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0. In [4] Serre defines an unramified revetement as an affine morphism
@ of varieties satisfying some particular conditions (see §1) and he shows that
every unramified revetement can be obtained as a quotient of a Galois revete-
ment by the action of a subgroup of the Galois group.

Trying to extend these results to arbitrary preschemas we can translate
everything to a pure algebraic setting.

In §1 we prove that the conditions for unramified revetement are equivalent
to the separability of the associated rings for each affine open set. In §2 we give
some complements to Galois theory (as developed in [2] and [6]) and in §3 we
prove that every separable algebra can be functorially embedded in a Galois
extension.

The results of §2 are either obvious consequences of [6] or they belong to a
forthcoming paper by the same authors.

The results of §3 generalize similar results by Auslander and Goldman ([1],
Th. A. 7).

1.

Let @: Y—X be a morphism of preschemas. If 6y, 0y are the structure
sheaves of Y, X respectively, then @4(fy) is a sheaf 2 of @x-algebras.
According to Serre [4] we will say that ¢ is an unramified revetement if

1) o is an affine morphism.

2) A is a projective finite x-module.

3) For each Pe X, rad Ap=Up. rad (fx)p.

4) Ap/rad Wp is separable over (fx)p/rad (Ox)p.

If U is an affine open set in X, ¢ }(U) is affine in Y by 1). We want to
prove that, if R is the ring of U (i.e., {U. x| U} is isomorphic to Spec R and
the associated canonical sheaf) and S is the ring of @ ~*(U), the previous con-
ditions are equivalent to S being a separable projective R-algebra.

This gives the translation from the geometric to an algebraic problem. We
will not come back to Geometry, and we will leave as an exercise to the willing
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reader to retranslate the results back.

Notation. If » is a prime ideal in R we shall call R, the localizations of R
at v; for every R-module M (resp. R-algebra A) call M,=M®gR, (resp. 4,=
AQrR,).

Lemma 1. Let I be an ideal in a commutative ring R. Then ICrad R if
for every f.g. R-module N, IN=N=N=0.

Proof. If ICrad R, let N be a f.g. module with IN=N, then N=0 by
Nakayama’s lemma. If I<drad R, there is a maximal ideal v R with I+4+v=
R, hence R/v=+0 and I-R/v=R/v.

Lemma 2. Let S be a finite commutative R-algebra. Then S-rad RS
rad S.

Proof. If N is f.g. S-module, then it is a f.g. R-module. Since
(S-rad R) N =rad R-N, then
(Scrad R N=N=rad RRN=N=N=0.
so by lemma 1:
S-radRCrad S.
Corollary. If S is a finite R-algebra with R local, then S is semilocal.

Lemma 3. Let A be a ring (not necessarily commutative), R a subring con-
tained in the center of A (with the same unit) and M a finitely generated finitely
presented A-module. Then, if M, is A,-projective for every v R, then M is
A-projective.

Proof. Since M is assumed finitely presented, then M is projective if it is
flat.

From the canonical isomorphism
[Torf! (M, N)]®r R, = Tor{hv (M, N)

and the fact that M, is 4,-flat, we get (Torf(M, N)®  R,=0 for every maximal
ideal » of R. Hence Torf(M, N)=0 for all N and M is A-flat.

Corollary. Let A be an R-algebra of finite type (R a commutative ring).
If for every maximal ideal v of R, A, is separable over R,, then A is separable
over R.

Proof. 4 separable over R means 4 is a projective AQ r A°-module. R is
contained in the center of AQ xA4° and 4,Q ryAV=(A®grA),. On the other
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hand, A4 of finte type implies 4 has finite 4@ A°-presentation. Then lemma 3
applies.

Lemma 4. Let S be a commutative finite R-algebra with R local. If for
every maximal ideal v of S, S, is separable over R, then S is separable over R.

Proof. Consider the inclusion &: S—S®zS given by &(x)=x®1. By
hypothesis S, is S,®.,-projective. Since S,®S, is S,®S-flat, by a change
of rings argument we get S, is S,®S-flat. Since &,(S) is a subring with the
same unit in S®S, lemma 3 gives the desired result.

Theorem 1. Let S be a commutative finite R-algebra. Then S is separable
over R if and only if for every maximal ideal v of R the following conditions hold:

a) rad S,=S,-rad R,
b) S,/rad S, is separable over R, [rad R,.

The necessity of the conditions is an obvious consequence of the fact that
S separable over R implies

S,/S, rad R, is separable over R,[rad R, .

Let us prove the sufficiency:

i) Because of the corollary of lemma 3, it is enough to prove that S, is separable
over R, for each », hence we may assume R is local (so R=R,).

Then S is semilocal. If for every maximal ideal & of S, S, is separable,
then S is separable over R (lemma 4).

So we may assume S is local, rad S=S rad R and S/rad S is a separable
field extension of R/rad R, hence there is an element ¢ Sfrad S such that
{1, ¢, -+, "'} is a basis of S/rad S (as a vector space) over R/rad R.

If c& S maps onto ¢, then {1, ¢, --+, ¢*'} is a set of generators of S as
an R-module (by using Nakayama’s lemma). Hence ¢” is a linear combination of

1, ¢, -, c"* s0

c"ta, "'+ +a,=0
By reducing modulo the radical, we get
' -a, e+ a, =0

and, by counting dimensions, we see this is the minimal equation (hence ir-
reducible and separable) of ¢ over R/rad R. We will call ' the image of F&

dF dF —
S [«] in (S/rad S) [x]. Since %(C) = 7x(©) then 55 (@)+0 implies that the

derivative 3., fa;¢’ ' is invertible in S,
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Let p: S®S—.S be the map defined by p(x®y)=xy.

To prove that S is separable over R we will give an explicit form for the
idempotent e S® S such that u(e)=1 and (1Qc—c®1)e=0 (this last condition
implies Ker p-e=0 since Ker p is, in this case, the ideal generated by
1Qc—c®1).

We had X"+a, X" '+ .--4a,=F(X)e R[X] with a root ¢ in S: hence,
in S[X] we have F(X)=(X—¢)G(X). If we call F'(X) the formal derivative,
then F'(X)=(X—¢)G'(X)+G(X), so F'(c)=G(c) is invertible in S.

Define the maps &, €,: S>S®S by &(a)=1Q®aq, £(a)=a®1 and call &,
€, also the induced maps S[X]—(S®S)X. Now, both &(c) and &(c) are roots
of F(X) (F had coefficients in R, hence §F=¢&F), and applying &, to

F(X) = (X—c)G(X) we get
F(X) = (X—=&¢)- (&G(X)

and F(&0)= (E,c—E,)6,G(Ec) =0

Since G (c) is invertible in S, so is &(G(C))=E,G(Ec) in SR S. Take e=
&G(&c) ; _ _ _ _
EGED) hence, using the fact that wp&;=id., wu(e)=1 and (cR1—1Rc)e=

(E.c—E&,c)e=0.

2. Galois extensions

Notation. If V' is separable over R the unique idempotent e such that 1—
e generates Ker p: VQ®p V—V will be called e (V/R).

DeriniTION. Let T be a commutative ring with 1, R a subring (with the
same unit). Then T is called a Galois extension of R with Galois group G if G
is a finite group of automorphismes of 7" such that R=T¢ (i.e. R is the set of
elements of T invariant under every c=G) and T is projective and separable
over R.

It follows that T is finite over R ([3], [6]).

Since we assume T is separable over R, then Ker p: TQrT—T is
generated by an idempotent 1—e. Call e,=(1Q0) (¢) and f,=pu(e,).

Lemma 5. Let T be Galois over R. Then f,=1 and f, is an idempotent of
T such that c+=1=f_=+1

For every x& .S, (1Qx)e=(x®@1)e and applying 1Qqo we obtain (1Qa(x))e,
=(x®1)e,, hence (applying u)

o(¥)fe = 2fs,  (x—o(®)-fr=0

hence, f,=1 implies x=c(x), Vx, so o=1. Since f=¢, (1Qo)*=e2=
(1®a)e=e, and (u is a ring homomorphism) f2=f,.
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Corollary. If T is Galois over R and T has no idempotents, other than 0 and
1, then f,=38, , (Kronecker 8). In this case, T is Galois in the sense of [2],
which we will call C-H-R-Galois.

Corollary. If T is Galois over R with Galois group G and T has noi. p.
other than 0 and 1, then [G:1]=[T:R].

Since ([1], Th. 1. 3) T®r T is T-isomorphic to a direct sum of as many
copies of T as the order of G, T being faithfully flat over R implies the corollary.

Lemma 6. Let T be Galois over R with Galois group G. Assume R has
no i.p. other than 0 and 1. Then [G:1]1>[T:R].

Since T is finite over R, a simple rank argument shows that 7" has only a
finite number of idempotents. Let m,, -+, m, be the minimal idempotents of
T. If we consider Zm; for all j such that there is a o= G with o(Tm,)=Tm;,
then Zm; is an i.p. in R, hence Zm;=1; so, all Tm; are mutually isomorphic
and G acts transitively in the set {m,, ---, m,}. Call U=Tm,

Then r=[T:R] = k-[U:R]
Call n=[G:1]

Since G is transitive over {m,, ---, m,}, choose o,==id, &, -, o) such that
a,(m)=m,

If we call G,= {c € G; o(m,)=m,} then every element of G can be uniquely
written as 7o;(r€ G,) for some 7 (in fact, if a(m,)=m;, then o7'a=G,). Then

[G:1]=Ek[G,:1], [Gy:1]=nlk.

Call G'=G,|U, hence there is an epimorphism ®: G,—G" and [G*: 1]<n/k
(=only if @ is an isomorphism). Writing T'=Tm,D ---@ Tm, and identifying
Tm, with Tm; through o;, any tC T can be written t=(a,, -+, a;), @, U.

teT’=R if a;=a, and 7(a)=aVr in G,

hence U¢'=R.
Since U has no i.p. then [G':1]=[U:R], [G":1]=r/k hence r[k<n|k and
r<mn.

Lemma 7. Let T be Galois over R with Galois group G. Assume R has
no i.p. other than 0 and 1. If [G:1]=[T:R] then f,=0 for every c+1.
According to the proof of the previous lemma, n=r if and only if ®:G,
—G"is an isomorphism. If we call G; the set of o= G such that o(m;)=m;,
then o; (the one we chose in that proof) gives an isomorphism G,—G;. &
being an isomorphism implies (now for every ) that from o(m;)=m,, o=id
follows o | T'm; #1d.
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Since U is separable over R, let e(U/R)=Z3x;Qy,, then e(S/R)=
2, joi(x)m;Qo(y;)m; and f,=3; ;0:(x;)ym; Qoo (y;)o(m;), hence, if o(m;)+m,
the m,’s being minimal i.p., then m;ao(m;)=0, so, the only remaining terms are
those in which m; =o(m;). But o1 implies o|Tm;+1 because ® is an
isomorphism, hence 3 ,x,0(y;)=0 and we are done.

Theorem 2. Let T be Galois over R with group G. If T has a rank over
R and [G:1]=[T:R], then f,=0 Vo in G.

If (f,),=0 for every T,=T®prR, when v runs over all maximal ideals
in R, then f,=0. But R,, being a local ring, has no i.p. other than 0 and 1.
Separability, projectivity and rank are preserved under localization, and G
induces G, as R,-autos of T, in the obvious way. We have to show that 7.%
=R, and [G,:1]=[T,:R,]=[T:R] and then apply the previous lemma. Obvi-
ously R,C T,%.

Let xT,%, then x=y[r yeT, reR, r&v, and o,(x)=0(y)/r, hence
o(¥)=x implies the existence of k=R, k& v such that k(a(y)—y)=0 (in T).
Since G is finite we may assume k independent of o, so o(ky)—ky=0 or 2=
kye T°=R, and y=z/keR,. Since the map G—G, is an epimorphism then
[G,:1]<[G:1]=[T:R]. But the lemma shows that [G,:1]>[T,:R,]=[T:R].
Hence [G,:1]=[T,:R,] and lemma 7 applies, hence (f,),=0 and we are done.

3. Embedding of a separable algebra into a Galois extension

Let S be a separable projective faithful R-algebra with rank [S:R]=n.
We want to embed S in an algebra 7, Galois over R with Galois group (iso-
morphic to) the symmetric group &, (the group of permutations of {a,, -+, a,})
with rank [T:R]=n! such that T®.-1=.S where we consider &,_, embedded into
&, as the subgroup leaving fixed the element a,.

The = different inclusions &; of &,_, will also give isomorphic copies of S.

Call, for simplicity, S’=SQSQ---®S 7 times, and consider the sequence

R-—)S__()) Sz: ‘Sa .o
&
where &;: S¥—S*" (0<i<k) is defined by
E(5Q Q%) = 58 B5:Q1Q5;1,Q+ Qs
Define now maps p;;: S¥*—>S** by

wi (8, Qsp) = sl®°-~é?s,-sj‘®-~-®§,-®-~®sk (1<4, j<k, i=))
place %
call N¥= N Ker p; ;= S*

The algebra T' we want is N” and &, acts on T induced by the permutations
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of the factors in S™.
Since ., is the only u from S?— S, we have the splitting exact sequence

0 —> N? st s 50

and [S:R]=[S8?:S]=n implies [N*:S]=n—1 and N” is a projective separable
S-algebra.

Let us prove first that N” is projective separable R-algebra with rank and
[N": R]=II;"§(n—i)=n!/(n—r)!. Induction. For r=2, [N*: S]=n—1 implies
[IV?: R]=n(n—1), the remaining condition being obvious consequences of the
previous remark.

Consider &,: 77— 8", then N"CSQN"" (since SQN"'=NKer pu,;;
(#=*1)) and p,; induce z;: SQN"'-N""'. It is immediately verified that
N"=NKer z; and we get the exact sequence

0—> N" —> S®Nr—1 __L E@N’ﬂl
where "= 2% 2.

If we prove & is an epimorphism, since [S: R]=n, [N""': R]=II;*(n—1)
and the sequence splits, then

[N": Rl =n[N""": R]—(r—1)[N""': R] = II;7}(n—)
Since each u,; is a multiplication map
St = SFI'Qgt-2 SF! — Sk
S~ separable over S*7* implies Ker y,; is an ideal in S* generated by an
idempotent 1—e; ;.
If e=3x,0y,=e(S/R), then
;=3 1@...®;h®...®;h®...®1 .

Hence N*=NKer p;; is the ideal generated by E,=II(1—e¢;;). Hence
N* is a projective separable R-algebra.

We have 7(e,;)=1, B(e,;)=e,-, ;-, if k¥ j. Since the map z is an S
homomorphism, to see it is onto it is enough to check the S”7'-generators of
SN”! are in Im u. Those generators are

F;=(0,0,E,,0,-,0).
Let k;=e;&E,_, ,’ then

Bk = Bk, - k) but

mik;) = Bie)B &L, ) = E,_,
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uk;) = €4y ;1 E,, =0 (if h=k1)

hence 7i(k;) = F; for every j.
We want to prove now that T contains a copy of S.

Lemma 8. The map S—>N*C.S? defined by x—(xQ1)(1—e) is a mono-

morphism.

Proof. Let (s®Q1) (1—e)=0. Since e is invariant under the permutation
*@y—yQ®ux, then (1Qs)(1—e)=0, hence (s®1—1Qs)(1—e)=0 and (sQ1—
1Qs)e=0 imply sQ 1=1Qs, hence s R.

If k=R and k(1—e)=0, we have, for every

xS (1Qx)k = (1Qx)ke = k(1Qx)e
(xQ@ke = (xQR1)k
hence 1Qk-x=k-x@1 so kx&R and kSCR. Since S is a projective R-algebra
of rank n=#1 then S=R®C (as R-modules), C projective with rank and not

zero, then S C R implies kC=0. Localizing, C, is free hence k,C,=0 implies
k,=0 hence k=0.

Lemma 9. The maps T'; ,: N'—>N** defined by
Fi,t(x1® @) = (%,Q - Qx,Q1RQ ---QNE;
are monomorphisms.

We already proved the lemma in the particular case S=N'—N?. Since
(E;Q1)E,,,=E,,,, it will be enough to prove the lemma for z=1.

Let V=N?*=Ker u, u: S*— S, and call V"'=VQs---QsV. We have
already seen that V7 is a projective faithful separable S-algebra with rank and
[V:S]=n—1.

Repeating the process explained for S as an R-algebra to V as an S-algebra,
call z; ; the corresponding multiplication maps

V'—s V"' and N = [|Ker ;.

we have monomorphisms

07: V"—S8"*' defined by the composition V’"— S*®gs-- ®sS*— S
where each S? is an S-module by the action on the first factor, the second map
being the canonical isomorphism. Hence

0,: V' —> 87

ﬁijl Jf‘i F1,7+1

0, V87
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commutes. The p;;’s not appearing in this way are all zero on V7, then
Nr=Nr+1
In fact, 6" identifies V" with (] Ker p;;, and, 0"7'%;;= p;, ;4,07 shows
; .

that ” induces the isomorphism N"—N"+,

We complete the proof of the lemma by induction over [S:R]. If [S:R]=
1 then S=R and everything works.

Let [S:R]=n and assume the result is true for every case [U:W]<n. Hence
the lemma holds for V as an S-algebra, i.e., N*—Ni*! is monic, and so is N+
—Ni*% We need then to check S=N'->N? which was already proved.

We have then obtained a chain of algebras,

RcScN?*c.--cN™*

where N? is a projective faithful separable N?™'-algebra with rank, [N*:N?"']=
n—i+1 (It also follows that N¥=0 for M>n).

Let &, be the symmetric group acting as permutations of the factors of
S”. Since N” is invariant under &, and it is generated by a unique idempotent
E,, then E, is invariant under &,. &, induces a group of automorphisms of N”.

In the chain of algebras we considered before, R was identified with RE,
in N”.

Since N"=N""* (corresponding to the construction for V'=N? as an S-
algebra) the group &,_,, acting on N” as an S-algebra corresponds to the sub-
group of &, of those permutations which leave fixed the first factor. In the
same way, ©; acts leaving fixed the first n—j factors.

We want to prove (N*)8=R. Induction on [S:R].

If [S:R]=1, R=S=N" and we have nothing to prove.

Assume it is true for [S:R]<<m. Then it is true for V over S, hence

(N* )81 =8, or (N"Gw1i=3S.

Assume oo N” is invariant under &,

In particular, it is invariant under &, _,, and our induction hypothesis implies
acIm (S).

We have two maps S—V, say ,, 0, where 0,(s)=&,(s)E,.
Call A: V—N" the inclusion defined above. Then

a = n-0,(s) forsome s&S

Let o be the permutation interchanging the two first factors. Then,
easy computations show that o(a)=\-:6,(s), A being a monomorphism, a=
o(a) implies 6,(s)=0,(s), hence [£,(s)—&,(s)]E,=0 but E,=1—e, [£,(s)—&,(s)]e=0
shows that &(s)=&(s) in S*>. Hence s€ R and we are done. The fact that
[N*: R]=[&,: 1] shows that N” is Galois in the sense of CHR.
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Throughout this section we have been assuming that S has a rank over
R. If not, R splits in a finite number of direct summands Rg over which Sk
has rank K®. By embedding each Sk into the corresponding N, then N=
SxkDNE will be Galois over R with group II&g (direct product in which only
the factors &g for which Rx=+0 intervene).

In this case, N is Galois in the sense defined in this paper but not in that of
C-H-R, any more.

4. Universality

Suppose now S has no proper idempotents. We have, as before RC.SC
T, T obtained by the previous construction.

Let A,, ---, h, be the minimal idempotents in 7. Call W;=Th,, then all
W, are S-isomorphic. Since the maps R—RA; and S—>Sh; are isomorphisms,
then ¥, is a Galois extension of both R and S.

We want to prove:

Theorem 3. If S has no proper i.p., and X is a Galois extension of R con-
taining S, there is an isomorphic copy W of W; in X such that RCSCWcCX,
i.e., W; is the Galois envelope of S over R.

So, let X be a Galois extension of R containing S. If X has proper idem-
potents, let 4, --+, k, the minimal ones, X=3, Xk; and all ¥;=Xh, are mutually

isomorphic. By choosing isomorphisms Ylli Y; we obtain a subalgebra Y of
X, isomorphic to each Y;, by taking the elements (y, A(y), -+, A (¥)) in
SY,=X.

We will prove that Y contains W, isomorphic to each W;.

Since Y; is a direct summand in X, then Y; (hence Y) is Galois over R
[6]. Since Y has no i.p., [G(Y/R):G(Y[S)]=n (§2), hence G(Y/R) induces
exactly n different R-isomorphisms of S into Y, say 0,=id, 6,, ---, 4,.

Define a map a: S"—Y by

A5,@ -+ @55) = 0,(5,) 0,52 -

Let S be the subalgebra of Y generated by the copies of S. Hence a
induces an epimorphism @:S*—S. Now, we had

T=S"E, E=T1I(1—¢;), and
(1®1®~--®{?®1®--~®1)e;, = (1®---®§®---®1)e;,-,

so applying o we get, to every xS,

* This is an immediate consequence of [5] Prop. 4 and the fact that S is a finitely
generated projective R-module.
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O:(x)ax(e;;) = 0 (x)ex(e:;)
but ¢;; is an i.p. in S, contained in Y, and Y has no i.p., hence
ale;;)=0.1,
but ¢; being different than §;, the previous equation shows «a(e;;)=1, then
a(E)y=1, and a(E)=1, a(l—E)=0.

Hence « induces an epimorphism a,: T—S.

Since T=3Th;, and o, is a ring homomorphism, «a,(k,) is an idempotent
in S, hence 0 or 1, @, being an epimorphism implies a,(k;)=1 for some 7,
hence a,(1—h,)=a,(%,+:k;)=0 and a, induces an epimorphism a,: Th;—S,
which combined with the isomorphism W—>Th; gives W—S.

But @, being an epimorphism shows that S is R-separable. Since Y is
R-projective, then Y is S-projective and S is an S-direct summand in ¥, hence
an R-direct summand and S is R-projective.

But W being R-separable and S R-projective imply S is W-projective,
hence Ker «, is generated by an i.p.; since W has no proper i.p. and «,=0,
then Ker a,=0, and @, is an isomorphism.

RemARk. The result extends easily to the case R has a finite number of
idempotents.
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