FORMAL GROUPS AND ZETA-FUNCTIONS

TAIRA HONDA

(Received July 8, 1968)

Let $F(x, y)$ be a one-parameter formal group over the rational integer ring *Z*. Then it is easy to see that there is a unique formal power series $f(x)$ $\sum_{n=1}^{\infty} n^{-1} a_n x^n$ with $a_n \in \mathbb{Z}$, $a_1 = 1$ satisfying

$$
F(x, y) = f^{-1}(f(x) + f(y))
$$

and that $f'(x)dx = \sum_{n=1}^{\infty} a_n x^{n-1} dx$ is the canonical invariant differential on *F*. Let C_{1} be an elliptic curve over the rational number field $\boldsymbol{Q},$ uniformized by automorphic functions with respect to some congruence modular group $\Gamma_{\text{o}}(N)$. In the language of formal groups results of Eichler [3] and Shimura [14] imply that a formal completion \hat{C}_1 of C_1 (as an abelian variety) is isomorphic over \boldsymbol{Z} to a formal group whose invariant differential has essentially the same coefficients as the zeta-function of C_1 .

In this paper we prove that the same holds for any elliptic curve *C* over *Q* (th. 5). This follows from general theorems which allow us explicit construction and characterization of certain important (one-parameter) formal groups over finite fields, p-adic integer rings, and the rational integer ring (th. *2* and th. 3). The proof of th. 5 depends only on the fact that the Frobenius endomorphism of an elliptic curve over a finite field is the inverse of a zero of the numerator of the zeta-function, and implies a general relation between the group law and the zetafunction of a commutative group variety. In fact it is remarkable that the *p-f* actor of the zeta-function of *C* for bad *p* also can be given a clear interpretation from our point of view (cf. th. 5). Moreover, we prove that the Dirichlet L-function with conductor *D* has the same coefficients as the canonical invariant differential on a formal group isomorphic, over the ring of integers in $\mathbf{Q}(\sqrt{D})$, to the algebroid group $x+y+\sqrt{D}$ xy (th. 4). In this way the zeta-function of a commutative group variety may be characterized as the L-series whose coefficients give a normal form of its group law.

1. Preliminaries

Let *R* be a commutative ring with the identity 1. We denote by $R\{x\}$,

R{x, y}, etc. formal power series rings with coefficients in *R.* Two formal power series are said to be congruent (mod deg *n)* if and only if they coincide in terms of degree strictly less than *n.* A one-parameter formal group (or a group law) over *R* is a formal power series $F(x, y) \in R\{x, y\}$ satisfying the following axioms:

(i)
$$
F(z, 0) = F(0, z) = z
$$

(ii)
$$
F(F(x, y), z) = F(x, F(y, z))
$$
.

If *F(x, y)=F(y, x)* moreover, *F* is said to be commutative. Let *G* be another group law over *R.* By a homomorphism of *F* into G we mean a formal power series $\varphi(x) \in R\{x\}$ such that $\varphi(0)=0$ and $\varphi \circ F=G \circ \varphi$, where we have written $G(\varphi(x), \varphi(y)) = (G \circ \varphi)(x, y)$. If φ has the inverse function φ^{-1} , φ^{-1} is also a homomorphism of G into *F.* In this case we say that G is *(weakly) ίsomorphίc* to F and write φ : $F \sim G$. If there is an isomorphism φ of F onto G such that $\varphi(x) \equiv x \pmod{\deg 2}$, we say that G is *strongly isomorphic* to F and write φ : $F \approx$ *G.* If G is commutative, the set $\text{Hom}_R(F, G)$, consisting of all the homomorphims of *F* into *G* over *R*, has a structure of an additive group by defining $(\varphi_1 + \varphi_2)(x)$ $= G(\varphi_1(x), \varphi_2(x))$ for $\varphi_1, \varphi_2 \in \text{Hom}_R(F, G)$. In particular End_{*R*} (*F*) (= (F, F) forms a ring with the identity $[1]$ $(x)=x$. We call $[n]_F$ the image of $n \in$ *Z* under the canonical homomorphism of *Z* into *End^R (F).*

Writing $A=R(x)$, we denote by $\mathfrak{D}(A; R)$ the space of R-derivations of A. It is a free A -module of rank 1 and is generated by $D=d/dx$. We denote by $\mathbb{D}^*(A; R)$ the dual A-module of $\mathcal{D}(A; R)$ and call its element a differential of A. For $f \in A$ the map $D \rightarrow Df$ of $\mathfrak{D}(A; R)$ into A defines a differential, which we denote by df. A differential of the form df with $f \in A$ is called an exact differential. It is easy to see that dx is an A-basis of $\mathfrak{D}^*(A;R)$ and $df=(Df)dx$ for any $f \in A$. Let $\omega = \psi(x)dx$ be a differential of A and let $\varphi(x) \in A$ with $\varphi(0)=0$. Then $\psi(\varphi(x)) d\varphi(x)$ is again a differential. We denote it by $\varphi^*(\omega)$. The map φ^* is an *R*-endomorphism of $\mathfrak{D}^*(A; R)$. Let $F(x, y)$ be a (oneparameter) formal group over R. Introducing a new variable t, F is considered a formal group over $R\{t\}$. Define the right translation T_t of F by $T_t(x)=F(x, t)$. A differential ω of *A* is said to be an *invariant differential* on F if and only if $T^*_{\tau}(\omega) = \omega$. The set of all the invariant differentials on F forms an R-module. We denote it by $\mathfrak{D}^*(F;R)$.

Proposition 1. *Let F(x, y) be a one-parameter formal group over R. Put* $\psi(z) = \left(\frac{\partial}{\partial x}F(0, z)\right)$ and $\omega = \psi(x)dx$. Then we have $\psi(0)=1$ and $\mathfrak{D}^*(F; R)$ is a *free R-module of rank one generated by ω.*

Proof. Since $F(x, y) \equiv x+y$ (mod deg 2), we have $\frac{\partial}{\partial x}F(0, z) \equiv 1$ (mod deg 1). Hence $\psi(z)$ is well-defined and $\psi(0)=1$. A differential $\eta = \lambda(x)dx$ of A

is invariant on *F* if and only if $\lambda(x)dx = \lambda(F(x, z))\frac{\partial}{\partial x}F(x, z)dx$, or

(1)
$$
\lambda(x) = \lambda(F(x, z)) \frac{\partial}{\partial x} F(x, z).
$$

From (1) we have

$$
\lambda(0)=\lambda(z)\frac{\partial}{\partial x}F(0,\,z)
$$

or

(2) λ(*) =

Define an *R*-homomorphism Φ of $\mathfrak{D}^*(F;R)$ into *R* by $\Phi(\eta) = \lambda(0)$. By (2) Φ is injective. Now differentiating $F(u, F(v, w)) = F(F(u, v), w)$ relative to u, we obtain

$$
\frac{\partial}{\partial x}F(u, F(v, w)) = \frac{\partial}{\partial x}F(F(u, v), w)\frac{\partial}{\partial x}F(u, v),
$$

and then

$$
\frac{\partial}{\partial x}F(0,\,F(v,\,w))=\frac{\partial}{\partial x}F(v,\,w)\frac{\partial}{\partial x}F(0,\,v)\,,
$$

or

(3)
$$
(\psi(F(v, w)))^{-1} = \frac{\partial}{\partial x} F(v, w) \psi(v)^{-1}.
$$

Now (3) implies that $\psi(x)$ satisfies (1). Therefore ω belongs to $\mathfrak{D}^*(F;R)$ and is clearly its R -basis.

We shall call this ω the *canonical invariant differential* on *F.*

Proposition 2. *Let F be a one-parameter formal group over a Q-algebra R. Then we have* $F(x, y) \approx x+y$ *over R.*

Proof. As *R* is a Q-algebra, all the differentials of *A* are exact. Let *ω=* $df(x)$ with $f(x) \equiv x \pmod{\deg 2}$ be the canonical invariant differential on *F*. Then we have $df(F(x, t)) = df(x)$, i.e. $f(F(x, t)) - f(x) \in R\{t\}$. Put $f(F(x, t)) = f(x) + g(t)$. Then we have $f(F(0, t))=0+g(t)$, or $g(t)=f(t)$. Since $f(x)$ is inversible, this completes the proof.

Prop. 2 was proved in Lazard [5] in an alternative way. More generally we can prove that a commutative formal group of arbitrary dimension over a *Q*algebra is strongly isomorphic to the vector group of the same dimension.

Now let *R* be an integral domain of characteristic 0 and let *K* be the fraction field of *R*. We note that, if $\varphi(x) \in R\{x\}$ satisfies the functional equation $\varphi(x+y)$ $=\varphi(x)+\varphi(y)$, $\varphi(x)$ must be of the form *ax* with $a \in \mathbb{R}$. Let F and G be group laws over R, let $\varphi \in \text{Hom}_R(F, G)$ and let $c(\varphi)$ be the first-degree coefficient of φ ,

The additive map $c: \varphi \rightarrow c(\varphi)$ of $\text{Hom}_R(F, G)$ into R, which is a unitary ringhomomorphism in the case $F{=}G$, is injective, because F (resp. $G){\approx}x{+}y$ over K (cf. Lubin [6]). In particular the series $f(x) \in K\{x\}$ such that $f(x) \equiv x \pmod{deg 2}$ and $F(x, y)=f^{-1}(f(x)+f(y))$ is uniquely determined by F. For this f and for *e*, y)=*f* $(y(x)+f(y))$ is uniquely determined by *F*. For this *f* and if e put $[a]_F(x)=f^{-1}(af(x))$. It is clear that $[a]_F \in \text{End}_R(F)$ if and only

We now consider formal groups over a field k of characteristic $p>0$.

Lemma 1. Let F and G be group laws over k. If $\varphi \in \text{Hom}_k(F, G)$ and if], there is $q = p^r$ such that $\varphi(x) \equiv ax^q \pmod{deg (q+1)}$ with $a \neq 0$. Moreover $\varphi(x)$ is a power series in x^q .

Proof. See Lazard [5] or Lubin [6].

If $[p]_F(x) \equiv ax^q \pmod{deg(q+1)}$ with $a \neq 0$ and $q = p^h$, h is called the height of *F.* If $[p]_F=0$, then the height of *F* is said to be infinite (Lazard [5]). We denote by $h(F)$ the height of F. It is easy to see that, if $h(F) \neq h(G)$, then $Hom_k(F, G)=0.$

Now it is well known that $k\{x\}$ has the structure of a topological ring if we take powers of its maximal ideal as a basis of neighbourhoods at 0. Endowed with the topology induced by it, $\text{Hom}_k(F, G)$ (resp. $\text{End}_k(F)$) becomes a complete topological group (resp. ring) (Lubin [6]). It is clear that $\text{End}_{k}(F)$ has no zerodivisor. Moreover it is easy to see that, if $h(F) < \infty$, the homomorphism $n\rightarrow[n]_F$ of Z into $\text{End}_k(F)$ is injective and this imbedding is continuous relative to *p*-adic topology of **Z**. Since $\text{End}_{k}(F)$ is complete, this extends to an imbedding of the *p*-adic integer ring \mathbb{Z}_p into $\text{End}_k(F)$. In this way $\text{End}_k(F)$ is a \mathbf{Z}_{p} -algebra and Hom_k (F, G) is a \mathbf{Z}_{p} -module.

The following theorem is fundamental in the theory of one-parameter formal groups over a field of positive characteristic.

Theorem 1. (Lazard [5], Dieudonné [2] and Lubin [6].)

(i) For every $h(1 \leq h \leq \infty)$ there is a formal group of height h over the prime *field of characteristic p>0.*

(ii) Let k be an algebraically closed field of characteristic $p>0$. If F and G *are group laws over k and if* $h(F)=h(G)$, then $F\sim G$ over k. Moreover, if $h(F)$ $=h(G)=\infty$, then $F \approx G$ over k.

(iii) Let k be as in (ii) and let F be a group law over k. If $h=h(F)<\infty$, *End^k (F) is the maximal order in the central division algebra with invariant l/h* \overline{over} \overline{Q}_p .

Later we shall reprove (i) and (iii) as applications of our results in 2.

2. Certain formal groups over finite fields and p-adic integer rings

Let *R* be a complete discrete valuation ring of characteristic 0 such that the

residue class field $k=R/m$ is of characteristic $p>0$, where m denotes the maximal ideal of *R.* For a group law *F* over *R* we obtain a group law over *k* by reducing the coefficients of *F* mod m. We denote it by *F*.* If *G* is another group law over R, we derive the reduction map $*$: $\text{Hom}_R(F, G) \to \text{Hom}_k(F^*, G^*)$. The following two lemmas are due to Lubin [6].

Lemma 2. The map $c: \text{Hom}_R(F, G) \rightarrow R$ is an isomorphism onto a closed *subgroup of R.*

This is Lemma 2.1.1. of [6].

Lemma 3. If $h(F^*)<\infty$, the reduction map $*$: $\text{Hom}_R(F, G) \to \text{Hom}_k(F^*)$, G*) *is injective.*

This is lemma 2.3.1. of [6].

From now on until the end of 2 we denote by o the integer ring in an extension field K of \mathbf{Q}_p , of finite degree *n*, and by $\mathfrak p$ the maximal ideal of $\mathfrak o$. Let *e* and *d* be the ramification index and the degree of p respectively. The residue classs field o/\mathfrak{p} is the finite field $\boldsymbol{F_q}$ with q elements, where $q = p^d$. The following two lemmas play essential roles in our further investigation.

Lemma 4. Let π be a prime element of θ . For any integers $\nu \geq 0$, $a \geq 1$ *and* $m \geq 1$ we have

$$
\pi^{-\nu}(X+\pi Y)^{m p^{a\nu}} \equiv \pi^{-\nu} X^{m p^{a\nu}} \quad \text{(mod } \mathfrak{p}\text{)}.
$$

Proof. It suffices to prove our lemma for $a = m = 1$. We have to prove

(4)
$$
\binom{p^{\nu}}{i} \pi^{i-\nu} \equiv 0 \quad \text{(mod } \mathfrak{p}) \quad \text{for} \quad 1 \leq i \leq p^{\nu}.
$$

This is trivial if $i \geq \nu$. Assume $i < \nu$. Let $p^{\mu} | i!$, but $p^{\mu+1} \not\perp i!$. Then we see

$$
\mu = [i/p] + [i/p^2] + \cdots < i/p + i/p^2 + \cdots = i/(p-1) \leq i.
$$

Hence we have

$$
\left(\frac{p^{\nu}}{i}\right)p^{i-\nu}=(p^{\nu}-1)\cdots(p^{\nu}-i+1)\cdot p^i/i!\equiv 0\quad\pmod{p}\,,
$$

and a fortiori (4).

The following lemma is a trivial generalization of [7], lemma 1.

Lemma 5. Let π be a prime element of α and let $a \ge 1$ be an integer. Let $f(x)$ and $g(x)$ be power series in $g(x)$ such that

(5)
$$
f(x) \equiv g(x) \equiv \pi x \pmod{\deg 2}
$$
 and $f(x) \equiv g(x) \equiv x^{q^a} \pmod{\mathfrak{p}}$.

Moreover, let $L(z_1, \dots, z_n)$ *be a linear form with coefficients in* \circ . Then there exists *a unique power series F(z^v* •••, *zⁿ) with coefficients in* o *such that*

 $F(z_1, ..., z_n) \equiv L(z_1, ..., z_n)$ (mod deg 2) (6) *and* $f(F(z_1, ..., z_n)) =$

Proof. See Lubin-Tate [7]. Note that *F* is the only power series with coefficients in any overfield of o satisfying (6).

Denote by $\mathfrak D$ the ring of integers in the maximal unramified extension of *K.* We are now ready to prove the following:

Theorem 2. Let π be a prime element of θ and let $a \ge 1$ be an integer. *Put* $f(x) = \sum_{\mu=0}^{\infty} \pi^{-\nu} x^{q^{a\nu}}$ and $F(x, y) = f^{-1}(f(x) + f(y))$. Then we have the following: (i) *F* is a group law over υ and $\text{End}_{\mathfrak{D}}(F)$ is the integer ring of the unramified *extension of K of degree a.*

(ii) *F* is a group law of height an over F^q . Denoting by ξ^F * the q-th power endomorphism of* F^* (i.e. $\xi_{F^*}(x) = x^q$), we have

$$
[\pi]_F^* = \xi_{F^*}^a.
$$

(iii) If G is another group law over $\mathfrak o$ such that $[\pi]_G {\in} \mathrm{End}_{\mathfrak o}(G)$ and such *that* $[\pi]_G^* = \xi_{G^*}^a$ *, then* $F \approx G$ over ∞ .

Proof. We define $u(x) \in K\{x\}$ by

(8)
$$
[\pi]_F(x) = f^{-1}(\pi f(x)) = x^{q^d} + \pi u(x).
$$

We shall prove $u(x) \in o\{x\}$. From (8) we have

$$
\pi f(x) = f(x^{q^a} + \pi u(x)),
$$

$$
\pi x + \sum_{\nu=0}^{\infty} \pi^{-\nu} x^{q^{a(\nu+1)}} = x^{q^a} + \pi u(x) + \sum_{\nu=1}^{\infty} \pi^{-\nu} (x^{q^a} + \pi u(x))^{q^{a\nu}}
$$

and

(9)
$$
\pi(x-u(x))=\sum_{\nu=1}^{\infty}\left[\pi^{-\nu}(x^{q^a}+\pi u(x))^{q^{a\nu}}-\pi^{-\nu}x^{q^{a(\nu+1)}}\right].
$$

Put $u(x)=x+\sum_{i=2}^{\infty} b_i x^i$ and assume $b_2, \dots, b_{k-1}\in\mathfrak{0}$. Since b_k is written as a polynomial of b_2, \dots, b_{k-1} by (9), we have $b_k \in \mathfrak{0}$ by applying lemma 4 to (9). This proves $u(x) \in o\{x\}$.

This being proved, we can apply lemma 5 to $[\pi]_F(x)$ as is seen from (8). First $F(x, y) \in o\{x, y\}$ follows from $\pi_F \circ F = F \circ [\pi]_F$ by lemma 5. The equality (7) follows directly from (8). Now put $p = \varepsilon \pi^e$. Then ε is a unit in ρ . We have

$$
[\![\mathbf{p}]\!]_F=[\![\mathbf{\varepsilon}]\!]_F\!\circ\![\pi]_F^e\,.
$$

and hence, by (7) ,

$$
[p]_{F^*} = (\text{automorphism of } F^*) \circ \xi_{F^*}^{ae}
$$

Since $\xi_{F^*}^{ae}(x)=x^{p^{dae}}$, we have $h(F^*)=dae=an$, which completes the proof of (ii). Let *G* be as in (iii). By prop. 2 there is $\varphi(x) \in K\{x\}$ with $\varphi(x) \equiv x \pmod{\deg 2}$ such that $\varphi \circ F = G \circ \varphi$. Then we have $\varphi \circ [\pi]_F = [\pi]_G \circ \varphi$. Hence φ has coefficients in o by lemma 5.

It remains to determine End_{$\Omega(F)$}. Let w be a primitive (q^a-1) -th root of unity in \mathfrak{D} . By definition of $f(x)$ we have $f(wx) = wf(x)$ and so $F(wx, wy) =$ $wF(x, y)$. Hence we have $wx = [w]_F[x] \in \text{End}_{\mathfrak{D}}(F)$. This implies that the fraction field L of End_Q(F) contains the unramified extension of \mathbf{Q}_p of degree *ad*. Moreover, since $[\pi]_F \in \text{End}_{\mathcal{D}}(F)$, the ramification index of L/Q_p is a multiple of *e*. Thus we have $[L: \mathbf{Q}_p] \geq ade = an$. On the other hand, as $h(F^*)=an$, we have $[L: \mathbf{Q}_p] \leq an$ by th. 1, (iii) and by lemma 3. Hence we have $[L: \mathbf{Q}_p] = an$. Since $Z_p[w, \pi]$ is the integer ring of L, this proves (ii) and completes the proof of th. 2.

The existence of a formal group F with the properties (i), (ii) in th. 2 was proved by Lubin ([6], th. 5.1.2.). But his construction of *F* is not explicit as ours.

Corollary. Let F be a formal group over \mathbf{Z}_p such that $h(F^*)=1$. Then we *can find a prime element* π *of* \mathbf{Z}_p *such that* $[\pi]_F^*(x) = x^p$ *. The map*: $F \rightarrow \pi$ gives a *bijection* Φ: *[strong isomorphism classes of formal groups F over Z^p such that* $h(F^*)=1$ } \rightarrow {*prime elements of* \mathbb{Z}_p }.

Proof. Since $h(F^*)=1$, the map $*$: $\text{End}_{Z_p}(F) \to \text{End}_{F_p}(F^*)$ is bijective by th. 1, (iii). As $\xi_{F^*}(x) = x^p \in \text{End}_{F_p}(F^*)$, this proves the first assertion. The injectivity of Φ follows from th. 2, (iii) and the surjectivity from th. 2, (ii).

We now prove th. 1, (iii) assuming th. 1, (ii). Applying th. 2 to $v = Z_p$ and $f(x) = \sum_{n=0}^{\infty} p^{-\nu} x^{p\nu}$, we obtain a group law F^* over F_p , of height h. Let k be the algebraic closure of \mathbf{F}_p . Since $\text{End}_k(F^*)$ contains $[w]_F^*$ and ξ_{F^*} , $\text{End}_k(F^*)$ contains the maximal order \dot{M}_h in the central division algebra D_h of rank h^2 over \boldsymbol{Q}_p , and invariant 1/h. (For detalis see [6], 5.1.3.) We shall prove $\mathrm{End}_{\bm k}(F^*)\! =\! M_{\bm k}\!$. In the following we write *ξ* instead of *ξ^F ** for simplicity. Let *n^h* be the integer ring in the unramified extension of degree h over \boldsymbol{Q}_p and let S be a system of representatives of \mathfrak{u}_h modulo its maximal ideal. For $\beta \in S$, we write $[\beta]$ instead of $[\beta]_F^*$ for brevity. Then we have $\lbrack \beta \rbrack(x) \equiv \beta^*x$ (mod deg 2). Let φ be any element of $\text{End}_{\mathbf{k}}(F^*)$ and let $\varphi(x) \equiv \alpha_0 x \pmod{\deg 2}$. Comparing the r-th degree coefficients of $\varphi \circ [p]_F^* = [p]_F^* \circ \varphi$, where $r = p^h$, we have $\alpha_0 = \alpha_0^r$, i.e. $\alpha_0 \in \mathbf{F}_r$. Hence we can find $\beta_0 \in S$ such that $(\varphi - [\beta_0]) (x) \equiv 0 \pmod{ \deg 2}$. Then, by lemma 1, there is $\varphi_1 \in \text{End}_k(F^*)$ such that $\varphi - [\beta_0] = \varphi_1 \circ \xi$. Applying the same argument to φ_1 , we obtain $\beta_1 \in S$ and $\varphi_2 \in \text{End}_k(F^*)$ such that $\varphi_1 - [\beta_1] = \varphi_2 \circ \xi$. By repeating the same procedure *n*-times we derive β_0 , β_1 , \cdots , $\beta_{n-1} \in S$ and φ_1 , φ_2 , \cdots , $\varphi_n \in$ ***) such that $\varphi_i - [\beta_i] = \varphi_{i+1} \circ \xi$ for $0 \leq i \leq n-1$, where $\varphi_0 = \varphi$. Then

we have

$$
\varphi = [\beta_0] + [\beta_1] \xi + \cdots + [\beta_{n-1}] \xi^{n-1} + \varphi_n \xi^n.
$$

Hence the series $[\beta_0] + [\beta_1] \xi + \cdots + [\beta_{n-1}] \xi^{n-1} + \cdots$ converges and coincides with φ . Since $[\beta_i] \in M_h$, this proves

REMARK. Formal groups *F** constructed in th. 2 do not exhaust all the formal groups over finite fields (cf. Serre [13], p. 9).

3. Certain formal groups over *Z*

We now give explicit global construction of certain formal groups over *Z.* The method is based on lemma 4 and lemma 5 as in 2.

Lemma 6. Let p be a prime number and let $a_1, a_2, \dots, a_n, \dots$ be rational *integers satisfying the following conditions:*

- (i) If $n=p^{\nu}m$ with $p \nmid m$, then $a_n = a_p^{\nu}a_m$
- (ii) $a_1 = 1.$ *p* $\times a_p$.

$$
a_{p^{\nu+2}}-a_{p}a_{p^{\nu+1}}+pa_{p^{\nu}}=0 \quad \text{for} \quad \nu \geq 0.
$$

Let π be the prime element of \mathbf{Z}_p satisfying the equation

(10)
$$
X^2 - a_p X + p = 0.
$$

Put $f(x) = \sum_{n=1}^{\infty} n^{-1} a_n x^n$ and $F(x, y) = f^{-1}(f(x) + f(y))$. Then we have $F(x, y)$ $\{x\}$ and $[\pi]_F(x) \equiv x^p \pmod{p}$.

Proof. By Hensel's lemma and by the assumption $p \nmid a_p$ the equation (10) has solutions in \mathbf{Z}_p . Let π' be the other root of (10). It is a unit in \mathbf{Z}_p . Since

$$
a_{p^{\nu+2}}-(\pi+\pi')a_{p^{\nu+1}}+\pi\pi'a_{p^{\nu}}=0\,,
$$

we have

(11)
$$
a_{p^{\nu+2}} - \pi' a_{p^{\nu+1}} = \pi (a_{p^{\nu+1}} - \pi' a_{p^{\nu}}) \quad \text{for} \quad \nu \geq 0.
$$

Define $u(x) \in \mathbf{Q}_p\{x\}$ by

(12)
$$
[\pi]_F(x) = f^{-1}(\pi f(x)) = x^p + \pi u(x).
$$

The point of the proof is to prove $u(x) \in \mathbb{Z}_p\{x\}$ as in th. 2. From (12) we obtain

$$
\pi \sum_{n=1}^{\infty} n^{-1} a_n x^n = x^p + \pi u(x) + \sum_{n=2}^{\infty} n^{-1} a_n (x^p + \pi u(x))^n,
$$

or

(13)
$$
\pi(x-u(x))=x^p+\sum_{n=2}^{\infty}n^{-1}a_n(x^p+\pi u(x))^n-\pi\sum_{n=2}^{\infty}n^{-1}a_nx^n.
$$

Put $u(x) = \sum_{i=1}^{\infty} b_i x^i$, where $b_i = 1$. Assuming $b_2, \dots, b_{k-1} \in \mathbb{Z}_p$, we shall prove $b_k \in \mathbb{Z}_p$. By lemma 4 we have

$$
n^{-1}(x^p + \pi \sum_{i=1}^{k-1} b_i x^i)^n \equiv n^{-1} x^{p^n} \pmod{p}.
$$

Hence by (13), we have only to prove that the *k-th* degree coefficient *c^k* in

(14)
$$
\sum_{n=1}^{\infty} n^{-1} a_n x^{p^n} - \pi \sum_{n=2}^{\infty} n^{-1} a_n x^n
$$

is a multiple of p. If p/k , this is clear. Assume $k=p^m$ with $v\geq 1$, $p\nless m$. We have

$$
c_k = p^{-(\nu-1)} m^{-1} a_{n/p} - p^{-\nu} m^{-1} \pi a_n
$$

= $p^{-\nu} m^{-1} a_m (p a_{p^{\nu-1}} - \pi a_{p^{\nu}})$

or

(15)
$$
c_k = p^{-\nu} m^{-1} a_m \pi (\pi' a_{p^{\nu-1}} - a_{p^{\nu}}).
$$

Applying (11) to (15) repeatedly we have

$$
c_k = p^{-\nu} m^{-1} a_m \pi^{\nu} (\pi' a_1 - a_p)
$$

= $-p^{-\nu} m^{-1} a_m \pi^{\nu+1}$
 $\equiv 0 \pmod{p}$.

This proves $b_k \in \mathbb{Z}_p$ and by induction we see in fact $u(x) \in \mathbb{Z}_p\{x\}$. The fact $F(x, y) \in \mathbb{Z}_p\{x, y\}$ follows from this by Lemma 5. (cf. The proof of th. 2)

Lemma 7. Let p be a prime number, let $\varepsilon = +1$ or -1 , and let $h \ge 1$ be an integer. Let $a_1, a_2, \dots, a_n, \dots$ be rational integers satisfying the following condi*tions :*

(i) If
$$
n=p^{\nu}m
$$
 with $p \nmid m$, then $a_n = a_{p^{\nu}} a_m$.

(ii)
$$
a_1=1
$$
. $a_p = \cdots = a_{p^{h-1}}=0$.
\n $a_{p^{v+h}} = \epsilon p_{h-1} a_{p^v}$ for $v \ge 0$.

Put $f(x) = \sum_{n=1}^{\infty} n^{-1} a_n x^n$ and $F(x, y) = f^{-1}(f(x) + f(y))$. Then we have $F(x, y) \in$ $\mathbb{Z}_p\{x, y\}$ and $[\mathcal{E}p]_F(x) \equiv x^{ph} \pmod{p}$.

Proof. Repeat the same reasoning as in the proof of lemma 6. The point is to prove $u(x) \in \mathbb{Z}_p\{x\}$, where $u(x)$ is defined by $[\varepsilon p]_F(x) = x^{p^h} + pu(x)$. The details will be left to the reader.

Theorem 3. *Assume that to every prime number p there is given a local L-series L^p (s) of the type :*

(a)
$$
L_p(s)=1
$$
,
\n(b) $L_p(s)=(1-a_p p^{-s}+p^{1-2s})^{-1}$ with $a_p \in \mathbb{Z}$, $p \nmid a_p$,

or

(c)
$$
L_p(s)=(1-\varepsilon_p p^{h-1-hs})^{-1}
$$
 with $\varepsilon_p=+1$ or -1 , $h=h_p\geq 1$.

Define the global (formal) L-series $L(s) = \sum_{n=1}^{\infty} a_n n^{-s}$ by $L(s) = \prod_{p} L_p(s)$ and put $f(x) = \sum_{n=1}^{\infty} n^{-1} a_n x^n$. Then the formal group $F(x, y) = f^{-1}(f(x) + f(y))$ has coefficients *in Z. Denote by F* the reduction of F mod p. Then we have :*

Case (*a*): $F \approx x+y$ over Z_p .

Case (b): $h(F^*)=1$ and the p-th power endomorphism of F^* is a root of the *equation*

$$
X^2 - a_p X + p = 0.
$$

Case (c):
$$
h(F^*)=h
$$
 and $[\varepsilon_p p]_F(x) \equiv x^{ph}$ (mod p).

Proof. If $L_p(s)=1$, the coefficients of $f(x)$ are p -integral and we have $F(x, y)$ $\approx x+y$ over \mathbf{Z}_p . If $L_p(s)$ is of type (b) (resp. (c)), it is easily verified that the sequence $a_1, a_2, \dots, a_n, \dots$ satisfies the assumptions of lemma 6 (resp. lemma 7). Therefore the coefficients of $F(x, y)$ are p -integral for every p . This proves $F(x, y) \in \mathbf{Z}\{x, y\}$. The other assertions of our theorem follow from lemma 6 and lemma 7.

The following proposition is useful in the study of algebroid commutative formal groups over *Q.*

Proposition 3. *Let p be a prime number and let* o *be the integer ring of the quadratic unramified extension of* Q_p *. Put* $f_1(x) = \sum_{\nu=0}^{\infty} p^{-\nu} x^p$ *,* $f_2(x) = \sum_{\nu=0}^{\infty} (-p)^{-\nu} x^{p^{\nu}}$ and $F_i(x, y) = f_i^{-1}(f_i(x) + f_i(y))$ for $i = 1, 2$. Then we have the follwoing:

(i) $F_1^* \sim F_2^*$ over F_{p^2} , but $F_1^* \sim F_2^*$ over F_p . If p is odd, then $F_1 \sim F_2$ *over* o.

(ii) Let F be a group law over Z_p such that $F^*(x, y) \sim x+y+xy$ over F_p^* . *Then* we have either $F \approx F_1$ or $F \approx F_2$ over \mathbf{Z}_p according as $F^*(x, y) \sim x+y+xy$ *over* F_p *or not.*

Proof. By th. 3 F_i (*i*=1, 2) has coefficients in **Z** and $[p]_{F_1}(x) \equiv [-p]_{F_2}(x)$ $\equiv x^p \pmod{p}$. Let *k* be the algebraic closure of \mathbf{F}_p . Since $h(\mathbf{F}_1^*)=h(\mathbf{F}_2^*)=1$, there is an inversible series $\varphi(x) \in k\{x\}$ such that $\varphi \circ F_1^* = F_2^* \circ \varphi$ by th. 1, (ii). Then we have $\varphi \circ [p^2]^*_{F_1} = [p^2]^*_{F_2} \circ \varphi$, i.e. $\varphi(x^{p^2}) = \varphi(x)^{p^2}$. This implies $\varphi(x)$ $\{x\}$ and $F_1^* \sim F_2^*$ over \mathbf{F}_{p^2} . If $\varphi(x) \in \mathbf{F}_{p}\{x\}$, we should have

$$
\begin{aligned} ([-p]_{r_2}^* \circ \varphi)(x) &= \varphi(x)^p = \varphi(x^p) \\ &= (\varphi \circ [p]_{r_1}^*](x) = ([p]_{r_2}^* \circ \varphi)(x) \,, \end{aligned}
$$

and then

$$
[-p]_{F_2}^*=[p]_{F_2}^*,
$$

a contradiction. Hence $F_1^* \sim F_2^*$ over F_p . If p is odd, o contains the primitive (p^2-1) -th root of unity and there is $w \in \mathfrak{v}$ such that $w^{p-1} = -1$. Then we have $w^{p^y} = (-1)^v w$. Hence $f_1(wx) = wf_2(x)$ and then $F_1(wx, wy) = wF_2(x, y)$, which proves (i). Now the p -th power endomorphism of F^* comes from an endomorphism of *F*, say $[\pi]_F$, since $h(F^*)=1$. As the *p*-times endomorphism of the multiplicative group $x+y+xy$ over \mathbf{F}_p is $(1+x)^p-1=x^p$, we have $F_1^*(x, y) \sim x+$ *y*+*xy* over \mathbf{F}_p by th. 1, (ii) and so $F^* \sim x+y+xy \sim F^*$ over \mathbf{F}_{p^2} . Let ψ be an inversible element of $\mathbf{F}_{p}^{2}\{x\}$ such that $\psi \circ F^{*}=F_{1}^{*} \circ \psi$. Then

$$
(\psi \circ [\pi^2]_F^*)(x) = \psi(x^{p^2}) = \psi(x)^{p^2} = ([p^2]_{p^2}^* \circ \psi)(x)
$$

= $(\psi \circ [p^2]_F^*)(x)$,

which implies $\pi^2 = p^2$. Then by th. 2, (iii) we have $F \approx F_1$ or $F \approx F_2$ over Z_p according as $\pi = p$ or $-p$, i.e. according as $F^* \sim x + y + xy$ or not.

4. Group laws and zeta-functions of group varieties of dimension one

We now interprete zeta-functions of certain commutative group varieties from our point of view. Let $F(x, y)$ be a group law over **Z**. Then there is unique $f(x) \in \mathbf{Q}\{x\}$ such that $f(x) \equiv x \pmod{\deg 2}$ and $F(x, y) = f^{-1}(f(x) + f(y))$ (cf. 1). It is clear that $df(x) = f'(x) dx$ is the canonical invariant differential ω on *F*. Let $f'(x) = \sum_{n=1}^{\infty} a_n x^{n-1}$ and define a (formal) L-series $L(s)$ by $L(s) = \sum_{n=1}^{\infty} a_n n^{-s}$. If each one of F , f , ω and $L(s)$ is given, the rests are uniquely determined from it.

Theorem 4. *Let K be a quadratic number field, let* o *be the integer ring of K* and let D be the discriminant of K. Then the Dirichlet L-function $\sum_{n=1}^{\infty} \left(\frac{D}{n}\right) n^{-s}$ is obtained from a group law $G(x,y)$ over $\boldsymbol{Z}.$ $\;$ Moreover, let $F(x,y){=}x{+}y{+}\sqrt{D}xy.$ *Then we have* $F \approx G$ *over o.*

Proof. Let $\chi(n) = \left(\frac{D}{n}\right)$ be the Kronecker symbol and define (16) $P(u) = \prod_{\substack{\text{a mod } D \\ \chi(\text{a})=1}} (1 - \zeta^a u), \text{ where } \zeta = \exp(2\pi\sqrt{-1}/|D|).$

It is easy to see $P(u) \in \mathfrak{O}[u]$. Let σ be the non-trivial automorphism of K and put

(17)
$$
\varphi(u) = (P^{\sigma}(u) - P(u)) / \sqrt{D} P(u).
$$

We have only to prove that $\varphi(u)=u+\cdots \in \varphi\{u\}$ and

(18)
$$
d\varphi(u)/(1+\sqrt{D}\varphi(u))=\sum_{n=1}^{\infty}\chi(n)u^{n-1}du,
$$

since $dx/(1+\sqrt{D}x)$ is the canonical invariant differential on F. We recall

(19)
$$
\sum_{r \bmod D} \chi(r) \zeta^{nr} = \chi(n) \sqrt{D} \quad \text{for any} \quad n \in \mathbb{Z}
$$

(Gauss sum). The first-degree coefficient of $\varphi(u)$ is

$$
(-\sum_{\substack{b \bmod D \\ \chi(b)=-1}} \zeta^b + \sum_{\substack{a \bmod D \\ \chi(a)=1}} \zeta^a)/\sqrt{D}
$$

=
$$
(\sum_{r \bmod D} \chi(r)\zeta^r)/\sqrt{D} = 1
$$

by (19). Let α_i be the *i*-th degree coefficient of $P^{\sigma}-P$. We shall prove $\alpha_i \equiv 0$ $(\text{mod }\sqrt{D})$. Since $(P^{\sigma}-P)^{\sigma} = -(P^{\sigma}-P)$, α_i is of the form $c_i\sqrt{D}$ with $2c_i \in \mathbb{Z}$. If D is odd, we have at once $c_i \in \mathbb{Z}$. If D is even, we have $D \equiv 0 \pmod{4}$. In this case we can easily check

$$
\chi(r+D/2) = -\chi(r) \quad \text{for any} \quad r \in \mathbb{Z}
$$

and so $\{\zeta^a | a \bmod D, \ \mathfrak{X}(a)=1\}$ coincide with $\{-\zeta^b | b \bmod D, \ \mathfrak{X}(b)=-1\}$ as a whole. Hence $\alpha_i = 0$ or twice an integer according as i is even or odd. This shows $c_i \in \mathbf{Z}$ and $\varphi(u) \in \mathfrak{d}(u)$. Let us compute $d\varphi(u)/(1+\sqrt{D}\varphi(u))$. We have

$$
d\varphi(u) = \sqrt{D}^{-1}d(P^{\sigma}/P)
$$

\n
$$
= \frac{1}{\sqrt{D}}\frac{P^{\sigma}}{P}\left(\sum_{b}\frac{-\zeta^{b}}{1-\zeta^{b}u}-\sum_{a}\frac{-\zeta^{a}}{1-\zeta^{a}u}\right)du
$$

\n
$$
= \frac{1}{\sqrt{D}}\frac{P^{\sigma}}{P}\left(\sum_{r \bmod D}\frac{\chi(r)\zeta^{r}}{1-\zeta^{r}u}\right)du
$$

\n
$$
= \sqrt{D}^{-1}P^{\sigma-1}\sum_{n=1}^{\infty}\sum_{r \bmod D}\chi(r)\zeta^{nr}u^{n-1}du
$$

\n
$$
= P^{\sigma-1}\sum_{n=1}^{\infty}\chi(n)u^{n-1}du \qquad \text{(by (19))}.
$$

Hence we have

$$
\frac{d\varphi(u)}{1+\sqrt{D}\varphi(u)}=\frac{P^{\sigma-1}\sum\limits_{n=1}^{\infty}\chi(n)u^{n-1}du}{1+(P^{\sigma}-P)/P}
$$

$$
=\sum\limits_{n=1}^{\infty}\chi(n)u^{n-1}du.
$$

This completes the proof of our theorem.

Now the Dirichlet L-function $L(s, \chi)$ has an Euler product of the form $\Pi_p^{\{1 - \varepsilon_p p^{-s}\}^{-1}}$ where $\varepsilon_p = \chi(p)$. By th. 3 ε_p is uniquely determined by the group law *F.* From this point of view *L(s,* %) can be characterized as the L-series attached to a normal form over *Z* of the algebroid group *F.* The Euler product

implies that the group law F is "the direct product" of group laws over Z_p 's attached to p -factors of $L(s, \chi)$.

Quite the same holds for elliptic curves over *Q.* In the following we mean by an elliptic curve an abelian variety of dimension one. Let *C* be an elliptic curve over **Q**. Neron [10] shows that there is an essentially unique (affine) model for *C* of the form

(20)
$$
Y^2 + \lambda XY + \mu Y = X^3 + \alpha X^2 + \beta X + \gamma
$$

where λ , μ , α , β , γ are integers and the discriminant of the equation (18) is as small as possible. For this model $C_p = C \mod p$ is an irreducible curve for every prime number *p.* Then local L-series *L^p (s)* of *C* are defined as follows.

(I) If C_p is of genus 1, we put

$$
L_p(s) = (1 - a_p p^{-s} + p^{1-2s})^{-1}
$$

where $1-a_pU+pU^2$ is the numerator of the zeta-function of C_p .

(II) If C_p has an ordinary double point, we put $\varepsilon_p = +1$ or -1 according as the tangents at the double point are rational over $\boldsymbol{F_p}$ or not and write

$$
L_{b}(s) = (1 - \varepsilon_{b} p^{-s})^{-1}
$$

(III) If C_p has a cusp, we put

$$
L_p(s)=1.
$$

In case (II) the reduction of the group law of *C* is isomorphic to the multiplicative group over \mathbf{F}_{p} ² and is isomorphic to it over \mathbf{F}_{p} if and only if ε_{p} =+1. In case (III) the reduction of the group law of *C* is the additive group ([10], Chap. Ill, prop. 3).

Now, we take $t = X/Y$ as a local parameter at the origin. By [15], Chap. III, prop. 4 t is a local parameter at the origin of C_p for every p. Writing down the group law of C as a formal power series relative to the variable *t,* we obtain a formal group $F(x, y)$ over Z. (The fact $F(x, y) \in Z\{x, y\}$ can be verified also by direct computation.) We shall call a formal group over Z , strongly isomorphic to this *F* over *Z,* a *formal minimal model* for *C* over *Z.*

Theorem 5. Let C, C_p , $L_p(s)$ and F be as above. Let S be any set of prime *numbers which does not contain* $p{=}2$ *or 3, if* C_p *has genus one and* $a_p{=}{\pm p},$ *and* put $Z_{S} = \bigcap_{p \in S} (Z_{p} \cap Q)$. Write $\prod_{p \in S} L_{p}(s) = \sum_{n=1}^{\infty} a_{n} n^{-s}$, $g(x) = \sum_{n=1}^{\infty} n^{-1} a_{n} x^{n}$ and $G(x, y)$ $=g^{-1}(g(x)+g(y))$. Then $G(x, y)$ is a formal group over **Z** and $F \approx G$ over \mathbb{Z}_S *.*

Proof. If C_p has genus one and $p \mid a_p$, we see easily $a_p = 0$ or $a_p = \pm p$ with $p=2$ or 3 by Riemann hypothesis $|a_p| < 2\sqrt{p}$. The latter cases being excluded,

we can apply th. 3 to $\prod_{i=1}^{n} L_p(s)$ and obtain $G(x, y) \in \mathbb{Z}\{x, y\}$. In order to show $F \approx G$ over Z_s , we have only to prove $F \approx G$ over Z_p for every $p \in S$, since a power series $\varphi(x)$ such that $\varphi(x) \equiv x \pmod{deg 2}$ and $\varphi \circ F = G \circ \varphi$ is unique. If C_p has genus one for $p \in S$, then $F \approx G$ over Z_p by th. 3 and th. 2, (iii), since $X^2 - a_p X + p$ is the characteristic polynomial of the p -th power endomorphism of C_p . In case (II) *F* mod *p* is isomorphic to the multiplicative group $x+y+xy$ over \mathbf{F}_{p} ² and isomorphic to it over \mathbf{F}_{p} is and only if ε_{p} = +1. Hence we have $F \approx G$ over \mathbf{Z}_p by prop. 3, (ii), by th. 3 and by th. 2, (iii). In case (III) it is clear $F \approx G$ over Z_p . This completes our proof.

REMARK. It seems that the assumption on *S* in th. 5 would be superfluous. But I have not been able to get rid of it.

Corollary 1. Notations being as in th. 5, assume that $a_p \neq \pm p$ for $p=2, 3$. *Then the formal group attached to the zeta-function* $L(s; C) = \Pi L_p(s)$ *of* C *has coefficients in Z and is a formal minimal model for C.*

Corollary 2. Let C and C' be elliptic curves over **Q** and let S be a set of primes *satisfying the assumption in th.* 5 *for each curve. Then formal minimal models of C* and C' are isomorphic over \mathbf{Z}_s , if and only if p-factors of $L(s; C)$ and $L(s; C)$ *C'*) coincide for every $p \in S$.

Corollary 3. Let notations be as in th. 5. If C_p has genus one for a_p mod p is the Hasse invariant of C_p .

Proof. Take $f(x) \in \mathbf{Q}\{x\}$ such that $f(x) \equiv x \pmod{\deg 2}$ and $F(x, y) =$ $f^{-1}(f(x)+f(y))$. Then $f'(t)dt$ is the canonical invariant differential on *F*, i.e. the ^-expansion of an differential of the 1st kind on *C.* Hence our assertion follows from definition of Hasse invariant and from th. 5.

REMARK. Coroll. 3 is a special case of th. 1 of Manin [9]. So his theorem is suggestive for generalization of th. 5 to an abelian variety of higher dimension over an algebraic number field.

Corollary 4. Let C be an elliptic curve over **Q** and assume $a_p = 0$ for a prime *number p. Denote by* o *the integer ring of the quadratic unramίfied extension of Q^p .* Then C has formal complex multiplications over \circ , i.e. $End_{\circ}(F)=\circ$.

Proof. Let *H* be the formal group over **Z** attached to the L-s ries $(1 +$ p^{1-2s} ^{$)$ -1} We have $H(x, y)=h^{-1}(h(x)+h(y))$ where $h(x)=\sum_{k=0}^{\infty}(-p)^{-\nu}x^{p^{2\nu}}$. If $a_p = 0$, then $F \approx H$ over \mathbb{Z}_p by th. 5, and our assertion follows from th. 2, (i).

REMARK. Existence of elliptic curves, which have no complex multiplication but have formal complex multiplications over p-adic integer rings, was proved by Lubin-Tate [8]. But they did not give an explicit example. Our result has a meaning in the study of *l*-adic Lie groups attached to elliptic curves over **Q**. (cf. Remark on p. 246 of Serre [12].)

There are some questions concerned with our results. How can we generalize th. 4 to more general L-functions ? Let *F* and *G* be as in th. 5 with *S=* the set of all the prime numbers. What is the power series $\varphi(x) \in Z\{x\}$ such that $\varphi(x) \equiv x \pmod{\text{deg } 2}$ and $F \circ \varphi = \varphi \circ G$? How can we generalize th. 5 to an abelian variety of higher dimension over an algebraic number field ?

OSAKA UNIVERSITY.

References

- [1] M. Deuring: Algebren, Ergebnisse der Math., Berlin, 1935.
- [2] J. Dieudonne: *Groupes de Lie et hyperalgebres de Lie sur un corps de caracteristique p>0* (VII), Math. Ann. 134 (1957), 114-133.
- [3] M. Eichler: *Quatenάre quadratische Formen und die Riemannsche Vermutung fur die Kongruenzzetafunktion,* Arch. Math. 5 (1954), 355-366.
- [4] E. Hecke: *Uber die Modulfunktionen und die Dirichletschen Reihen mit Eulerschen Produktentwickelung* I, II, Math. Ann. 114 (1937), 1-28, 316-351.
- [5] M. Lazard: *Sur les groupes de Lieformels a unparametre,* Bull. Soc. Math. France 83 (1955), 251-274.
- [6] J. Lubin: *One parameter formal Lie groups over \$-adic integer rings,* Ann. of Math. 80 (1964), 464-484.
- [7] J. Lubin and J. Tate: *Formal complex multiplication in local fields,* Ann. of Math. 81 (1965), 380-387.
- [8] J. Lubin and J. Tate: *Formal moduli for one-parameter formal Lie groups,* Bull. Soc. Math. France 94 (1966), 49-60.
- [9] Ju. I. Manin: *On Hasse-Witt matrix of an algebraic curve* (in Russian), Izv. Akad. Nauk 25 (1961), 153-172. (= Amer. Math. Soc. Trans. (2) 45, 245-264.)
- [10] A. Neron: *Modeles minimaux des varietes abeliennes sur les corps locaux et globaux,* Publ. Math. I.H.E.S., 21 (1964).
- [11] I.R. Safarevic: *Algebraic number fields* (in Russian), Proceedings of the International Congress of Mathematicians in Stockholm, 1962, 163-176 (=Amer. Math. Soc. Trans. (2), 31, 25-39).
- [12] J. -P. Serre: *Groupes de Lie l-adiques attaches aux courbes elliptiques,* Les tendances géométriques en algèbre et théorie des nombres, Clermont-Ferrand, 1964, Centre National de la Recherche Scientifique, 1966, 239-256.
- [13] J. -P. Serre: Courbes elliptiques et groupes formels, Extrait de l'Annaire du College de France, 1966-67.
- [14] G. Shimura: *Correspondances modulaires et les functions ζ de courbes algebriques,* J. Math. Soc. Japan 10 (1958), 1-28.
- [15] G. Shimura and Y. Taniyama: Complex multiplication of abelian varieties and its applications to number theory, Math. Soc. Japan, Tokyo, 1961.