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M. Harada [5] showed that if A is a central separable C-algebra and a Galois
extension of B with group G, and B is a separable B Π C-algebra, then the order
of the subgroup of G which leaves C fixed is a unit in C. In this note we ob-
tain a partial converse to this result (Theorem 4 below). The method of approach
is to use the modules Jσ associated with automorphisms σ of A. These modules
were discovered in [8] and their connection with Galois extensions was recognized
in [7].

The author would like to thank the referee for pointing out the reference
[4] for the proof of Proposition 2.

We begin by recalling the definition of J σ:

DEFINITION. Let A be a central separable C-algebra and σ a ring auto-
morphism of A. Then

Jσ= {x in AI σ(a)x=xa for all a in A} .

It was shown in [8] that if σ is a C-algebra automorphism of A, then Jσ is
a rank one projective C-module. The following useful fact, noted for Galois
extensions in [7], can also be extracted from [8]: (® means ®c)

Lemma 1. Let A be a central separable C-algebray and σ, τ be two C-
algebra automorphisms of A. Then the map K: Jσ®JΊ-^Jστ given by κ(x®y)
=xy, x in Jσi y in Jτ, is an isomorphism.

It is easy to see that the image of K is i n / σ τ , and [8], Lemma 5, shows that
there exists an isomorphism from Jσ®Jr onto/ σ τ ; the proof of Lemma 1 consists,
first, in verifying that the sequence of isomorphisms connecting A®Jσ®Jr

and A®Jστ on the last line of page 1112 of [8] sends a®x®y to a®xy, and
then, using this fact, noticing that the sequence of isomorphisms on the
bottom of page 1111 of [8] which gives the isomorphism of Jσ®Jτ with/ σ τ is

1) This material is adapted from the author's Ph. D. thesis at Cornell University. The
author would like to thank Professor Alex Rosenberg for his advice and encouragement.
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K. We omit the tedious details.

Proposition 2. Let A be a central separable C-algebra and G a finite group
of C-algebra automorphisms of A. Let N=^JσJ and suppose that as a C-module,
the sum is direct. Then N is a separable C-algebra if \G\, the order of G, is a unit
ofC.

Proof. Since the kernel of the map from Ne to TV given by x®y-+®xy
is a finitely generated C-module, we have by [1], III, 2.10 that N is a separable
C-algebra if N®Cm=Nm is a separable Cw-algebra for all maximal ideals m of
C. Moreover, if G' is G acting on A®Cm=Am via σ'=σ®l, and N'=Ί,
θ/σ/, where Jj= {xf in Am\ σ\y')x'=xfyr for al l/ in Aj, then N'=Nm:
infactyσ/=(70.)m. For

( Λ ) » = [ — in i4m |σ(j0*=*y for all 3; in i ί | , and

/</ = { — in Am\ Ξt in C-m so that ί(σ(v)#—xy)=0

for all y in

so clearly ( / σ ) w ^ / σ ' . On the other hand, if —e/ σ >, let 3^ , , jv generate

4̂ over C, t{ be in C-m such that ti(σ(yi)x—xyi)=0y and ί = Π t{. Then

so — = — is in (Jσ)m. Now, since \G\ is a unit of C if \G\ is a unit of Cm

for all m, it suffices to prove the theorem assuming C is local.
Assuming C local, σ G G is inner, conjugation by an element u, and

J σ = C u a . ( [ 8 ] ) . S i n c e C u ( Γ - C u τ = C u ( Γ T y u σ u τ = a a . t T u σ τ , a σ r a u n i t o f C , s o

N=yΣφCu(T is a twisted group ring (i.e. a crossed product with factor set in

the units of C, and with G acting trivially on C). Thus we may apply [4],

Lemma 4, to obtain that N is separable over Cif \G\ is a unit of C, as desired.

Lemma 3. If A is a central separable C-algebra, G ά α finite group of C-
algebra automorphisms of A, and N=Σjσ, then the fixed ring of G acting on A,
AG, is equal to AN, the commutator of N in A.

Proof. If x is in AN then x is in AJ* for all σ in G, so xyσ=yσx for all yσ

in Jσ, But since for all x in 4̂, j ; σ in JΓσ, we have σ (#)j>σ=jyσ#, it follows that

if Λ; is in AN, (σ(x)—x)yσ=0 for all yσin Jσ and all σ in G. By Lemma 1

7σ 7σ-i=Cl, so there exist j σ v in/,., and #σ v in Jσ-i so that Σj ;σ fv^σ iv
==1

Thus 0 = X] (<τ(x)—x)yσ v ^ σ v=(σ(^)—x) l, so ΛJ is in AG. The converse is

trivial.
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Now, using Kanzaki's result ([7], Proposition 1) which states that if A is
a Galois extension of B with group G, then N=Έ,®J<r, we obtain our main
result.

Theorem 4. Let A be a ring whose center C has no idempotents but 0 and

1. Suppose A is a Galois extension of B with group G, and A is separable over

Bf]C Let H be the subgroup consisting of all elements of G which are the identity

on C. Then if the order of H is a unit in C, B is a separable B Π C-algebra.

Proof. If A is a Galois extension of B with group G, then directly from
the definition of Galois extension A is a Galois extension of AH, the fixed ring
of H, with group H. Thus N=Ίί®J(Γ by [7], Prop. 1. By Proposition 2, N
is a separable C-algebra, so by Lemma 3 and [6], Theorem 2, AH is separable
over C.

Now H is a normal subgroup of G, G restricted to AH is isomorphic to
G/i/, as is G restricted to C, and CG=B (Ί C. Since A is assumed separable
over BΓ\C, the center C of A is separable over B Π C, so ([3], 1.3) C is a Galois
extension of B Π C with group G/i/. Defining the action of GjH on B®Bf]cC
via σ(δ®c)=δ®σ(£), B®BΠcC becomes a Galois extension of B with group
G/i/, just as in [3], 1.7. Also ^4H is a Galois extension of B with group G//f.
The map from B®BΠcC to AH given by b®c-+bc is a G/ίf-module and JS-
algebra map, so by a trivial extension of [3], 3.4, it is an isomorphism: B®B^CC
^AH. Thus, since BΠ C is a JBΠ C-direct summand of C by [3], 1.6, 5 is a
J5-direct summand of AH, so is separable over BΓϊCby [2], IX, 7.1 and the
fact that AH is separable over BΓ\C. This completes the proof.
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