But they did not give an explicit example. Our result has a

meaning in the study of /-adic Lie groups attached to elliptic curves overQ.

(cf. Remark on p. 246 of Serre [12].)

There are some questions concerned with our results. How can we gen-

eralize th. 4 to more general L-functions ? Let F and G be as in th. 5 with S=

the set of all the prime numbers. What is the power series φ(x) e Z{x] such that

φ(x) = x (mod deg 2) and F°φ^φ°Gϊ How can we generalize th. 5 to an abelian

variety of higher dimension over an algebraic number field ?

OSAKA UNIVERSITY.
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