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1. Introduction

Let us consider a separable and measurable Gaussian processcυ X=

{X(t)y *Ξ>0} with mean zero and with the covariance function p(t, s)=EX(t)X(s).

We assume that p(ty t) is independent of t, say v(>0). The asymptotic

behaviours of sup X(t) as Γ->oo have been studied by various authors Γ21 Γ31
teloM L J L J

[4] [8] [9]. For example, Pickands [8] proved that

sup X(t)
( # \ fS[QgΊ 1

under the following conditions (for stationary Gaussian process),

lim sup t'Λ{v—p{t, 0))<oo , for some a>0 ,

and lim pit, 0)—0.

In this note we shall prove (*) under certain conditions (condition A and B

in Section 2) weaker than Pickands' conditions. As an application of (#), we can

prove the Holder continuity as well as the uniform Hϋlder continuity for statio-

nary Gaussian processes

r \X(t)-X(0)\
lim sup ' w v ) i

n° γ4(z;-p(0,0)loglog-ί
sup \X(t)-X(s)\

lim sup ^»^ILII-*I->

a s

There are many references on this subject (see, for example, [10]). Our method,

different from the usual Borel-Cantelli method, consists in making use of some

transformations of path functions to reduce the behaviour of path functions near

t=0 to that near t=oo.

(1) We mean a real valued process.
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2. Results

Let X—{X(t)i t^O} be a separable and measurable Gaussian process with

EX(t)=Q, p(t, s)=EX(t)X(s) and EX2(t)=v(>0). We shall introduce the

following two conditions:

CONDITION A. For any t and s,

( 1 ) 2(v-p(t,s))(= E(X(t)-X{s)Y) < ψ\\t-s\)

where -ψ is a non-decreasing and continuous function on [0, <χ>) such that

( 2 ) [~ψ(e-χ2)dx < o o .
Jo

CONDITION B.

( 3 ) lim sup pit, s) < 0 .

(This condition A implies the continuity of almost all sample paths, by a theorem

due to X. Fernique [6]).

In Section 3, we shall prove the following theorems,

Theorem 1. Under condition A, we have

sup |*(f) |
lim Sup ' g y < 1

with probability 1.

Theorem 2. Under condition B, we have

sup X(t)
lim SUp ηvw > 1

rt- \/2e;logT

with probability 1.

Therefore, if condition A as well as condition B are satisfied, we can conclude that

sup \X(t)\ sup
lim ' g ? f 3 = lim ηl0>τl = 1
a too χ/2© log Γ ί't00 V2v log Γ

with probability 1.

Suppose that X is stationary and stochastically continuous. So, the covari-

ance function γ(£—s)=ρ(ty s) is expressible in the form

Ύ(τ) = Γ e^dF(\)
J -co

with a bounded measure dF, symmetric with respect to 0. Moreover, the



EXTREME VALUES OF GAUSSIAN PROCESSES 315

meausre dF can be split into the continuous part dFc and the discontinuous part
dFd;dF=dFc+dFd.

Corollary. Let vc=Fc(R1). If vc is positive and if condition A is satisfied,
then we have

sup | ( ) |
lim sup /£fΓ3 < 1

with probability 1. Moreover, if condition B is also satisfied, then

sup \X(t)\ sup
'6 5**3 = lim 'f **lim f 1

^ log T *t« V2vc log T
with probability 1.

In Section 4, we shall show the following theorems for the stationary and
stochastically continuous process X, using Theorems 1 and 2.

Theorem 3. Let σ(t) = y/E \ X(t)—X(0) | 2 > 0.

Suppose that there exist two positive constants β and L such that

( 4 ) ^ ) < L , β , for f,

and that

( 5 ) σ\t)-σ\t-h) < Lσ\h), for small t and h.

Then we have

lim sup

with probability 1.

Theorem 4. //* ίAβ assumption (4) o/ Theorem 3 is t̂f#rf β r̂f z/ σ

2 (ί)
concave in a small interval (0, δ), then we have

sup I ( ) ( ) I
l im sup ' s g [ 0 1] l'-s|=* = 1

with probability 1.

3. Proof of Theorem 1 and 2

Without loss of generality, we may assume that v=l. Since X has con-
tinuous paths under condition A, Theorem 1 follows immediately from the
statement



316 M. NISIO

A. For any £>0 and for almost all ω, we can find a finite To(6, ω) such that,
for all values of T greater than T0(ε, ω), the inequality

sup \X(t,ω)\
" C Γ Γ ]

holds.
Let a(n)=[n2]^ and define ξ by

(», k) =

Using the following well-known inequality;

( 6 )

we can get

Σ(7) Σ Σ P(\ξ(n, k)\>V2Ϊ^ι(l+e)) < oo .

Therefore, using Borel-Cantelli's Lemma, we see that, for almost all ω,

max \ξ(n, k)\< >/2 logn(l+£), for large n.
t=0, ,oc«)

Define ?7 by

V(n, k, j) = x(n+—1—+-L\-χ(n+—^—)
\ l+α(ra) ό(w)/ \ l+a(n)/ >

_/=l,2,.. , - ^ τ , A = 0,l, -,a(n), n = 0, 1 , -

where ft(n)=(l+«(«))[exp ^ l ί M ^ J and K=2^°ψ(e-*2)dx.

By virtue of condition A, we have

P(\v(n,k,j)\>SV2logn)

\v(n,k,j)\

\v(n,k,j)\

• \v(n,k,j)\ v ^ 6 , . ,

where D( ) stands for the standard deviation of a random variable. On the
other hand, (2) implies

(8) ψie-<2)<^£-, c<0.

(2) [c] is the integer part of c.
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Hence, appealing to the inequality (6), we see

Σ Σ bΈP(\v(n, k,j)\ > εVTϊ^n)

=J= exp ( —^—s—/__|_£(lOg γή o__ l
yn \ K Λ]r2(n ε)/

where b*(ri)—-Λ—^-r. Combining this inequality with (8), we havev ' l\a(ri) b i v '

(9) ΣlΣί

We set c(ρ)=22p and define f by

ζ(n, i, p, q, r)

b(n) b(n)c(p) b(n)c(p+l)/ \ b(n) b(n)c(p)J

i = 0, 1, '--,b(n)—1, # = 0 , 1, •••, ^ ) — 1 , r = l , ~',c(p),

p=l,2, - , Λ = 0, 1, - .

Let Y(w, /))=max | ζ"(/z, /, ̂ ), g', r) | and Z(/, ̂ ))= max Y(/z, p).

Then we have, for any h>0,

EZ(i,p) < h+c^ Σ^Σ^Σ'JVl^^Λ^,^)

where ^f is the probability law of ζ, ([5], Proposition 2). Hence

(n,t,j>,ί,r))exp
M, ί, ̂ >, q, r))

< h+b(c(l+l))c(p+l)c(l+l)ψ(ίlb(c(l))c(p)) exp ( " ^ )
\2ψ%lIb(c(l))c(p)y

Let A = A(/, ί ) = V2 log %

Then, we see

(10) EZ(l, p) < 2h(l, p).

Recalling the definition b(n) and c(p), we have

(11) V\ogb(c{l+ί))c(p+l)c(l+\) < d(

with a properly chosen constant d which may depend on £. On the other hand,

by (2),

(12) Σ 2»>ψ(llb(c(l))c(p)) < Σ 2^{\jc{p))
p=l P=l

3 f
Jo
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Furthermore, by (8), with a properly chosen constant df

(13) ψ{\lb{c{T))c{p)) < d'(2"+2>yv*.

Using the inequality, for a^(0, 1),

x+y > x*y1~*+x1-*yy > x*yι~* , for * < 0 , y<0

we have,

Hence, combining this with (11) and (12), we have

Σ A(/, P) < dd'Vi* f ] 2-»6+3d[°°ψ(2-χ2)dx .
P=ι P=i Jo

Therefore, by (10),

For any £>0,

J P ( Σ Y(n> P) ^ £\/2 log n , for some n^(c(ΐ)y
p—l

(Σ

Σ
(, log <:(/)•

Hence, we have

(14) Σ ^ ( Σ Y(n, p) > £>/2 logn, for some n<=(c(l), ••• c(l+l))< CXD .
ι=ι p=i

Since Xhas continuous paths, for t^\ n-\-^—t—T-^+TT-^, n-\--. j-^
L ί+a(ή) b(n) l+a(ή)

\X(t)\ <ΈY(n, p)+\v(n, k, j)\ + \ξ(n, k)\ .
p=l

Therefore, recalling (7) (9) and (14), for almost all ω, we can choose a finite
N0(ω) so that, for w=ΛΓ0(ω), N0(ω)+ly ••• .

sup I X(t, ω

This completes the proof of statement A.
To prove Theorem 2, it is enough to show the statement.

B. For any £>0, we can find a finite Γo(£) such that the inequality
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max X(jT09 ω)
Km inf '-*-'"-" > 1-6

•wt- V21ogΛΓ
holds, with probability 1.

Without any difficulty, we can carry out the same method as in [8] (pp. 203-
204). We take T so that sup p(t, s)<S. Let {ξ, ηn9 Λ = 1 , 2, •••} be a system

Iί-*|>Γ

of independent Gaussian random variables with Eξ=Eηn=0, Eξ2=£ and

Eη*=l-6. Fut Yt=S+Vi. Then

= EX\Tΐ) = ]

(15) and

On the other hand, let 2?(={r<7}) be a NxN symmetric positive definite matrix
with l's along the diagonal. Define

Then Q(c; {r/y}) is an increasing function of the arguments {rί7}, ([2], p. 508).
Combining this with (15), we get

(16) P( max X{Tk) < c) < P( max Yk < c).

For any £', ( 0 < δ ' < l ) , we have

(17) ±P(m<ιxYk < V2(l-6)]og2T(l-6'))

v/2(l-fi)log2")

x.% < (l-|)\/2a-£)log2«)

by the inequality of (6). Therefore, using (16) and (17), we have

max X(kT)
lim infk = 1 > '_ > \/l — 6 (1— £'), a.s.

Λ t - V21ogΛΓ

Since 6' is arbitrary, we get statement B.
To prove Corollary, we shall express X by the sum of mutually independent

Gaussian processes so that

(18) X(t) = ξ(t)+ Σ vn cos \nt+ fj ζn sin Xnt
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where Eξ(t)=Eηn=Eζn=0 and the stationary Gaussian process ξ has the conti-

nuous spectral measure dFci ([7]). We define X^t) by

(19) Xk(ΐ) = X(ή- § 77, cos Xnt- Σ £w sin λMί.

Then it is easily seen that

EI Xk(t)-Xk(s) \><E\ X(t)-X(s) 12

and the process XΛ also satisfies condition A. Therefore, by Theorem 1. we

have

sup \Xk(t)\
^ " < 1 , a.s.,< 1

log 1

k-\ k-i

where vk=EX\(t). Since almost all sample paths of Σ On c°s λ M ^ + Σ ?« s m ^»^
«=o »=o

are bounded functions, we have

sup \Xk{ί)\ sup ( )
lim S Up i ^ = lim S Up tςΞfTΛ a.s.

π - r \/2vh log Γ ί't- V-2^ log T

Therefore, we obtain the former half of Corollary, since vk tends to vc.
As to the latter half, condition B implies

SUp

l i f ^ Γ

c o g Γ

by Theorem 2. Hence, we have v=vc. Therefore under conditions A and B,

we complete the proof of Corollary.

4. Proof of Theorem 3 and 4

To prove Theorem 3, we shall firstly derive the following inequality from

assumption (4),

/oίw v \X(t)-X(Q)\ .-,
(20) lim sup — ! — Y v ; J = < 1 , a.s.

We shall introduce an auxiliary Gaussian process Y by

Y(n+t) = Xi2^~S"t2l~^0)» ί e [ ° ' ^ ' «=0. l . -

Since Xhas continuous paths by (4), ([1], [6]), Y is also a continuous Gaussian

process with EY(t)=0 and EY\t)=\. Moreover, using (4), we have
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E\Y(n+t)-Y(n+s)\2

<.L\t-sy*, for ί,4e[0, 1].

Hence,

E\Y(n)-Y{n-s)\*

<L2s2β, for $e[0, 1].

Therefore, we have

E\Y(t)-Y(s)\2 <AU\t-s\2\ for | * - * | < 1 .

On the other hand E\ y( i )-Y(i) | 2 <4. Hence, Y satisfies condition A. So,
Theorem 1 tells us that

max|Y(OI
lim sup ^ [ 0 ; Γ ] < 1 , a.s. ,

rt~ \/2 1ogΓ ~

holds. Therefore

lim sup */nt\ ^N < 1 , a.s.

Hence, we have

lim sup T 7 : ~ Γ W ' < 1 . a.s.,

where φ is defined by ^ ( 2 - Λ - τ 2 - n - 1 ) - / z + τ for T G [ 0 , 1] and w=0, 1, —.
Since

(21) (loglogi-yiog^(ί)-*l, as t -> 0 ,

we obtain (20).
By virtue of (4) and (5), we shall show the converse inequality of (20).

For n<m, we haλ'e

EY(n+t)Y(m+s)

< const.
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So, Y satisfies condition B. Hence, for £>0 and for almost all ω, we can choose

a finite Γo(£, ω) so that, for any T greater than To, the inequality

max Y(t, ω)

\/2 log T

holds. For any v smaller than φ~\T^fz:>, the inequality

χ

M] σ(u)V2 log φ(v)
Q> ω ) i s continuous

S0(ω), smaller than <p~\T0)f so that, for any s smaller than S0(ω),

holds. Since X ^ ω )~^( Q > ω ) i s continuous on (0, 1], for δ>0, we can take
σ(u)

σ(u)V2 log φ(u)

Therefore, for any δ>0, and for almost all α>,

^[««,»)-A(0,«)^i c
ecoδi (ί/)v2 log (p(w)

Combining this with (21), we get the converse inequality of (20).

To prove Theorem 4, we shall fix a positive S arbitrarily and define by

Z = l , 2 , β(n), * = 0,l, .»i(»), n = l , 2 , . ,

where α(«)=[2*8] and b(n)=2na{n). Using (6), we have

Σ g Σ

h *)+<)=

(22) Σ g Σ P( I ξ(n, k, I) I ̂  (1 +£) ̂ Γί^T") < oo .

Define a continuous Gaussian process {Y(s), s>0} by

ft = 0, 1, —,*(«), n = l , 2 , . ,

where N(n, k)=2 Σ HJ)+2k Then, using (4), we have

(3) φ~ι means the inverse function of φ.
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E\ Y(N(n, k)+t)-Y{N{n, k)+s)\2

^ ^ < U \ t - s \ 2 ^ for I, ,€=[0,1].

Hence

E\ Y(N(n, k)+t)-Y(N(n, k)+s)\2 < L*\t-s\* , for ί, *e=[0, 2].

Since, y(2/)=0, for j=0, 1, 2, ••-, we get

(23) £ I Y(u)- Y(u) 12 < 4L21 ι ι - ϋ |2 β

and

(24) £ | y ( w ) | 2 < L 2 .

Let η be a standard Gaussian variable which is independent to {Y(u)y u>0}.
We shall define a Gaussian process Z by

Z(u) = Y(u)+\/l+L2-EY\u) V

and show that Z satisfies condition A.

(25) E(Z(u)-Z(v))z

By (23) and (24), we have

\EY\u)-EY\v)\ <4L2\u-v\β.

Hence, using the inequality | y/1 -f x— 11 < | x \ for | Λ1 | < 1, we see that the second
term of the right side of (25) is less than 16L4\u-v\2β for \u-v\ <(4L2)"1/ίJ.
So, the process Z satisfies condition A. Therefore, by EZ(t)=0 and EZ\t)=
L 2 + l , we have

max \Z(u)\
lim sup / £ [ 0 ' y ] , _ — < 1 , a.s.

ft- ^\/L 2 +l\/21ogΓ~

This implies that

max I Y{u) I
lim sup / g ί 0 y 3 . _ _ < 1 , a.s. ,

*•- P \ / L 2 + l \ / 2 1 o g Γ ~

because the second component of Z is bounded in u, for almost all ω. Recalling
the definition of Y, we have

lim sup
max

jt=o, ,κ») /

χ^r±)-u

<VL2+ί, a.s.
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On the other hand, ιo^1^n'TH ' tends to l-f£ when n tends to oo. Therefore,
log 2M

for almost all ω, there is no(ω) such that, for any integer n greater than τzo(ω),

the inequality

(26) max λ ,„ _
*=of. ,*c»)./e[ofi] \b(n) I \b(n)n) I \b(n)/ /I

< (l+2£)\/F+Tσ(ϊi-)v/2Toi2s

holds. On the other hand, we have

b(n)
for

σ(τ)

Moreover, for small positive T, we take integer n and i so that

2""-1 < T < 2 " and — < r < ί ± l .
b(n) ~ b(n)

Then, we have, by the concavity of σ2,

σ(τ) -

and, for any positive ί ( < l — T ) ,

\X(s+i)-X(s)\ ^ m a x ^ max^ \ξ{n, j, l)\σ(ilb(n))

+ 2 max max χ(ttA-χ(ΛΛ\
*=o, ,κ«) «e[o,ii \ b(n) / \b(n)/\ •

Therefore, appealing to (22) and (26), we see that, for almost all ω,

(27) \X(s+i)-X(ή I < (l+2β)σ(τ)^2 log - 1 , for small T .

We shall derwe the converse inequality of (27) from the concavity of σ\t).

Define a separable Gaussian process Y by

Y(2"+k+t) = ^ ί e [ 0 > 1 ] >

σ(2 *)

/t = 0, 1, - , 2 " - l , » = 1 , 2 , - .

Then, by the convexity of the covariance function of JΓ, we have
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EY(2'+k+t)Y(2m+j+s)

)} < 0,

for (J+l)2-m<k2-' .

Hence Y satisfies condition B. So, for any £>0 and for almost all ω, there
exists an integer no(6, ω) such that

max \X((k+\)2-m, ω)-X(k2-m, ω)\

^ 2 ™ 1

for n > no(6, ω).

Hence, for any integer /,

max \X((k+l)2-m)-X(k2-m)\

" ° 2 m V
Consequently, we have the following required inequality

sup | ( ) ( ) |
lim sup '>^^ai,-.i-* > 1 - £ , a.s.
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