Yamamoto, M. Osaka Math. J. 15 (1963), 233-247.

ON PARTIALLY HYPOELLIPTIC OPERATORS

BY

MINORU YAMAMOTO

§ **1. Introduction**

In this note we shall consider the differential operator $P(D) =$ $P(D_{x'}, D_{x''})$ with complex constant coefficients defined in some open set $Q \subset R^m \times R^n$ whose points are denoted by $x = (x', x'') = (x'_1, ..., x'_m, x''_1, ..., x''_n)$, where $D_{x'}=(D_{x'_1},\, \cdots, \, D_{x'_m})=(-\sqrt{-1}\,\partial/\partial x'_1 ,\, \cdots, \, -\sqrt{-1}\,\partial/\partial x'_m)$ and $D_{x''}=$

L. Garding and B. Malgrange [3] introduced the notions of partial hypoellipticity, partial ellipticity and conditional ellipticity for the operator $P(D)$, and characterized each of these notions completely by the property of the algebraic variety $V(P) = {\zeta = (\zeta', \zeta'') \in C^m \times C^n; P(\zeta) = 0}.$ J. Friberg [1] and L. Hörmander [6] proved that, if $P(\zeta)$ is a polynomial of finite type σ in a fixed direction, any solution of $P(D)u = 0$ is hypoanalytic of type σ in the same direction. J. Friberg [1] expected that if $P(\zeta)$ is partially hypoelliptic of type σ in x' , $P(\zeta)$ will be conditionally hypoelliptic of type σ in x'. In this note we shall prove the above fact. The method of the proof is based on the idea of Gårding and Malgrange [3] and that of Friberg [1]. The theorem 5.1 of [3] follows from our results by setting $\sigma = 1$.

I would like to thank Professor M. Nagumo for his kind criticism and constant encouragement during the preparation of this note.

§2. **Definitions and Algebraic Considerations**

Let $\alpha = (\alpha^{1'}, \dots, \alpha^{m'}, \alpha^{1''}, \dots, \alpha^{n''})$ be a multi-integer whose elements are non-negative integers.

In what follows we use the following notations:

$$
|\alpha| = \alpha^{1'} + \dots + \alpha^{m'} + \alpha^{1''} + \dots + \alpha^{n''},
$$

\n
$$
D^{\alpha} = D^{\alpha'}_{x} D^{\alpha''}_{x''} = D^{\alpha^{1'}}_{x'_1} \cdots D^{\alpha^{m'}}_{x'_m} D^{\alpha^{1''}}_{x''} \cdots D^{\alpha^{n''}}_{x''}.
$$

DEFINITION 2.1. Let Ω be an open set in $R^m \times R^n$ and $f(x', x'') \in \mathcal{D}'(R)$ be a distribution. We say that f is regular in x' if, for every pair of open sets $A \subset \mathbb{R}^m$, $B \subset \mathbb{R}^n$, $A \times B \subset \Omega$ and for any $\varphi \in \mathcal{D}(B)$, the distribu tion in x'

(2. 1)
$$
f(x', \varphi) = \int f(x', x'') \varphi(x'') dx''
$$

is an infinitely differentiable function.

DEFINITION 2.2. Let Ω be an open set in $R^m \times R^n$ and $f(x', x'') \in \mathcal{D}'(\Omega)$ be a distribution. We say that f is *analytic in x'* if, for every pair of open sets $A \subset \mathbb{R}^m$, $B \subset \mathbb{R}^n$, $A \times B \subset \Omega$ and for any $\varphi \in \mathcal{D}(B)$, the distribu tion in *x r*

$$
(2,2) \qquad f(x',\varphi) = \int f(x',\,x'')\varphi(x'')dx''
$$

is an analytic function.

DEFINITION 2.3. $P = P(D_{x'}, D_{x''})$ is said to be *partially hypoelliptic in* x' if, for an open set Ω , every distribution solution of $Pf=0$ in Ω is regular in *x'.*

DEFINITION 2.4. When the operator *P(D)* is hypoelliptic, we say *P* is *strictly stronger* than Q (it is written by $Q \ll P$) if $Q(\xi)/P(\xi) \rightarrow 0$ as $\xi \rightarrow \infty$, $\xi \in R^N$.

The following Gårding-Malgrange's theorem [3] is important.

Theorem 2.1. *An operator P is partially hypoelliptic in x f if and only if one of the following equivalent two conditions are satisfied*

- (I) $P(\xi', \xi'') = 0$, ξ'' and $\mathcal{I}_m \xi'$ are bounded then $\mathcal{R}_e \xi'$ is bounded.
- (II) $P(\zeta', \zeta'') = P_0(\zeta') + \sum P_\gamma(\zeta') \cdot (\zeta'')^\gamma$ $|\gamma|$ $>$ 0 where $P_0(\zeta')$ is hypoelliptic and $P_\gamma(\zeta') \ll P_0(\zeta').$

(I) *is equivalent to*

(I') There exist $\sigma > 0$ and $C > 0$ such that $P(\zeta', \zeta'') = 0$ implies $|\mathcal{R}_{\epsilon}\zeta'| \leq C(1+|\zeta''|+|\mathcal{S}_{m}\zeta'|)^{\sigma}$.

Corollary 2.1. An operator $P(D)$ is partially hypoelliptic if and only *if every solution of* $P(D)u = 0$ *such that* $u \in C^{\infty}_{\alpha}$, belongs to C^{∞}_{α} .

(See, L. Hörmander $[6]$ or proof of Theorem 3.1. in $[3]$.)

DEFINITION 2.5. A function $u(x) \in C^{\infty}(\Omega)$ is said to be *hypoanalytic of type σ in* Ω (we denote it $u(x) \in A_{\sigma(x)}$) if for every compact subset K of Ω , there exists a positive constant C depeinding only on *K* and *u* such that

(2.3)
$$
\text{Max.} |D^p u(x)| \leq C^{p+1} p^{\sigma \cdot p} \qquad p = 0, 1, 2, \cdots
$$

where $|D^p u(x)|^2 = \sum_{|\omega|=p} \frac{p!}{\alpha'! \alpha''!} |D_{x'}^{\omega'} D_{x''}^{\omega''} u|^2$.

DEFINITION 2. 6. *P(ζ)* is said to be *hypoelliptic polynomial of type σ* if (2.4) $|\mathcal{R}_{e} \zeta| \leq C(1 + |\mathcal{S}_{m} \zeta|)^{\sigma}$ for all $\zeta \in V(p)$.

Here we take σ as small as possible.

Lemma 2.1. *P is hypoelliptic of type σ*, *if and only if*

$$
(2.5) \qquad \sum_{|\alpha|>0} |P^{(\alpha)}(\xi')|^2 |\xi'|^{2|\alpha|/\sigma} \leq C' \sum_{|\alpha| \geq 0} |P^{(\alpha)}(\xi')|^2 \qquad (\xi' \in R^m)
$$

or *equivalently*

$$
(2.5)' \qquad \sum_{|\alpha|>0} |P^{(\alpha)}(\xi')| \, |\xi'|^{\, |\alpha|/\sigma} \leq C'' \, |P(\xi')| \qquad (|\xi'| \geq A_1)
$$

*constant A*₁. (For a proof, see p. 25-28 of Friberg $[1]$.)

Since $P(\zeta) = P(\zeta', \zeta'')$ is a polynomial in $C^m \times C^n$, $P(\zeta)$ can be written as a finite sum

$$
P(\zeta',\zeta'')=P_{\mathfrak{0}}(\zeta')+\sum_{\mathbf{N}\geq |\mathbf{N}|>0}P_{\mathbf{N}}(\zeta')\cdot(\zeta'')^{\mathbf{N}}
$$

where $\gamma = (\gamma^1, \dots, \gamma^n)$ with non-negative integer γ^i . Then the following important theorem is established.

Theorem 2.2. In order that a polynomial $P(\zeta)$ satisfies the condition *for some constant* $C_0 > 0$

$$
(2.6) \qquad |\mathcal{R}_{e}\zeta'|\leqq C_{0}(1+|\mathcal{I}_{m}\zeta'|+|\zeta''|)^{\sigma} \qquad (\zeta\in V(p)),
$$

it is necessary and sufficient that the following estimate holds with some constant C_i .

$$
(2.7) \qquad \sum_{|\alpha+\gamma| \geq 0} |P_{\gamma}^{(\alpha)}(\xi')|^2 |\xi'|^{2|\alpha+\gamma|/\sigma} \leq C_1 (|P_0(\xi')|^2 + 1) \qquad (\xi' \in R^m).
$$

REMARK. If $P(\zeta)$ satisfies the inequality (2.6), then $P_0(\zeta')$ (= $P(\zeta', 0)$) is hypoelliptic of type σ as a polynomial in ζ' . Thus the following inequality is valid from Lemma 2.1, with some $C_2 > 0$,

$$
(2.8) \qquad \sum_{|\alpha|>0} |P_0^{(\alpha)}(\xi')| \, |\xi'|^{|\alpha|/\sigma} \leq C_2 |P_0(\xi')| \qquad (\xi' \in R^m, \, |\xi'| \geq A_2)
$$

Proof of Theorem 2.2. It is easily verified that (2. 7) is equivalent to

$$
(2.7) \qquad \sum_{\substack{|\mathbf{a}+\gamma|>0\\|\mathbf{a}|\geq 0}}|P_{\gamma}^{(\mathbf{a})}(\xi')|\,|\xi'|\,|^{(\mathbf{a}+\gamma)/\sigma}\leq C_{1}'|P_{0}(\xi')| \qquad (|\xi'|>A_{3})
$$

for suitably chosen A_3 and C'_1 which depend only on P and C_1 . Setting

 $W_t = {\xi = (\zeta', \zeta''); |\mathcal{S}_m \zeta'| + |\zeta''| \langle t | \mathcal{R}_\epsilon \zeta'|^{1/\sigma}}$ and writing $\zeta' = \xi' + i\eta'$ where $\xi', \eta' \in R^m, \ \xi \in W_t \ \text{implies}$

$$
(2.9) \quad |P(\xi)| = |P_0(\xi') + \sum_{|\gamma|>0} P_{\gamma}(\xi') \cdot (\xi'')^{\gamma}|
$$
\n
$$
= |P_0(\xi') + \sum_{|\alpha|>0} c_{\alpha} P_0^{(\alpha)}(\xi') \cdot (i\eta')^{\alpha} + \sum_{|\gamma|>0} \sum_{|\alpha| \ge 0} c_{\alpha} P_{\gamma}^{(\alpha)}(\xi') \cdot (i\eta')^{\alpha}(\xi'')^{\gamma}|
$$
\n
$$
\ge |P_0(\xi')| - C \sum_{0 < |\alpha| \le \rho_0} t^{|\alpha|} |P_0^{(\alpha)}(\xi')| |\xi'|^{|\alpha|/\sigma}
$$
\n
$$
-C \sum_{0 < |\gamma| \le N} \sum_{0 \le |\alpha| \le \rho} t^{|\alpha|+|\gamma|} |P_{\gamma}^{(\alpha)}(\xi')| |\xi'|^{|\alpha+\gamma|/\sigma}
$$

c

where $\rho_0 =$ degree of P_0 , $\rho =$ degree of P . From the inequality (2.7)' we have the following estimate

$$
(2.9)'\t\t\t |P(\zeta)| \geq |P_{0}(\xi')| \{1 - CC'_{1} \sum_{0 < |\alpha| + \gamma| \leq \beta + N} t^{|\alpha| + \gamma|} \}.
$$

It is obvious that there exists a sufficiently small positive number t_0 such that if $0 \lt t \leq t_0$ then $1 - CC'_1 \sum_{\text{min of } \mathcal{I}} t^{|\mathcal{A}+\gamma|} > 0$, and from (2.8) follows \mathcal{L} (xl_{ocal} + iv \mathcal{L}

 $|I_0(\varsigma)| > 0$ 101 $|\varsigma| > A_2$.
These foots show that i These facts show that if $|\eta| + |\zeta''| \leq t_0 |\zeta|^{1/4}$ and $1 \leq A_4$ $f'|\zeta|^{1/4}$ then
 $B(\zeta) + 0$ where $A = \max(A - A)$. Now let $C' = \min(A - A^{-1/8})$ then *P*(*ζ*) \neq 0 where *A*₄ = max. (*A*₂, *A*₃). Now let C^{\neq} = min. (t_0 , A_2 ⁻¹) then

 $1+|\eta^{\prime}|+|\zeta^{\prime\prime}| \triangleleft C^{\prime}| \xi^{\prime}|^{1/\sigma} \qquad \text{implies} \quad P(\zeta) \neq 0 \, .$

Thus the sufficiency of (2. 7) is proved.

(Necessity). Writing $\zeta' = \xi' + i\eta'$ ($\xi', \eta' \in R^m$) as above, (2.6) is equivalent to

$$
(2.6)'\t\t | \xi'|^{1/\sigma} \leq C'_0(|\eta'| + |\xi''|) \t (\xi \in V(P), |\xi'| > A_s)
$$

for some positive C_0 and A_5 . From Taylor's formula $P(\zeta)$ can be written as follows,

(2. 11)
$$
P(\zeta) = P_0(\xi') + \sum_{0 \leq |\alpha|} c_{\alpha} P_0^{(\alpha)}(\xi') \cdot (i\eta')^{\alpha} + \sum_{|\gamma| > 0} \sum_{|\alpha| \geq 0} c_{\alpha} P_{\gamma}^{(\alpha)}(\xi') \cdot (i\eta')^{\alpha}(\zeta'')^{\gamma}
$$

 $\int \text{Now} \quad \text{let} \quad \eta' = |\xi'|^{1/\sigma} \tilde{\eta}', \quad \xi'' = |\xi'|^{1/\sigma} t \cdot \tilde{\xi}'' \quad \text{where} \quad \tilde{\eta}' \in R^m, \quad \xi'' \in C^m \text{ and } |(\tilde{\xi}''| = 1),$ $\in C^1$ and $t \cdot \xi'' = (t \xi''_1, \dots, t \xi''_n)$, then (2.11) is transformed into

$$
(2.12) \tP(\zeta) = P_0(\xi') + \sum_{0 \leq |\alpha|} c_{\alpha} P_0^{(\alpha)}(\xi') \cdot |\xi'|^{|\alpha|/\sigma} (i\tilde{\eta}')^{\alpha} + \sum_{|\gamma|>0} \sum_{|\alpha| \geq 0} c_{\alpha} P_{\gamma}^{(\alpha)}(\xi') \cdot |\xi'|^{|\alpha+\gamma|/\sigma} (i\tilde{\eta}')^{\alpha} (\tilde{\xi}'')^{\gamma} t^{|\gamma|}
$$

First of all fix the length of $\tilde{\eta}'$ (= ϵ) suitably, then according to (2.8) there exist constants C_3 , C'_3 such that

$$
(2. 13) \t C3|P0(\xi')|\leq |P0(\xi') + \sum_{|\alpha|>0} c_{\alpha} P_0^{(\alpha)}(\xi') \cdot |\xi'|^{|\alpha|/\sigma} (i\tilde{\eta}')^{\alpha}|
$$

$$
\leq C'_3|P_0(\xi')| \qquad (|\xi'| > A_3).
$$

Thus from the condition $(2,6)'$, if $t \in C¹$ is a root of the algebraic equation:

$$
(2.14) \tP_0(\xi') + \sum_{|\alpha|>0} c_{\alpha} P_{\gamma}^{(\alpha)}(\xi') \cdot |\xi'|^{|\alpha|/\sigma} (i\tilde{\eta}')^{\alpha} + \sum_{|\gamma|>0} \sum_{|\alpha| \geq 0} c_{\alpha} P_{\gamma}^{(\alpha)}(\xi') \cdot |\xi'|^{|\alpha+\gamma|/\sigma} (i\tilde{\eta}')^{\alpha} (\xi'')^{\gamma} t^{|\gamma|} = 0,
$$

IDED $\zeta = (\xi' + i|\xi'|^{1/\sigma} \tilde{\eta}', |\xi'|^{1/\sigma} t \cdot \tilde{\xi}'') \in V(P)$ and $|t| > C_4$ for some $C_4 > 0$ (For example $C_4 = (1 - C'_0 \varepsilon) C'_0{}^{-1}$), for arbitraly $\tilde{\eta}' \in R^m$ ($|\tilde{\eta}'| = \varepsilon$), $\tilde{\zeta} \in C^n$ $(|\xi''|=1)$ and uniformly in ξ' for $|\xi'|>A_6$ where $A_6 = \max(A_3, A_5)$. This shows that every solution τ of the algebraic equation:

$$
(2.14)'\qquad r^{\rho}+\sum_{k=1}^{\rho}\sum_{|\gamma|=k}\frac{\sum\limits_{|\alpha|\geq 0}c_{\alpha}P_{\gamma}^{(\alpha)}(\xi')\cdot|\xi'|^{(\alpha+\gamma)/\sigma}(i\tilde{\gamma}')^{\alpha}}{\sum\limits_{|\alpha|\geq 0}c_{\alpha}P_{0}^{(\alpha)}(\xi')\cdot|\xi'|^{(\alpha)/\sigma}(i\tilde{\gamma}')^{\alpha}}(\tilde{\zeta}')^{\gamma}\tau^{\rho-k}=0
$$

satisfies $|\tau| < 1/C_4$ uniformly in $\tilde{\eta}'$, $\tilde{\zeta}''$, $|\xi'|$ determined above.

This implies that every coefficient of $\tau^*(k=0, \dots, \rho-1)$ is uniformly bounded, i.e.

$$
(2.15) \qquad \sum_{|\gamma|=k}\frac{\sum\limits_{|\alpha|\geq 0}c_{\alpha}P_{\gamma}^{(\alpha)}(\xi')\cdot|\xi'|^{|\alpha+\gamma|/\sigma}(i\tilde{\gamma}')^{\alpha}}{\sum\limits_{|\alpha|\geq 0}c_{\alpha}P_{0}^{(\alpha)}(\xi')\cdot|\xi'|^{|\alpha|/\sigma}(i\tilde{\gamma}')^{\alpha}}(\tilde{\zeta}'')^{\gamma}=Q(\xi',\tilde{\gamma}',\tilde{\zeta}'')
$$

is uniformly bounded in $\tilde{\eta}' \in R^m$ ($|\tilde{\eta}'| = \varepsilon$), $\tilde{\xi}'' \in C^n$ ($|\tilde{\xi}''| = 1$) and $|\xi'| > A$ Therefore by virtue of uniformity in *ζ"* we can choose suitably finite number of vectors $\tilde{\zeta}''_{(i)}$ $(i=1,\dots,M)$ such that the coefficients of $(\tilde{\zeta}''')^{\gamma}$ are solvable in $Q(\xi', \tilde{\eta}', \tilde{\xi}''_{(i)})$ (*i*=1, \cdots , *M*). Thus

$$
(2.16) \qquad \qquad \frac{\sum\limits_{|\alpha| \geq 0} c_{\alpha} P_{\gamma}^{(\alpha)}(\xi') \cdot |\xi'|^{|\alpha + \gamma|/\sigma} (i\tilde{\gamma}')^{\alpha}}{\sum\limits_{|\alpha| \geq 0} c_{\alpha} P_{0}^{(\alpha)}(\xi') \cdot |\xi'|^{|\alpha|/\sigma} (i\tilde{\gamma}')^{\alpha}} = R(\xi', \tilde{\gamma}')
$$

is bounded for arbitraly $\tilde{\eta}' \in R^m$ ($|\tilde{\eta}'| = \varepsilon$) and $|\xi'| > A_{\varepsilon}$. From the inequality (2.13), the absolute value of $R(\xi', \tilde{\eta}')$ is not smaller than the absolute value of

$$
(2. 17) \qquad \qquad \frac{\sum\limits_{|\alpha|\geq 0} c_{\alpha} P_{\gamma}^{(\alpha)}(\xi')\cdot |\xi'|^{|\alpha+\gamma|/\sigma} (i\tilde{\eta}')^{\alpha}}{C'_{3}|P_{0}(\xi')|} = \tilde{R}(\xi',\tilde{\eta}')
$$

for arbitrary $\tilde{\eta}' \in R^m$ ($|\tilde{\eta}'| = \varepsilon$) and $|\xi'| > A_{\varepsilon}$. The same argument as above is applicable to $\tilde{\eta}'$ in place of $\tilde{\zeta}''$. Hence $\{P_{\gamma}^{(\alpha)}(\xi')\cdot |\xi'|^{(\alpha+\gamma)/\sigma}\}\,|\,P_{0}(\xi')|^{-1}$ is bounded for $|\xi'|>A_{\epsilon}$. This completes the proof.

REMARK. As in the proof of Lemma 3.9 in Hörmander [6] the best possible choice of σ , such that for some C

$$
|\mathcal{R}_{e}\zeta'| \leq C(1+|\mathcal{J}_{m}\zeta'|+|\zeta''|)^{\sigma} \qquad (\zeta \in V(P))
$$

is always a rational number, therefore we may assume in this note $\sigma = r/s$ (≥ 1) with mutually prime positive integers *r* and *s*. Then the inequality (2. 7) is equivalent to

$$
(2.7)^{\prime\prime}\sum_{\substack{|\alpha+\gamma|>0\\|\alpha|\geq 0}}|P_{\gamma}^{(\alpha)}(\xi')|^{2r}|\xi'|^{2s|\alpha+\gamma|}\leq C_{1}^{\prime\prime}(|P_{0}(\xi')|^{2r}+1)\qquad(\xi'\in R^{m}).
$$

§ 3. A **priori estimates and the main theorem**

In this section we introduce a new norm (similar to the norm intro duced in [1]) which depend on the operator $P(D)$ and δ with $0<\delta\leq 1$. Let *K* be any given relatively compact subset in $\Omega \subset \mathbb{R}^m \times \mathbb{R}^n$ such that $\overline{R} \subset \Omega$. We then define the norm of $u \in C^{\infty}(\Omega)$ as follows

$$
(3,1) \qquad |u,K|^2_{\delta} = \sum_{0 \leq |\gamma|} \sum_{\substack{0 \leq |\alpha_1| \leq \cdots \leq |\alpha_r| \\ 0 \leq k < \delta |\alpha_1|}} ||Q^{\langle \alpha_1 \rangle}_{\gamma}(D) \cdots Q^{\langle \alpha_r \rangle}_{\gamma}(D) \cdot D^k u, K||^2 \delta^{2(\sigma k - \sum |\alpha_i|)}.
$$

where $Q_{\gamma}(D) = P_{\gamma}(D_{x'})D_{x''}^{\gamma}$ and $||f, K||$ denotes the usual L^2 norm of f on *K.*

Now by the above definition $\sigma k-\sum |\alpha_i|<0$, because

$$
\sigma k - \sum |\alpha_i| \langle \sigma s | \alpha_i | - \sum |\alpha_i| = r |\alpha_i| - \sum |\alpha_i| = \sum (|\alpha_i| - |\alpha_i|) \leq 0.
$$

Since the degree of $P(\zeta)$ is ρ , there exists at least one $\alpha_0(|\alpha_0| = \rho)$ such that $P^{(\alpha_0)}(D) = c \neq 0$. Thus $|u, K|_1$ contains terms of type $\|c^r D^k u, K\|^2$ for all *k* with $0 \le k < s\rho$, and since $\sigma k - \sum |\alpha_i| \ge -\rho \cdot r$ and $0 < \delta \le 1$, the following estimates are established:

$$
(3,2) \t\t |u,K|_1 \leq |u,K|_s \leq |u,K|_1 \cdot \delta^{-\rho r}
$$

$$
(3,3) \t c \sum_{0 \leq k < \rho,s} ||D^k u, K||^2 \leq |u, K|^2_1 \leq |u, K|^2_2.
$$

On the other hand the total degree of the polynomial $Q_{\gamma}^{(\alpha_1)}(\xi)^2 \cdots Q_{\gamma}^{(\alpha_r)}(\xi)^2$ $|\xi|^{2k}$ is smaller than $2 \max_{i} {\rho \cdot r - \sum |\alpha_i| + s \min | \alpha_i| } = 2 {\rho \cdot r - (r-s)}.$ **|β», |>0** Hence the following important lemma is established.

Lemma. 3.1. There exist constants C_5 and C_6 (independent of *u*) such that the ineqalities

$$
(3.4) \tC_{\delta_{0 \leq k \leq s \cdot \rho}} || D^{k} u, K ||^{2} \leq | u, K |_{1}^{2} \leq C_{\delta_{|\alpha| \leq \rho \cdot r - \langle r - s \rangle}} || D^{\alpha} u, K ||^{2}
$$

is valid for all $u \in C^{\infty}(\Omega)$.

REMARK. $\rho \cdot r - (r-s) > s \cdot \rho$ except in the trivial case $\rho = 1$ or $r = s =$ $\sigma=1$. The case $r=s=\sigma=1$ is treated in [3]. When $r=s=\sigma=1$, our norm is equivalent to that of $\S 5$ in [3].

Lemma 3.2. Let K_0 , K_1 be relatively compact subdomains of Ω such *that* $K_0 \subset K_1 \subset \overline{K}_1 \subset \Omega$ and dist $(\partial K_0, \partial K_1) = \delta > 0$. Then it is possible to *find a function* $\varphi(x) \in C_0^{\infty}(K_1)$ which is equal to 1 on K_0 such that

$$
(3.5) \t |D^{\alpha}\varphi(x)| \leq \tilde{c}_{\alpha}\delta^{-|\alpha|} \t (x \in K_1)
$$

where \tilde{c}_a is a constant depending only on α and $m+n$.

Proof is easy. cf. p. 205 in Hörmander [7].

Hereafter we only consider the case such that $|\alpha| \leq \rho \cdot r$, thus we may suppose

$$
(3.5)'\qquad |D^{\alpha}\varphi(x)| \leq \tilde{c}\delta^{-|\alpha|} \qquad (x \in K_1, \ |\alpha| \leq \rho \cdot r)
$$

where $\tilde{c} = \max_{|\alpha| \leq \rho \cdot r} \tilde{c}_{\alpha}$.

Parseval's formula shows the

Lemma 3.3. If $R_i(\xi)$ $(i=1,2,\dots,r)$ are polynomials with constant *coefficients then the following inequality is valid for all* $v(x) \in C_0^{\infty}$ *.*

$$
(3.6) \t\t\t ||Ri(D) \cdots Rr(D)v(x)||^2 \leq r^{-1} \sum_{i=1}^{r} ||R_i(D)^{r}v(x)||^2,
$$

where integration is taken over the full space.

Now we state the most important estimate.

Theorem 3.**1.** *Let P(ζ) be a polynomial which satisfies the condition* :

$$
(2.6) \qquad |\mathcal{R}_{\epsilon}\zeta'| \leq C_0(1+|\mathcal{J}_m\zeta'|+|\zeta''|)^{\sigma} \qquad (\zeta \in V(P)),
$$

 $A \subset K_0$, K_1 be two relatively compact subdomains of Ω such that $\overline{K}_1 \subset \Omega$ and dist $(\partial K_0, \partial K_1) = \delta$ (0 $\lt \delta \leq 1$).

Then there exists a constant C_7 *(independent of u,* δ *,* K_0 *and* K_1 *) such that*

$$
(3.7) \t\t\t\t^{\delta^{\sigma} |D u, K_{0}|_{\delta}} \t\t\le C_{7} \left\{ \sum_{k=0}^{r-s+1} |D^k_{x''} u, K_{1}|_{\delta} \delta^k + \sum_{0 \le |\alpha| \le \beta(r-1)} ||D^{\alpha} P(D) u, K_{1}|| \delta^{-\rho(r-1)} \right\}
$$

is valid for all u $\in C^{\infty}(\Omega)$.

Proof. First we estimate the quantity

$$
(3.8) \qquad \delta^{2\sigma} |D u, K_0|_{\delta}^2
$$

=
$$
\sum_{|\gamma|>0} \sum_{\substack{0<|\alpha_1|\leq \cdots \leq |\alpha_r|\\0\leq k
$$

We can split the above sum into two parts so that in the first part and in the second part $k+1 = s|\alpha_1|$. In the first part each

term is contained in the members of $\{u, K_0\}_{\delta}^2$, hence there exists a positive constant $C_{\rm s}$ such that

(3.9) The 1st part ^ C |«, *K⁰ \l ^C⁸ \u, K^x \l* .

In the second part each term is estimated as follows (we set $v(x)$ = $\varphi(x) \cdot u(x) \in C_0^{\infty}(K_1)$,

$$
(3. 10) \qquad ||Q_{\gamma}^{(\alpha_{1})}(D) \cdots Q_{\gamma}^{(\alpha_{r})}(D) \cdot D^{s|\alpha_{1}|}u, K_{0}||^{2} \delta^{2\sigma s|\alpha_{1}|-2} \geq |\alpha_{i}|
$$
\n
$$
= ||Q_{\gamma}^{(\alpha_{1})}(D) \cdots Q_{\gamma}^{(\alpha_{r})}(D) \cdot D^{s|\alpha_{1}|}u, K_{0}||^{2} \delta^{2} \geq (|\alpha_{1}|-|\alpha_{i}|)
$$
\n
$$
\leq ||Q_{\gamma}^{(\alpha_{1})}(D) \cdots Q_{\gamma}^{(\alpha_{r})}(D) \cdot D^{s|\alpha_{1}|}v||^{2} \delta^{-2} \geq (|\alpha_{i}|-|\alpha_{1}|)
$$
\n
$$
\leq r^{-1} \sum_{i=1}^{r} ||Q_{\gamma}^{(\alpha_{i})}(D)^{r} D^{s|\alpha_{i}|}v||^{2} \delta^{-2r(|\alpha_{i}|-|\alpha_{1}|)}.
$$

The last inequality is obtained from Lemma 3.3. by setting $R_i(D)$ = $Q_i^{\alpha_i}Q_j(\mathcal{D})\delta^{-\frac{1}{\alpha_i}|\mathcal{D}|}}$. The last sum in (3.10) is composed of terms of two different types generally.

One type is

$$
(3.11) \t\t ||Q_{\gamma}^{(\alpha)}(D)^{\prime}D^{s|\alpha|}v||^{2} \t (when \t |\alpha_{i}|=|\alpha_{1}|)
$$

and another type is

$$
(3. 12) \t\t ||Q_{\gamma}^{(\alpha)}(D)^{r}D^{sk}v||^{2}\delta^{-2r(|\alpha|-k)} \t with \t k<|\alpha|.
$$

A term of the second type is estimated as follows. Since $v = \varphi \cdot u$ belongs to $C_0^{\infty}(K_1)$, applying lemma 3.2 we obtain

$$
(3. 13) \quad ||Q_{\gamma}^{(\omega)}(D)^{r} D^{sk}v||^{2}\delta^{-2r(|\alpha|-k)}= ||Q_{\gamma}^{(\alpha)}(D)^{r} D^{sk}(\varphi \cdot u), K_{1}||^{2}\delta^{-2r(|\alpha|-k)}.
$$

$$
\leq C \sum_{\substack{|\beta_{i}| \geq 0 \\ s_{k} \geq j \geq 0}} ||Q_{\gamma}^{(\alpha+\beta_{1})}(D) \cdots Q_{\gamma}^{(\alpha+\beta_{r})}(D) \cdot D^{sk-j}u, K_{1}||^{2}\delta^{-2(\Sigma|\alpha+\beta_{i}|-rk+j)}.
$$

 $(k < |\alpha|).$

Here, $sk-j{\le}sk{<}s{\cdot}|\alpha|{\le}s\min_{i}|\alpha+\beta_{i}|$, and (the exponent of

$$
\sum |\alpha + \beta_i| + rk - j = \sigma sk - j - \sum |\alpha + \beta_i| \geq \sigma (sk - j) - \sum |\alpha + \beta_i|,
$$

by the assumption on σ : $\sigma \cdot s = r$ and $\sigma \geq 1$. The fact that $0 < \delta \leq 1$ implies

$$
\delta^{-2(\sum |\alpha+\beta_i|-rk+j)} \leq \delta^{2\sigma (sk-j)-2\sum |\alpha+\beta_i|}.
$$

Therefore the right hand side of (3.13) is majorated by

$$
(3.13)^\prime \t C \sum_{\substack{|\alpha+\beta_i|>0\\0\leq k\leq s\cdot \min|\alpha+\beta_i|\\0\leq C_9|u, K_1|\delta}} ||Q_\gamma^{\alpha+\beta_1}\rangle(D)\cdots Q_\gamma^{\alpha+\beta_r}\rangle(D)\cdot D^k u, K_1||^2 \delta^{2\sigma k-2\sum |\alpha+\beta_i|}
$$

i.e.

PARTIALLY HYPOELLIPTIC OPERATORS 241

$$
(3.14) \qquad ||Q_{\gamma}^{(\alpha)}(D)^{r}D^{sk}v||^{2}\delta^{-2r(|\alpha|-k)} \leq C_{\mathfrak{g}}|u, K_{1}|_{\delta}^{2} \quad \text{ with} \quad k < |\alpha|.
$$

Finally we consider the terms of the first type, (3.11).

$$
(3.15) \qquad ||Q_{\gamma}^{(\alpha)}(D)^{r}D^{s_{|\alpha|}}v, K_{1}||^{2}
$$
\n
$$
= \int |Q_{\gamma}^{(\alpha)}(\xi)|^{2r} |\xi'|^{2s_{|\alpha|}} |\hat{v}(\xi)|^{2} d\xi
$$
\n
$$
+ \sum_{k=1}^{\frac{s_{|\alpha|}}{2}} {s_{|\alpha|} \choose k} \int |Q_{\gamma}^{(\alpha)}(\xi)|^{2r} |\xi'|^{3(s_{|\alpha|-k})} |\xi''|^{2k} |\hat{v}(\xi)|^{2} d\xi
$$

where $\hat{v}(\xi)$ denotes the Fourier transform of $v(x)$.

The last sum of the above equality is estimated as follows:

$$
(3. 16) \quad \sum_{k=1}^{\lfloor |\alpha| \rfloor} {\binom{s |\alpha|}{k}} \int |Q^{\langle \alpha \rangle}_{\gamma}(\xi)|^{2r} |\xi'|^{2(s |\alpha|-k)} |\xi''|^{2k} |\hat{v}(\xi)|^{2} d\xi
$$
\n
$$
\leq C \int |Q^{\langle \alpha \rangle}_{\gamma}(\xi)|^{2r} |\xi|^{2(s |\alpha|-1)} |\xi''|^{2} |\hat{v}(\xi)|^{2} d\xi
$$
\n
$$
= C ||Q^{\langle \alpha \rangle}_{\gamma}(D)^{r} D^{s |\alpha|-1} D_{x''}(\varphi \cdot u), K_{1} ||^{2}
$$
\n
$$
\leq C' \sum_{\substack{0 \leq |\beta| \ 0 \leq |n|-1}} ||Q^{\langle \alpha+\beta_{1} \rangle}_{\gamma}(D) \cdots Q^{\langle \alpha+\beta_{r} \rangle}_{\gamma}(D) \cdot D^{s |\alpha|-1-k} u, K_{1} ||^{2} \delta^{-2 \sum |\beta_{i}| - 2(k+1)} + C'' \sum_{0 \leq |\beta_{i}|} ||Q^{\langle \alpha+\beta_{1} \rangle}_{\gamma}(D) \cdots Q^{\langle \alpha+\beta_{r} \rangle}_{\gamma}(D) \cdot D^{s |\alpha|-1}(D_{x''} u), K_{1} || \delta^{-2 \sum |\beta_{i}|}.
$$

We denote by I_1 and I_2 , the first and the second sum of the right hand side of the above inequality respectively. Then we must calculate the exponent of δ^2 and the orders of operators.

In I_1 , the exponent of δ^2 , -

$$
\geqq \sigma(s|\alpha| - k - 1) - \sum |\alpha + \beta_i|,
$$

and $s \cdot |\alpha| - 1 - k \leq s |\alpha| - 1 < s |\alpha| \leq s \cdot \min.|\alpha + \beta_i|$, thus I_i is majorated by $C|u, K_1|^2$ with some positive constant C.

In I_z the exponent of δ^2 , $-\sum |\beta_i|$, is

$$
= \sigma(s\,|\,\alpha\,|-1) - \textstyle{\sum} |\,\alpha + \beta_i\,| + \sigma
$$

and $s \cdot |\alpha| - 1 \leq s \cdot |\alpha| \leq s \cdot \min.|\alpha + \beta_i|$, hence $I_z \leq C|D_{x''}u, K_{1}|_{\delta}^{2} \delta^{2\sigma}$ with another constant C.

Therefore we obtain the following inequality,

$$
(3.17) \qquad \sum_{k=1}^{\lfloor \alpha \rfloor} {\binom{s|\alpha|}{k}} \int |Q_{\gamma}^{(\alpha)}(\xi)|^{2r} |\xi'|^{\frac{2(s|\alpha|-k)}{s}} |\xi''|^{2k} |\hat{v}(\xi)|^2 d\xi
$$

$$
\leq C_{10} \{ |u, K_1|^2 + |D_{x''}u, K_1|^2 |\xi|^{2\alpha} \}
$$

with some constant $C_{10} > 0$.

Next if we define $ξ^{\gamma - \alpha''}$ as follows,

1)
$$
\gamma - \alpha'' = (\gamma' - \alpha^{1''}, \dots, \gamma^n - \alpha^{n''})
$$
 when $\gamma' - \alpha^{i''} \ge 0$ for all *i*.
2) $\xi^{\gamma - \alpha''} \equiv 0$ when $\gamma' - \alpha^{i''} \le 0$ for some *i*.

(we shall write $\gamma\!\supset\!\alpha''$ for the case 1), and $\gamma\!\supset\!\alpha''$ for the case 2)), then $(\partial/\partial \xi'')^{\alpha''} \{ (\xi'')^{\gamma} \} = C_{\gamma,\alpha''} (\xi'')^{\gamma-\alpha''}$ with suitable constant $C_{\gamma,\alpha''}.$

We shall estimate the quantity

$$
(3.18) \qquad I = \int |Q_{\gamma}^{(\alpha)}(\xi)|^{2r} |\xi'|^{2s|\omega|} |\hat{v}(\xi)|^2 d\xi
$$

$$
= \int |P_{\gamma}^{(\alpha')}(\xi') \cdot (\partial/\partial \xi'')^{\alpha''} \{(\xi'')^{\gamma}\} |^{2r} |\xi'|^{2s|\omega|} |\hat{v}(\xi)|^2 d\xi
$$

in two cases.

In the first case; $\gamma \Box \alpha''$ and $|\gamma - \alpha''| \!\!\!>\!\! 0$, we obtain the following inequality with suitable β'' ($|\beta''|=1$):

$$
I \leq C \int |P_{\gamma}^{(\alpha')}(\xi') \cdot (\xi'')^{\gamma-\alpha''}|^{2r} |\xi'|^{2s|\alpha|} |\hat{v}(\xi)|^{2} d\xi
$$

\n
$$
\leq C \int |P_{\gamma}^{(\alpha')}(\xi') \cdot (\xi'')^{\gamma-\alpha''-\beta''}|^{2r} |\xi''|^{2r} |\xi'|^{2s|\alpha|} |\hat{v}(\xi)|^{2} d\xi
$$

\n
$$
\leq C \int |P_{\gamma}^{(\alpha')}(\xi') \cdot (\xi'')^{\gamma-\alpha''-\beta''}|^{2r} |\xi|^{2(s|\alpha|+s-1)} |\xi''|^{2(r-s+1)} |\hat{v}(\xi)|^{2} d\xi
$$

\n
$$
\leq C' ||Q_{\gamma}^{(\alpha',\alpha''+\beta'')} (D)^{\gamma} \cdot D^{s|\alpha|+s-1} (D_{x''}^{r-s+1}v), K_{1}||^{2}
$$

\n
$$
\times \delta^{2(r-s+1)+2\sigma(s|\alpha|+s-1)-2} \sum |\alpha+\beta''|
$$

\n
$$
\leq C' \sum_{\substack{0 \leq |\alpha|, |\alpha| \leq |\
$$

Therefore we obtain

$$
(3.19) \tI \leq C_{11} \sum_{0 \leq k \leq r-s+1} |D^k_{x''} u, K_1|^2 \delta^{2k} \t with some C_{11} > 0.
$$

In the second case; $\gamma = \alpha''$, from theorem 2.2 we obtain

$$
(3.20) \qquad I = \int |P_{\gamma}^{(\alpha')}(\xi')|^{2r} |\xi'|^{2s|\alpha'+\gamma|} |\hat{v}(\xi)|^2 d\xi
$$

\n
$$
\leq C_1'' \int (|P_o(\xi')|^{2r} + 1) |\hat{v}(\xi)|^2 d\xi
$$

\n
$$
= C_1'' \int |\hat{v}(\xi)|^2 d\xi
$$

\n
$$
+ C_1'' \int |P(\xi) - \sum_{|\gamma|>0} P_{\gamma}(\xi') \cdot (\xi'')^{\gamma}|^{2r} |\hat{v}(\xi)|^2 d\xi.
$$

The first term of the right hand side of the above inequality is of course

less than $C|\mu, K_1|^2$ with some C. The second term in (3.20) is (for suitable $C>0$)

$$
(3. 21) \leq C \int |P(\xi)|^{2r} |\hat{v}(\xi)|^2 d\xi
$$

+ $C \sum_{|\gamma|>0} \int |P_{\gamma}(\xi') \cdot (\xi'')^{\gamma}|^{2r} |\hat{v}(\xi)|^2 d\xi$
= $C || P(D)'(\varphi \cdot u), K_1||^2$
+ $C \sum_{|\gamma|>0} \int |P_{\gamma}(\xi') \cdot (\xi'')^{\gamma-\beta''}|^{2r} |\xi''|^{2r} |\hat{v}(\xi)|^2 d\xi$ with $|\beta''| = 1$.

The first term in (3.21) is

$$
(3.22) \leq C \sum_{|\alpha_i| \geq 0} ||P^{(\alpha_1)}(D) \cdots P^{(\alpha_r)}(D)u, K_1||^2 \delta^{-2 \sum |\alpha_i|}
$$

\n
$$
= C \sum_{|\alpha_i| > 0} ||P^{(\alpha_1)}(D) \cdots P^{(\alpha_r)}(D)u, K_1||^2 \delta^{-2 \sum |\alpha_i|}
$$

\n
$$
+ C \sum_{|\alpha_i| > 0} \sum_{1 \leq k \leq r} ||P^{(\alpha_1)}(D) \cdots P^{(\alpha_{r-k})}(D) \cdot P(D)^k u, K_1||^2 \delta^{-2 \sum_{i=1}^{r-k} |\alpha_i|}
$$

\n
$$
\leq C |u, K_1|_{\delta}^2 + C \sum_{|\alpha| \leq P(r-1)} ||D^{\alpha} P(D)u, K_1||^2 \delta^{-2P(r-1)}
$$

by the definition of *P* and lemma 3. 3.

The second term in (3.21) is

$$
(3.23) \leq C' \sum_{\substack{|\gamma|>0}} \sum_{\substack{0 \leq |a_i| \\ 0 \leq k,k'}} ||Q_{\gamma}^{(\alpha_1+\beta'')}(D) \cdots Q_{\gamma}^{(\alpha_r+\beta'')}(D) \cdot D^{s-1-k'}(D_{x'}^{r-s+1-k}u), K_1||^2
$$

$$
\times \delta^{-2(k+k')-2} \geq |\alpha_i|
$$

$$
\leq C' \sum_{|\gamma|>0} \sum_{\substack{a_i, k,k'}} ||Q_{\gamma}^{(\alpha_1+\beta'')}(D) \cdots Q_{\gamma}^{(\alpha_r+\beta'')}(D) \cdot D^{s-1-k'}(D_{x'}^{r-s+1-k}u), K_1||^2
$$

$$
\times \delta^{2(\sigma(s-1-k')-2|\alpha_i+\beta''|)} \delta^{2(r-s+1-k)}
$$

$$
\leq C'' \sum_{0 \leq k \leq r-s+1} |D_{x'}^{k'}u, K_1|^2 \cdot \delta^{2k}
$$

Therefore we obtain the estimate:

$$
(3.20)' \quad I \leqq C_{12} \left\{ \sum_{k=0}^{r-s+1} \| D_{x''}^k u, K_1 \|_{\delta}^2 \cdot \delta^{2k} + \sum_{|\alpha| \leqq \rho(r-1)} \| D^{\alpha} P(D) u, K_1 \|^{2} \delta^{-2\rho(r-1)} \right\}.
$$

The inequality (3.9) , (3.14) , (3.17) , (3.19) and $(3.20)'$ show that the estimate (3. 7) is established. This complete the proof of theorem 3.1. (In the above proof constants C's are independent of u , δ , K _o and

Theorem 3.2. Let $P(\zeta)$ be a polynomial of the type σ considered in *theorem* 3.1, *p be the degree of P(ζ)^y and K and L be arbitrary relatively* $\mathit{compact} \; \; subdomains \;\; \; of \;\; \Omega \;\; \; such \;\; that \;\; K \subset L \subset \overline{L} \subset \Omega \;\; \; and \;\; \; dist \; (\partial K, \partial L) = \delta$ $(0<\delta\leq 1).$

Then there exists a constant C_{13} such that the inequality

244 M. YAMAMOTO

$$
(3.24) \quad (\delta/p)^{\sigma p} | D^b u, K |_{\delta/p} \n\leq C_{13}^p \left\{ \sum_{k=0}^{p(r-s+1)} (\delta/p)^k | D^k u, L |_{\delta/p} \right. \n+ \sum_{k=0}^{p(r-s+1)} \sum_{|\alpha| \leq p(r-1)} || D^{\alpha} P(D) \cdot D^k u, L || (\delta/p)^{k-p(r-1)} \right\} \quad p = 0, 1, 2, \cdots.
$$

is valid for all $u \in C^\infty(\Omega)$. The constant C_{13} does not depend on p, u, K *and L.*

Proof. By the assumptions on *K* and *L* there exists an increasing sequence of relatively compact domains: $K_{\scriptscriptstyle 0}, K_{\scriptscriptstyle 1}, \cdots, K_{\scriptscriptstyle p}$ such that $K=$ $K_0 \subset K_1 \subset \cdots \subset K_p$ = *L* and dist(∂K_i , ∂K_{i+1}) = δ/p = h \subset 1. Thus every pair K_i, K_{i+1} satisfies the conditions imposed on K_0 and K_1 with *h* in place of δ in theorem 3.1. If $u \in C^{\infty}(\Omega)$ then for every i $(i = 0, 1, ..., p)$, $D^{i}u \in$ $C^{\infty}(\Omega)$. Successive applications of theorem 3.1 to K_i , K_{i+1} show that the conclusion is obtained as follows,

$$
h^{\sigma p} | D^p u, K_0 |_{h} = h^{(p-1)\sigma} h^{\sigma} | D(D^{p-1}u), K_0 |_{h}
$$

\n
$$
\leq h^{(p-1)\sigma} C_7 \Big\{ \sum_{k=0}^{r-s+1} | D_x^{k} \vee (D^{p-1}u), K_1 |_{h} \cdot h^k
$$

\n
$$
+ \sum_{|\alpha| \leq p(r-1)} || D^{\alpha} P(D) (D^{p-1}u), K_1 || h^{-p(r-1)} \Big\}
$$

\n........
\n
$$
\leq \{C_7 (r-s+1)\}^p \Big\{ \sum_{k=0}^{p(r-s+1)} | D_x^{k} \vee u, K_p |_{h} h^k
$$

\n
$$
+ \sum_{k=0}^{p(r-s+1)} \sum_{|\alpha| \leq p(r-1)} || D^{\alpha} P(D) D^k u, K_p || h^{k-p(r-1)}
$$

This completes the proof of theorem 3.2 with $C_{13} = C_7(r - s + 1)$.

Lemma 3.4. Let $P(\zeta)$ be a polynomial which satisifes the condition,

$$
(2.6) \qquad |\mathcal{R}_{e}\zeta'| \leq C_{0}(1+|\mathcal{J}_{m}\zeta'|+|\zeta''|)^{\sigma} \qquad (\zeta \in V(P))
$$

(hereafter we call such P partially hypoelliptic of type σ in x') and u be *an infinitely differentiable solution of* $P(D)u = f$ *(where f belongs to* $A_{L(x)}$ *) in* Ω *)* such that u and $D^k u \in A_{\alpha}(x)$ $(k = 1, 2, ..., r\rho - (r - s))$.

Then the following estimate is valid.

$$
(3.25) \t|D^{\rho}u, K|_{1} \leq C_{14}^{\rho+1}p^{\sigma\rho} \tfor every $p \geq 0$,
$$

where C¹⁴ *does not depend on p and u.*

Proof. Considering $D^k u \in A_{\alpha x''}$, $(k=0, 1, \dots, r\rho - (r-s))$ aud $f \in A_{\alpha x}$, we may suppose that there exists a constant C_{15} such that the following inequalities are valid.

PARTIALLY HYPOELLIPTIC OPERATORS

$$
(3.26) \tC6 \sum_{x \in \mathbb{Z}} ||D_x^k \vee D^* u, L||^2 \leq (C_{15}^{k+1} k^k)^2
$$

$$
(3.27) \qquad \sum_{|\alpha| \leq P(r-1)} ||D^k D^{\alpha} f, L|| \leq C_{15}^{k+1} k^k.
$$

(3.26) and (3.4) imply that

$$
(3.26)'\qquad |D_x^{k}||u, L|_h \leq |D_x^{k}||u, L|_1(\delta/p)^{-\rho r} \leq C_1^{k+1}k^k\delta^{-\rho r}p^{\rho r}
$$

Hence theorem 3.2 implies

$$
|D^{\rho}u, K|_{1} \leq |D^{\rho}u, K|_{\delta/\rho}
$$

\n
$$
\leq C_{13}^{p}(\delta/p)^{-\rho\sigma} \left\{ \sum_{k=0}^{p(r-s+1)} (\delta/p)^{k} | D^{k}_{x}u, L|_{\delta/\rho} + \sum_{k=0}^{p(r-s+1)} \sum_{|\alpha| \leq p(r-1)} ||D^{k}D^{\alpha}f, L||(\delta/p)^{k-p(r-1)} \right\}
$$

\n
$$
\leq C_{13}^{p} \delta^{-\rho\sigma} p^{\rho\sigma} \left\{ \sum_{k=0}^{p(r-s+1)} \delta^{k}_{p}p^{-k}C_{15}^{k+1}k^{k}\delta^{-\rho r}p^{\rho,r} + \sum_{k=0}^{p(r-s+1)} C_{15}^{k+1}k^{k}\delta^{k-p(r-1)} \right\}
$$

\n
$$
\leq 2C_{13}^{p} \delta^{-\rho\sigma} \delta^{-\rho r} p^{\sigma p} \sum_{k=0}^{p(r-s+1)} C_{15} \left\{ C_{15} \delta(r-s+1) \right\}^{k} p^{\rho,r}
$$

\n
$$
\leq 2C_{13}^{p} \delta^{-\rho\sigma} \delta^{-\rho r} p^{\sigma p} e^{\rho} \left\{ (\rho r) ! \right\} C_{15} \sum_{k=0}^{p(r-s+1)} \left\{ C_{15} \delta(r-s+1) \right\}^{k}
$$

\n
$$
\leq C_{14}^{p+1} \cdot p^{\sigma p}.
$$

This completes the proof.

Lemma 3. 4. and ineqality (3.4) show the inequality,

$$
(3.28) \t\t\t \sum_{k=0}^{s,p-1} ||D^p D^k u, K|| \leq C_{14}^{p+1} p^{\sigma p}.
$$

Sobolev's lemma. If $u \in C^{m+n}(\Omega)$ and $M \subset \overline{M} \subset K \subset \overline{K} \subset \Omega$, then there *exists a constant* C_{16} *such that*

(3.29)

Proof is well known and we shall omit it.

Main Theorem. Let a polynomial $P(\zeta)$ satisify the inequality (2.6) *(i.e. P(ζ) is partially hypoelliptic of type* σ *in x') and* $f \in A_{\iota(x)}$ *in* Ω . The *solution* $u \in C^{\infty}(\Omega)$ of $P(D)u = f$ in Ω such that $D^k u \in A_{K^k}$ ($k = 0, 1, \dots,$ $r\rho-(r-s)$, also belongs to $A_{\sigma(x)}$ in M with $M\subset \overline{M}\subset K\subset \overline{K}\subset L\subset \overline{L}$, com*pact in Ω,.*

Proof. From Sobolev's lemma we get that for every non-negative integer *p,*

$$
(3.29)'\qquad \qquad \mathrm{Sup}\,|D^{\,p}u(x)|\leqq C_{16}|||D^{m+n}(D^{\,q}u), K|||,
$$

245

where $\| |D^{q}(u), K\| |^{2}$ stands for $\sum_{j=0}^{q} \| D^{j}(u), K\|^{2}$. Lemma 3.4 and (3.28) imply that a solntion *u* satisfies

$$
|||D^{s_{p-1}}(D^{\circ}u), K||| \leq C_{14}^{p+1}p^{\sigma p}.
$$

Therefore we have, if $s \cdot \rho - 1 \leq m+n$, setting $\mu = m+n-(s \cdot \rho - 1)$

$$
(3.30) \qquad \begin{aligned} \sup_{x \in \mathcal{U}} |D^{\rho}u(x)| &\leq C_{16} \|\, D^{\rho+\mu}D^{s\rho-1}u, \, K\|\| \\ &\leq C_{16}C_{14}^{n+\mu+1}(p+\mu+1)^{\sigma(p+\mu+1)} \\ &\leq C_{16}C_{14}^{n+\mu+1}e^{\sigma(p+\mu+1)}[(p+\mu+1)!]^{\sigma} \\ &\leq C_{16}\{(\mu+1)!\}^{\sigma} \prod_{q=1}^{\mu+1} \left(\frac{\mu+q+1}{2q}\right)^{\sigma} 2^{\rho\sigma}C_{14}^{n+\mu+1}e^{\sigma(p+\mu+1)}(p!)^{\sigma} \end{aligned}
$$

because $(p+\mu+1)! = (\mu+1)! \prod_{\alpha=1}^{\mu+1} (\mu + 1)$ **«=i \ 2**

Thus we obtain

(3.31) Sup I *D^p u(x)* I ^ Cf,+1(/>!) .

Next if $s \cdot \rho - 1 \ge m+n$, then obviously we obtain

$$
(3.31)'\qquad \qquad \text{Sup }|D^{\,p}u(x)|\leq C_{17}^{p+1}(p!)^{\sigma}.
$$

This completes the proof.

REMARK. Corollary 2.1 shows that if $u \in C^{\infty}_{\alpha''}$ and u is a distribution solution of $P(D)u = f$ with $f \in C^{\infty}(\Omega)$, then in virtue of the partial hypoellipticity of P, the solution *u* also belongs to $C^{\infty}(\Omega)$.

Therefore let *u* be a distribution solution of $P(D)u = f$ such that $D^k u \in A_{\alpha'}$, $(k=0,1,\dots,r \cdot \rho - (r-s))$ and if $f \in A_{\alpha}$, and $P(\zeta)$ satisfy the condiction (2.6), then using theorem 3.3, *u* belongs to $A_{\langle \sigma \rangle_{x}}$.

The above fact may be said, "if $P(\zeta)$ is partially hypoelliptic of type σ in x' , then $P(D)$ is conditionally hypoelliptic of type σ iu x'' . Moreover if a distribution solution *u* of $P(D)u=0$ possess the property described in the above remark, then it will be proved that $P(\zeta)$ satisfies the condition (2.6) analogically to the proof of Garding and Malgrange [3] for the conditionally elliptic case.

OKAYAMA UNIVERSITY

(Received March 30, 1963)

References

- **[** 1 **]** J. Friberg : *Partially hypoelliptic differential equations of finite type,* **Math.** Scand. 9 (1961), 22-42.
- **[** 2 **]** L. Garding et B. Malgrange : *Opέrateurs diffέrentiel partiellέment hypoelliptiques,* C. R. Acad. Sci., Paris, 247 (1958), 2083-2086.
- **[** 3 **]** L. Garding et B. Malgrange: *Opέrateurs diffέrentiels partiellement hypoelliptiques et partiellement elliptiques,* Math. Scand. **9 (1961),** 5-21.
- **[4]** L. Hόrmander: *On the theory of general partial differential operators,* Acta. Math. 94 (1955) 161-248.
- **[** 5 **] L.** Hόrmander: *On the regularity of the solutions of boundary value problems,* Acta Math. 99 (1958) 225-264.
- **[** 6 **]** L. Hόrmander: *Lectures on linear partial differential operators,* Mimeo graphed Note.
- [7] L. Hόrmander: *On interior regularity of the solutions of partial differential equations,* Comm. Pure. Appl. Math. 11 (1958), 197-218.
- [8 **]** S. Matsuura: *Partially hypoelliptic and partially elliptic systems of differential operators with constant coefficients,* J. Math. Kyoto Univ. 1 (1962), 147-160.
- **[** 9 **]** S. Mizohata: *One remarque sur les opέrateurs differentiels hypoelliptiques et partiellement hypoelliptiques,* J. Math. Kyoto Univ. 1 (1962) 411-423.
- **[10]** C. **B.** Morrey and L. Nirenberg: *On the analyticity of the solutions of linear elliptic systems of partial differential equations,* Comm. Pure **Appl.** Math. 10 (1957) 271-290.
- **[11]** M. Yamamoto: *On conditionally hypoelliptic properties of partially hypoelliptic operators,* Proc. Japan Acad. 39 (1963) 114-119.