Kurita, M. Osaka Math. J. 15 (1963), 87-98.

ON THE DILATATION IN FINSLER SPACES

To Prof. K. Shoda in celebration of his 60th birthday

Βч

Minoru KURITA

It is well known that a dilatation in the euclidean space, defined as a parallel translation of a plane element to the orthogonal direction by constant length, is a contact transformation. In the present paper we consider a contact structure in Finsler space and prove that a dilatation defined on it is also a contact transformation. Moreover it is proved here that a dilatation on the Riemannian manifold of constant curvature preserves a Riemannian metric constructed appropriately on the dual tangent bundle of the manifold. A greater part of this paper is not essentially new, but is a reproduction of classical results, mainly due to E. Cartan, from a modern geometrical point of view.

§1. Contact structure and *e*-curves

1. We take an *m*-dimensional differentiable manifold M with local coordinates x^1, \dots, x^m and a 2-form

$$\alpha = \frac{1}{2} a_{ij} dx^i \wedge dx^j \qquad (a_{ij} = -a_{ji}) \tag{1}$$

on it. Throughout the paper we assume differentiability C^{∞} . Then we have ([6] p. 138)

Theorem. If there exists an affine connection without torsion for which a tensor field (a_{ij}) is parallel, then we have $d\alpha = 0$.

Conversely, if $d\alpha = 0$, there exists locally an affine connection without torsion for which (a_{ij}) is parallel. Moreover such a connection exists globally when the dimension of the manifold is even and the rank of α is maximal.

2. We take a 2n-1-dimensional differentiable manifold M with a closed 2-form α of a maximal rank 2n-2. Especially, if $\alpha = d\omega$ (exact) and $\omega \wedge \alpha^{n-1} \neq 0$, M is called to have a contact structure. We consider a differential equation $i(X)\alpha = 0$ which holds for all vector fields X. When α is expressed as (1), $i(X)\alpha = 0$ reduces to

M. KURITA

$$a_{ij}dx^{j} = 0$$
 $(i, j=1, \dots, 2n-1).$ (2)

As the rank of (a_{ij}) is 2n-2 these can also be written as

$$\frac{dx^{1}}{c^{1}} = \frac{dx^{2}}{c^{2}} = \cdots = \frac{dx^{2n-1}}{c^{2n-1}}$$

with certain functions c^1, \dots, c^{2n-1} . This defines curves on M, which we call *e*-curves. Then we have

Theorem 1. An e-curve x = x(t) is a path of an affine connection for which (a_{ij}) is parallel. Conversely, if a curve is a path of an affine connection for which (a_{ij}) is parallel and satisfies an initial condition $\left(a_{ij}\frac{dx^{j}}{dt}\right)_{t=0} = 0$, it is an e-curve.

Proof. For an *e*-curve x = x(t) we have $a_{ij}dx^j/dt = 0$, and if we put $dx^i/dt = v^i$, we get $a_{ij}v^j = 0$. By covariant differentiation $Da_{ij}/dt \cdot v^j + a_{ij}Dv^j/dt = 0$. Hence $a_{ij}Dv^j/dt = 0$. As the rank of (a_{ij}) is maximal, we have $Dv^i/dt = kv^i$, and so the curve x(t) is a path.

Conversely, if a curve x=x(t) is a path, we have $Dv^i/dt=kv^i$ for $v^i=dx^i/dt$. As (a_{ij}) is parallel we have $D(a_{ij}v^j)/dt=ka_{ij}v^j$ and by the assumption $(a_{ij}v^j)_{t=0}=0$ we have always $a_{ij}v^j=0$ and so it is an *e*-curve.

An e-curve is important in our investigation, but affine connections considered above are unnecessary for our later discussion.

3. We consider a two-dimensional submanifold S of M generated by a one-parametric family of e-curves with a parameter ε . We denote by t a parameter on each e-curve. Then 2-form α restricted to S is

$$lpha = a_{ij} dx^i \wedge dx^j = 2 \, a_{ij} rac{\partial x^j}{\partial t} rac{\partial x^i}{\partial arepsilon} darepsilon \wedge dt \; .$$

Along *e*-curves we have $a_{ij}dx^{j}=0$ and so $a_{ij}\partial x^{j}/\partial t=0$. Hence $\alpha=0$. Thus we get

Theorem 2. M is a differentiable manifold with a closed 2-form α of maximal rank. Then the 2-form α vanishes on a two-dimensional submanifold S generated by a one-parametric family of e-curves. If $\alpha = d\omega$ and c bounds a simply connected region on S, we have $\int \omega = 0$.

\S 2. Finsler space and contact structure

1. *M* is an *n*-dimensional differentiable manifold with local coordinates $x = (x^1, \dots, x^n)$ for a point on *M*. Local coordinates on the tangent bundle T(M) of *M* are given by (x, y) with $y = (y^1, \dots, y^n)$ which are vector

components in the tangent space at x. Finsler space is a manifold M with a function F on T(M) such that F = F(x, y) is linear in y and moreover

$$\operatorname{rank}\left(\frac{\partial^2 F}{\partial y^i \partial y^j}\right) = n - 1. \qquad (i, j = 1, \dots, n)$$
(3)

By linearity we have

$$y^i \frac{\partial F}{\partial y^i} = F \,. \tag{4}$$

In the Finsler space a length of a curve x = x(t) $(t_1 \le t \le t_2)$ is defined by

$$s = \int_{t_1}^{t_2} F\left(x, \frac{dx}{dt}\right) dt \; .$$

We consider the dual tangent bundle ${}^{c}T(M)$ of M and denote the local coordinates by (x, z) with $z = (z_1, \dots, z_n)$ dual to $y = (y^1, \dots, y^n)$. Next we put

$$p_i = \frac{\partial F}{\partial y^i} \tag{5}$$

and define a mapping $\varphi: T(M) \rightarrow {}^{c}T(M)$ by $(x, y) \rightarrow (x, p)$ with $p = (p_1, \dots, p_n)$. It can be verified that the mapping is globally defined. We put

$$N = \varphi(\mathbf{T}(M)) \,. \tag{6}$$

N can be obtained explicitly in the following manner. By virtue of (3) we can assume det $(\partial^2 F/\partial y^a \partial y^b) \neq 0$ $(a, b=1, \dots, n-1)$ at a point (x, y) without loss of generality. Hence in a neighborhood of a point (x, y) in T(M) we get from (5)

$$y^{a} = f^{a}(x; p_{1}, \dots, p_{n-1}, y^{n})$$
 $(a = 1, \dots, n-1),$

and when we put these into $p_n = \partial F / \partial y^n$, we obtain

$$p_{n} = g(x; p_{1}, \cdots, p_{n-1}), \qquad (7)$$

because we have det $(\partial p_i/\partial y^j) = \det (\partial^2 F/\partial y^i \partial y^j) = 0$ and there exists a functional relation between x, p. Thus $N = \varphi(T(M))$ is a submanifold of ${}^{c}T(M)$. Generally we call *p*-manifold in T(M) the submanifold which can be locally expressed as

$$G(x, p) = 0$$
 (grad_b G = 0). (8)

Then $N = \varphi(T(M))$ is a *p*-manifold by virtue of (7).

EXAMPLE. As to Riemannian metric we have $F(x, y) = \sqrt{g_{ij}(x)y^iy^j}$ and so

$$p_{i} = \partial F / \partial y^{i} = g_{ij} y^{j} / F, \quad G(x, p) = g^{ij} p_{i} p_{j} - 1 = 0$$
(9)

with (g^{ij}) inversive to (g_{ij}) .

We prepare matters necessary for our later discussion. When we put $p_i = \partial F/\partial y^i = \psi^i(x, y)$, we have naturally G(x, p) = 0, and by differentiating with respect to y^i we get $G_{P_j}\partial p_i/\partial y^j = 0$, since $\partial p_i/\partial y_j = \partial p_j/\partial y_i$. On the other hand F(x, y) is linear in y and so $p_i(x, y)$ is homogeneous of degree 0 in y. Hence we have $y^j \partial p_i/\partial y^j = 0$. As the rank of a matrix $(\partial p_i/\partial y^j) = (\partial^2 F/\partial y^i \partial y^j)$ is n-1, we get

$$y^i = \lambda G_{P_i} \qquad (i = 1, \dots, n) \tag{10}$$

and hence

$$\lambda p_i G_{p_i} = y^i p_i = y^i \frac{\partial F}{\partial y^i} = F.$$
(11)

Next we take a curve c: x = x(t) on M. Then a curve c' is defined in T(M) by (x, \dot{x}) and by the mapping $\varphi: (x, \dot{x}) \to (x, p)$ a curve $c'' = \varphi(c')$ is defined in N. We call the curve c'' a *lift* of a curve c on M. Here we have by virtue of (4)

$$p_i dx^i = \frac{\partial F}{\partial y^i}(x, \dot{x})\dot{x}^i dt = F(x, \dot{x}) dt$$

Hence $p_i dx^i$ for a lift c'' is an arc-element of a curve c on M.

2. On the dual tangent bundle ${}^{c}T(M)$ with local coordinates (x, z) 1-form $z_{i}dx^{i}$ can be defined globally. We restrict this to the *p*-manifold N and we get

$$\omega = p_i dx^i \,. \tag{12}$$

Hence

$$\alpha = d\omega = dp_i \wedge dx^i \,. \tag{13}$$

 ω defines a contact structure on N with exception of certain points. In fact, by (12) and (13)

$$\omega \wedge (d\omega)^{n-1} = (-1)^{n(n-1)/2} (n-1)! dx^1 \wedge \cdots \wedge dx^n \ \wedge (\sum (-1)^{i-1} p_i dp_1 \wedge \cdots \wedge \widehat{dp_i} \wedge \cdots \wedge dp_n),$$

where $d\hat{p}_i$ means a lack of a term dp_i . In case $G_{P_n} \neq 0$ we have by (8)

$$dp_{n} = -\frac{1}{G_{p_{n}}}(G_{x^{i}}dx^{i} + G_{p_{a}}dp_{a}) \quad (i = 1, \dots, n; a = 1, \dots, n-1) \quad (14)$$

90

and so

$$\omega \wedge (d\omega)^{n-1} = (-1)^{(n-1)(n-2)/2} (n-1)! \frac{p_i G_{P_i}}{G_{P_n}} dx^1 \wedge \cdots \wedge dx^n \wedge dp_1 \wedge \cdots \wedge dp_{n-1}.$$

By (11) this vanishes only for y such that F(x, y) = 0. Thus we get

Theorem 3. $\omega = p_i dx^i$ defines a contact structure on N except for points (x, p) corresponding to such (x, y) that F(x, y) = 0 holds.

By the discussion in section 1 an *e*-curve is introduced on N according to the 2-form α . An *e*-curve is a solution of the equation $i\left(\frac{\partial}{\partial x^i}\right)\alpha=0$, $i\left(\frac{\partial}{\partial p_a}\right)\alpha=0$, which we will write explicitly in the case where N is given by

$$G(x, p) = 0. \tag{15}$$

We assume $G_{P_n} \neq 0$ without loss of generality. Then we have by (14)

$$\alpha = dp_i \wedge dx^i = dp_a \wedge dx^a - \frac{1}{G_{P_n}} (G_{x^i} dx^i + G_{P_a} dp_a) \wedge dx^n$$

Hence we get from $i\left(\frac{\partial}{\partial x^i}\right)\alpha = 0$ and $i\left(\frac{\partial}{\partial p_a}\right)\alpha = 0$

$$\frac{dx^{1}}{G_{p_{1}}} = \dots = \frac{dx^{n}}{G_{p_{n}}} = \frac{dp_{1}}{-G_{x^{1}}} = \dots = \frac{dp_{n}}{-G_{x^{n}}}.$$
(16)

This is a differential equation of an *e*-curve on *N*. Along the solutions G(x, p) is constant and when an initial condition x(0), p(0) satisfies the relation G(x(0), p(0))=0, we have always G(x, p)=0, and the solution is an *e*-curve on *N*.

We project an *e*-curve e: x = x(t), p = p(t) onto a curve E: x = x(t)on *M*. Then we have $dx^i/dt = \mu G_{P_i}(x, p)$ by virtue of (16) and if *y* is such that (x, y) is mapped on (x, p) by φ , we have $y^i = \lambda G_{P_i}(x, p)$ by (10). Hence $dx^i/dt = \mu \lambda^{-1} y^i$, and *p* of the curve *e* corresponds to dx/dt of *E*.

Now we can prove the following theorem due to E. Cartan. (cf. [3] p. 187)

Theorem 4. M is a Finsler space and N is the *p*-manifold constructed over M. If we project any *e*-curve on N onto M, we get an extremal of the Finsler space M. Conversely all the extremals of M can be obtained in this way.

Proof. We take an e-curve c on N and two points a and b on c, whose projections on M are a curve C and two points A and B. We connect the two points A and B by a one-parametric family of curves

 $C_{\varepsilon}: x = x(t, \varepsilon)$ $(t_1 \leq t \leq t_2)$ and we assume $C_{\varepsilon} = C$ for $\varepsilon = 0$. We lift these curves C_{ε} to c_{ε} on N, which can be expressed as $x = x(t, \varepsilon)$ and $p = p(t, \varepsilon)$. We denote differential for the variable t by dt and that of ε by $\delta\varepsilon$, which are independent. Then we have for $d\omega = dp_i \wedge dx^i$

$$d(\omega(\delta)) - \delta(\omega(d)) = dp_i \delta x^i - \delta p_i dx^i .$$
(17)

This formula, due to E. Cartan, is now justified in modern theory as

$$d(\omega(E))(T) - d(\omega(T))(E) = dp(T)dx(E) - dp(E)dx(T)$$

by taking $T = \partial/\partial t$, $E = \partial/\partial \varepsilon$. We use an old style for the sake of brevity and we get

$$\delta\omega(d) = d\omega(\delta) - (dp_i \delta x^i - \delta p_i dx^i) \,.$$

Along an *e*-curve *c* we have $dp_i = -\lambda G_{x^i} dt$, $dx^i = \lambda G_{p_i} dt$ and hence

$$dp_i \delta x^i - \delta p_i dx^i = -\lambda \delta G dt = 0,$$

as G vanishes always. Moreover the points A, B corresponding to t_1 and t_2 are fixed each and so $\omega(\delta)=0$ for $t=t_1, t_2$. Thus we have $\delta \int \omega(d)=0$ along the curve c. As $\omega(d)$ is an arc-elements along the curves C on M the curve C is an extremal.

As e-curves can be taken in such a way that their projection on M passes through any point x on M and its tangent at x takes any direction when we take an initial condition for an e-curve suitably. Hence any extremal on M is a projection of an e-curve.

As an application of Theorem 4 we can prove Jacobi's enveloping theorem by the use of Stokes's theorem. We take a point x on a curve x=x(t) and a direction represented by (x, y). This direction is called transversal to the curve at the point if $p_i dx^i/dt=0$ for p corresponding to y by the mapping $\varphi: (x, y) \rightarrow (x, p)$. We take a one-parametric family of extremals having contact with a curve C and a curve T transversal to the extremals. For two extremals of the family points of contact with C are A, B and the points of intersection with T are A', B' respectively. Then Jacobi's enveloping theorem asserts

$$\widehat{A'A} - \widehat{B'B} = \widehat{BA},$$

where $\widehat{A'A}$, $\widehat{B'B}$ mean the length on extremals and \widehat{BA} that of C. This can be proved as follows under the assumption that the region D bounded by the curves A'ABB'A and generated by the extremals is homeomorphic to a simply connected domain on a plane.

We take tangent vectors (x, \dot{x}) at each point x of the extremals of

the family in question, and p = p(x) such that $\varphi: (x, \dot{x}) \rightarrow (x, p)$. Then $\omega = p_i dx^i$ is a 1-form on our Finsler space. We lift the region D to ${}^{c}T(M)$ and apply Theorem 2. Then we have

$$0 = \int_{D} d\omega = \int_{A'A} \omega + \int_{AB} \omega + \int_{BB'} \omega + \int_{B'A'} \omega = \widehat{A'A} - \widehat{BA} - \widehat{B'B},$$

which was to be proved.

Hamiltonian function H in the classical theory can be derived as follows. As F(x, y) is linear in y we can put $F(x, y) = y^n L(x, z)$, where $z = (z^1, \dots, z^{n-1})$ and $z^a = y^a/y^n$ $(a=1, \dots, n-1)$. Then we have

$$p_a = \frac{\partial F}{\partial y^a} = \frac{\partial L}{\partial z^a}, \quad p_n = \frac{\partial F}{\partial y^n} = L - z^a \frac{\partial L}{\partial z^a}.$$

On account of the relation (3) we have det $(\partial^2 L/\partial z^a \partial z^b) \neq 0$ without loss of generality and we get $z^a = \psi^a(x, p')$ and hence

$$p_n = L(x, \psi(x, p')) - \psi^a(x, p')p_a,$$

where $p' = (p_1, \dots, p_{n-1})$. This is the equation (7) in explicit form. The second side of the above equation is -H(x, p) and we get

$$\omega = p_a dx^a + p_n dx^n = p_a dx^a - H dx^n.$$

§3. Dilatation in Finsler spaces

1. We take a plane element dual to a tangent of an extremal in Finsler space M and translate it along the extremal by constant length. We call this translation a dilatation in Finsler space. On the other hand a homogeneous contact transformation is defined in a space with a contact structure as a transformation preserving the fundamental 1-form $\omega = p_i dx^i$. Then we have the following theorem.

Theorem 5. A dilatation in Finsler space M induces a homogeneous contact transformation on the corresponding p-manifold N.

Proof. A dilatation in M induces on N such a translation T of a point (x, p) to a point (\bar{x}, \bar{p}) along an *e*-curve that $\int \omega = \int p_i dx^i = \text{const.}$ We take a segment AB of a curve in N and translate it to $\bar{A}\bar{B}$ by T. Then we get a region generated by *e*-curves and bounded by $AB\bar{B}\bar{A}A$, and we get by Theorem 2

$$\int_{AB} \omega + \int_{B\overline{B}} \omega + \int_{\overline{B}\overline{A}} \omega + \int_{\overline{A}A} \omega = 0.$$

M. KURITA

By the definition of dilatation we have $\int_{A\bar{A}} \omega = \int_{B\bar{B}} \omega$, and so

$$\int_{AB} \omega = \int_{\overline{A}\overline{B}} \omega \,. \tag{18}$$

As AB is arbitrary we get

$$\bar{p}_i dx^i = \bar{p}_i d\bar{x}^i , \qquad (19)$$

which was to be proved.

Theorem 5 is not essentially new, but it puts a new light from a geometric point of view upon a classical result, where $\omega = p_i dx^i$ is a relative invariant and $d\omega = dp_i \wedge dx^i$ an absolute one. Here we have proved that ω is itself invariant for dilatation.

Theorem 5 has a following application. We define a measure element in N, namely that of plane elements (x, p) in Finsler space M, by

$$dV = \frac{1}{(n-1)!} (-1)^{n(n-1)/2} \omega \wedge (d\omega)^{n-1}.$$

Substituting $\omega = p_i dx_i$ we get

$$dV = dx^{1} \wedge \cdots \wedge dx^{n} \wedge (\sum_{i} (-1)^{i-1} p_{i} dp_{1} \wedge \cdots \wedge dp_{n})$$

By virtue of Theorem 5 we get

Theorem 6. A measure $\int dV$ for plane elements in a Finsler space is invariant for a dilatation.

In a Riemannian space with a metric $ds^2 = g_{ij}dx^i dx^j$ we have as a volume element of points

$$dv = g dx^1 \wedge \cdots \wedge dx^n \qquad (g = \sqrt{\det(g_{ij})}).$$

By (9) $p = (p_1, \dots, p_n)$ are covariant components of a unit vector and we can define a measure of unit vectors by

$$d\sigma = g^{-1} \sum_{i} (-1)^{i-1} p_i D p_1 \wedge \cdots \wedge D p_i \wedge \cdots \wedge D p_n.$$

where Dp_i means a covariant differential of p. Then we have

$$dV = dv \wedge d\sigma$$

by virtue of the relation $Dp_i \equiv dp_i \pmod{dx^1, \cdots, dx^n}$. In this case we can consider a dilatation as a translation of a tangent unit vector along a geodesic by constant length, which we call a *geodesic flow*. The invariance of $\int dV$ for a geodesic flow is fundamental in the ergodic theory

94

and has been treated by several authors. (cf. for example [4] [5])

2. As to Riemannian manifold of constant curvature, not only a volume element but also a Riemannian metric is invariant for a geodesic flow. We take rectangular frames on the tangent spaces of M and represent the Riemannian metric as

$$ds^2 = \sum_i \omega_i^2 \tag{20}$$

with 1-forms ω_i . Connection forms of the Riemannian connection are given by ω_{ij} in such a way that

$$d\omega_{i} = \omega_{j} \wedge \omega_{ji} \qquad (\omega_{ij} = -\omega_{ji}), \qquad (21)$$

and curvature forms are given by

$$d\omega_{ij} - \omega_{ik} \wedge \omega_{kj} = \frac{1}{2} R_{ijkh} \omega_k \wedge \omega_h . \qquad (R_{ijkh} = -R_{ijhk})$$
(22)

We take geodesics and denote by δ a differential along the geodesics and by s an arc-length along them. We put

$$\omega_i(\delta) = v_i \delta s$$
, $\omega_{ji}(\delta) = \xi_{ji} \delta s$.

When we take a differential d independent of δ we have by (21)

$$d\omega_i(\delta) - \delta\omega_i(d) = \omega_j(d)\omega_{ji}(\delta) - \omega_j(\delta)\omega_{ji}(d)$$

and putting

$$\omega_i(d) = \omega_i, \quad \omega_{ji}(d) = \omega_{ji}, \quad Dv_i = dv_i + v_j \omega_{ji}$$

we get

$$\delta\omega_{i} = (-\omega_{j}\xi_{ji} + Dv_{i})\delta s. \qquad (23)$$

As (v_i) is a unit tangent vector along a geodesic,

$$\delta v_i = -v_j \xi_{ji} \delta s \,. \tag{24}$$

By virtue of (22)

$$d\omega_{ij}(\delta) - \delta\omega_{ij}(d) - \omega_{ik}(d)\omega_{kj}(\delta) + \omega_{ik}(\delta)\omega_{kj}(d) = R_{ijkh}\omega_k(d)\omega_k(\delta).$$

and so

$$\delta\omega_{ij}/\delta s = d\xi_{ij} - \omega_{ik}\xi_{kj} + \xi_{ik}\omega_{kj} - R_{ijkh}\omega_k v_h$$

Now

$$\delta(Dv_i) = \delta(dv_i) + \delta v_j \omega_{ji} + v_j \delta \omega_{ji}$$

and as $\delta(dv_i) = d(\delta v_i)$ we get

$$\delta(Dv_i)/\delta s = d(-v_j\xi_{ji}) - v_k\xi_{kj}\omega_{ji} + v_j(d\xi_{ji} - \omega_{jk}\xi_{ki} + \xi_{jk}\omega_{ki} - R_{jikh}\omega_k v_h)$$

= $-Dv_j\xi_{ji} - v_jR_{jikh}\omega_k v_h$. (25)

Thus we have on account of (23)

$$\frac{1}{2}\frac{\delta}{\delta_{\mathcal{S}}}(\sum_{i}\omega_{i}^{2}) = \sum_{i}\omega_{i}\frac{\delta\omega_{i}}{\delta_{\mathcal{S}}} = Dv_{i}\cdot\omega_{i}$$
(26)

and by (25)

$$\frac{1}{2}\frac{\delta}{\delta s}(\sum_{i}(Dv_{i})^{2}) = -v_{j}R_{jihk}\omega_{k}v_{h}Dv_{i}$$

Here we assume that M is of constant curvature K and then we get for a unit vector (v_i)

$$R_{jikh}v_jv_h = -K(\delta_{jk}\delta_{ih} - \delta_{jh}\delta_{ik})v_jv_h = K(\delta_{ik} - v_iv_k)$$

and so

$$\frac{1}{2}\frac{\delta}{\delta s}(\sum_{i}(Dv_{i})^{2}) = -KDv_{i}\omega_{i} + K(v_{i}Dv_{i})(v_{k}\omega_{k}) = -KDv_{i}\omega_{i}.$$
(27)

From (26) and (27) we get

$$\delta(K\sum_{i}\omega_{i}^{2}+\sum_{i}(Dv_{i})^{2})=0$$
 .

This can be stated as follows.

Theorem 7. On a Riemannian manifold M of constant curvature K we denote a square of an arc-element by ds^2 and $\sum_i (Dv_i)^2$ by $d\sigma^2$, where Dv_i means a covariant differential of a unit vector v on M. Then $K ds^2 + d\sigma^2$ is an invariant of a geodesic flow.

This theorem has elementary applications in the non-euclidean geometry, but the author is not aware how it effects on the ergodic theory.

§4. Certain contact transformations

1. A homogeneous contact transformation f on ${}^{c}T(M)$ is a mapping $(x, z) \rightarrow (\bar{x}, \bar{z})$ such that $z_i dx^i = \bar{z}_i d\bar{x}^i$. If it maps p-manifold N into itself and (x, p) is mapped on (\bar{x}, \bar{p}) , we have

$$p_i dx^i = \tilde{p}_i d\bar{x}^i$$
, hence $dp_i \wedge dx^i = d\tilde{p}_i \wedge d\bar{x}^i$.

If we take coordinates ξ^1, \dots, ξ^{2n-1} on N, this can be written as

$$a_{lphaeta}(\xi)d\xi^{lpha}\wedge d\xi^{eta}=a_{lphaeta}(\overline{\xi})d\overline{\xi}^{lpha}\wedge d\overline{\xi}^{eta}\,.\qquad (lpha,\,eta=1,\,\cdots,\,2n\!-\!1)$$

If the induced mapping $\xi \to \overline{\xi}$ is *regular*, namely det $(\partial \overline{\xi}^{\alpha} / \partial \xi^{\beta}) \neq 0$, equations $a_{\alpha\beta}(\xi) d\xi^{\beta} = 0$ and $a_{\alpha\beta}(\overline{\xi}) d\overline{\xi}^{\beta} = 0$ are equivalent. In fact

$$a_{lphaeta}(ar{\xi})rac{\partialar{\xi}^{lpha}}{\partial\xi^{\gamma}}rac{\partialar{\xi}^{ar{eta}}}{\partial\xi^{ar{eta}}}=a_{\gamma\delta}(\xi)\,, \ \ ext{hence} \ \ a_{lphaeta}(ar{\xi})dar{\xi}^{ar{eta}}rac{\partialar{\xi}^{lpha}}{\partial\xi^{\gamma}}=a_{\gamma\delta}(\xi)d\xi^{\delta}\,.$$

96

This shows that *e*-curves are mapped on *e*-curves and we get

Theorem 8. If a homogeneous contact transformation on ${}^{c}T(M)$ maps *p*-manifold N on itself and the induced mapping is regular, it maps extremals on extremals on M.

Dilatation maps extremals on themselves, but it maps each extremals on itself. We give here a more general example. A one-parametric family of contact transformations can be given by solving an ordinary differential equation

$$\delta x^{i} = \frac{\partial U}{\partial p_{i}} \delta t , \qquad \delta p_{i} = -\frac{\partial U}{\partial x^{i}} \delta t$$
(28)

where t is a parameter. If U satisfies an equation

$$G_x i U_{p_i} - G_{p_i} U_x i = 0 \tag{29}$$

we have $\delta G=0$. If G(x, p)=0 is satisfied for an initial condition, it is always satisfied and we get a one parametric family of homogeneous transformations preserving extremals. In the euclidean case we have $F=\sqrt{\sum_{i} (y^{i})^{2}}$ and we get by (9) $G(x, p)=\sum_{i} p_{i}^{2}-1=0$. Then (29) reduces to $p_{i}\partial U/\partial x^{i}=0$, whose general solution is given by

$$U = \varphi(p_1 x^2 - p_2 x^1, p_1 x^3 - p_3 x^1, \dots, p_1 x^n - p_n x^1, p_1, \dots, p_n)$$

with an arbitrary function φ .

2. When a homogeneous contact transformation $(x, p) \rightarrow (\bar{x}, \bar{p})$ in the euclidean space is such that

$$\overline{p} = f(p)$$
,

it preverves hyperplanes. In fact for a plane element (x, p) on a hyperplane p is constant and also $p_i dx^i = 0$. Hence $\bar{p}_i d\bar{x}^i = 0$, and as $\bar{p} = \text{const}$, we get $p_i \bar{x}^i = \text{const}$. Thus the plane element (x, p) is also on a fixed hyperplane. Laguerre transformation affords an example of transformations here considered.

NAGOYA UNIVERSITY

(Received February 12, 1963)

M. KURITA

References

- [1] C. Carathéodory: Variationsrechnung und partielle Differentialgleichungen erster Ordnung, Leipzig, Teubner, 1935.
- [2] C. Carathéodory: Geometrische Optik, Berlin, Springer, 1938.
- [3] E. Cartan: Leçon sur les invariants intégraux, Paris, Hermann, 1922.
- [4] E. Hopf: Ergodentheorie, Berlin, Springer, 1937.
- [5] S. Sasaki: On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. 10 (1958), 338-354.
- [6] M. Kurita: Tensor fields and their barallelism, Nagoya Math. J. 18 (1961), 133-151.