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ON THE DILATATION IN FINSLER SPACES
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BY
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It is well known that a dilatation in the euclidean space, defined as
a parallel translation of a plane element to the orthogonal direction by
constant length, is a contact transformation. In the present paper we
consider a contact structure in Finsler space and prove that a dilatation
defined on it is also a contact transformation. Moreover it is proved
here that a dilatation on the Riemannian manifold of constant curvature
preserves a Riemannian metric constructed appropriately on the dual
tangent bundle of the manifold. A greater part of this paper is not
essentially new, but is a reproduction of classical results, mainly due to
E. Cartan, from a modern geometrical point of view.

§ 1. Contact structure and ^-curves

1. We take an m-dimensional differentiable manifold M with local co-
ordinates x\ •••, xm and a 2-form

a = i aiJdxi A dxj (ah = -ajΊ) (1)

on it. Throughout the paper we assume differentiability C°°. Then we
have ([6] p. 138)

Theorem. If there exists an affine connection without torsion for
which a tensor field (a{j) is parallel, then we have dcc=0.

Conversely, if doc = 0, there exists locally an aβne connection without
torsion for which (a^) is parallel. Moreover such a connection exists globally
when the dimension of the manifold is even and the rank of a is maximal.

2. We take a 2n — 1-dimensional differentiable manifold M with a closed
2-form oc of a maximal rank 2n — 2. Especially, if a=dω (exact) and
ωΛαn"1Φθ, M is called to have a contact structure. We consider a
differential equation i(X)oc=Q which holds for all vector fields X. When
oc is expressed as (1), Ί(X)OL = Q reduces to
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aijdx ?'= 0 (/, y = l , •••, 2n — 1 ) . ( 2 )

As the rank of (αfV) is 2^ — 2 these can also be written as

cbf = dx^ = _ ί t a 2 " - 1

c 1 c2 c2"-1

with certain functions c1, •• ,c 2 w" 1. This defines curves on M, which we
call e-curves. Then we have

Theorem 1. An e-curve x=x{t) is a path of an affine connection
for which {aij) is parallel. Converselyp, if a curve is a path of an affine
connection for which (a^) is parallel and satisfies an initial condition

( dxJ\
aij—) =0, it is an e-curve.

dt /t=o

Proof. For an #-curve x = x(t) we have aijdxJ/dt = 0, and if we put
dxi/dt = viy we get aijVJ = 0. By covariant differentiation Daij/dt vj +
aijDv*/dt = O. Hence aijDvJ/dt=0. As the rank of (#i7) is maximal, we
have Dvi/dt=kvi

y and so the curve x(t) is a path.
Conversely, if a curve x = x(t) is a path, we have Dvi/dt=kvi for

vi = dxi/dt. As (aij) is parallel we have D(aijVJ)/dt = kaijVJ and by the
assumption {aijVj)t=0 = 0 we have always ahv

J = 0 and so it is an £-curve.
An 0-curve is important in our investigation, but affine connections

considered above are unnecessary for our later discussion.

3. We consider a two-dimensional submanifold S of M generated by a
one-parametric family of ^-curves with a parameter £. We denote by t
a parameter on each £-curve. Then 2-form oc restricted to S is

a = aijdxi/\dxj = 2aij—^dβΛdt.
13 ° dt de

Along ^-curves we have aijdxJ = 0 and so aij'dxJ/dt = 0. Hence <x = 0.
Thus we get

Theorem 2. M is a differentiable manifold with a closed 2-form oc

of maximal rank. Then the 2-form oc vanishes on a two-dimensional sub-

manifold S generated by a one-parametric family of e-curves. If a = dω

and c bounds a simply connected region on S, we have \ ω = 0.
J c

§ 2. Finsler space and contact structure

1. M is an w-dimensional differentiate manifold with local coordinates
x = (x1y - y xn) for a point on M. Local coordinates on the tangent bundle
T(M) of M are given by (xy y) with y = (y\ - ,yn) which are vector
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components in the tangent space at x. Finsler space is a manifold M
with a function F on T(M) such that F=F(xy y) is linear in y and
moreover

By linearity we have

In the Finsler space a length of a curve x = x(t) (t^t^ t2) is defined by

We consider the dual tangent bundle CΎ{M) of M and denote the local
coordinates by (x, z) with z = (z19 •••, zn) dual to y = (/,•••, yn). Next
we put

A-j£ (5)

and define a mapping φ : T(M) -> CΎ(M) by (#, J ) -> (x, p) with ^ =
(&>••• >Λ») It can be verified that the mapping is globally defined.
We put

N=φ(Ύ(M)). (6)

N can be obtained explicitly in the following manner. By virtue of (3)
we can assume det (ΌzF/dyadyb)Φθ (a, b = ly •••, n — 1) at a point (x, y)

without loss of generality. Hence in a neighborhood of a point (x, y) in
T(M) we get from (5)

f - f\x A, - , Pn-i, yn) {β = 1, - , n-1),

and when we put these into pn = dF/dyn, we obtain

ρn = g(χ; A, - , ^ - i ) , (7)

because we have άet(dpi/dyJ) = det(d2F/3yidyJ))=0 and there exists a
functional relation between x, p. Thus N=φ(Ύ(M)) is a submanifold of
CT(M). Generally we call p-manifold in T(M) the submanifold which
can be locally expressed as

G(x,p) = 0 (grad^GφO). ( 8 )

Then N=φ(Ύ(M)) is a ^-manifold by virtue of (7).
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EXAMPLE. AS to Riemannian metric we have F(x, y) = \Zgij(x)yiyJ

and so

Pi = dF/dy = £ , 7 / / F , G(x, p) = giJpiPj - 1 = 0 (9 )

with (giJ) inversive to (g"<7).
We prepare matters necessary for our later discussion. When we

put pi = 3F//dyi=ψi(xf y\ we have naturally G(x, p) = Q, and by differentia-
ting with respect to y we get GpJdpi/dyj = 0> since dpi/dyj=dpj/dyi.
On the other hand F(xy y) is linear in y and so p4(x, y) is homogeneous
of degree 0 in y. Hence we have yJ'3pi/dyJ==0. As the rank of a matrix

is n - 1 , we get

{ (i = l , - . , Λ ) (10)

and hence

^PiGp^yp^yψ-^F. (11)

Next we take a curve c : JC=ΛΓ(^) on M. Then a curve c7 is defined
in T(M) by (x> x) and by the mapping φ : (JC, i ) -> (JC, /?) a curve c/r = φ(c7)
is defined in N. We call the curve c" a /ί/ί of a curve c on M. Here
we have by virtue of (4)

Pidχi = <^(#, jt)Vdt = F(xy x)dt.
dy*

Hence pidxi for a lift c" is an arc-element of a curve c on M.

2 On the dual tangent bundle CΎ(M) with local coordinates (x, z) 1-form
Zidx* can be defined globally. We restrict this to the ^-manifold TV and
we get

ω = pidxi. (12)

Hence

a = dω = dpiΛdx*. (13)

ω defines a contact structure on iV with exception of certain points. In
fact, by (12) and (13)

ωΛ(dω)*-1 = {-l)n'n-^\n-l)\ dx'Λ ... Λ <fo"

ΛίΣC-iy^ArfAΛ -A dp, A - Λdpn),
i

where J^ f means a lack of a term dp{. In case G/>Λφ0 we have by (8)

{Gidχi + Gdpa) (i = l, , n ; Λ = 1 , . . . , Λ - 1 ) (14)
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and so

By (11) this vanishes only for y such that F(x, y) = 0. Thus we get

Theorem 3. ω=ρidxi defines a contact structure on N except for
points {xy p) corresponding to such (x, y) that F(x,y) = 0 holds.

By the discussion in section 1 an £-curve is introduced on N according

to the 2-form a. An £-curve is a solution of the equation if — )<x = 0,

/ a \ ^dχi>

i( )cc = 0, which we will write explicitly in the case where ΛΠs given by

WpJ
G(x, p) = 0. (15)

We assume Gpnφ0 without loss of generality. Then we have by (14)

a = dpiAdxi = dpaAdxa- — (Gxidxi-\-Gpadpa)Adxn.
Gpn

Hence we get from i ( J L W = o and i
\dχt/ dp

= dif_ == dp, = = dpn

Gρτ Gpn —Gx

λ ~~Gx

n

This is a differential equation of an £-curve on N. Along the solutions
G(x, p) is constant and when an initial condition x(0), p(0) satisfies the
relation G(x(0), p(0)) = 0> we have always G(xy p) = 0> and the solution is
an £-curve on N.

We project an £-curve e: x = x(t)y p=p(t) onto a curve E: x = x(t)
on M. Then we have dxι/dt^μGp^x^ p) by virtue of (16) and if y is
such that (xy y) is mapped on (xy p) by φ, we have yi=XGpi(Xy p) by (10).
Hence dxi/dt = μλ~1yiy and p of the curve e corresponds to dx/dt of E.

Now we can prove the following theorem due to E. Cartan. (cf. [3]
p. 187)

Theorem 4. M is a Finsler space and N is the p-manifold constructed
over M. If we project any e-curve on N onto M, we get an extremal of
the Finsler space M. Conversely all the extremals of M can be obtained
in this way.

Proof. We take an g-curve c on N and two points a and b on cy

whose projections on M are a curve C and two points A and B. We
connect the two points A and B by a one-parametric family of curves
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C ε: x=x(t,6) (t1=ίt^t2) and we assume CZ = C for 6=0. We lift these
curves Cε to cz on N9 which can be expressed as x=x(t, £) and p=p(t, £).
We denote differential for the variable t by dt and that of 6 by 86,
which are independent. Then we have for dω = dpi Λ dxι

d(ω(δ))-8(ω(d)) = dpiSxt-δpidx*. (17)

This formula, due to E. Cartan, is now justified in modern theory as

d(ω(E))(T)-d(ω(T))(E) = dp(T)dx(E)-dp(E)dx{T)

by taking T=d/dt, E=d/dS. We use an old style for the sake of brevity
and we get

Sω(d) = dω(8)-(dpiSχ^-8pidxi).

Along an 0-curve c we have dpi=—\Gxidt, dxi=XGpidt and hence

dpi8χi-8pidxi = -X8Gdt = 0,

as G vanishes always. Moreover the points A> B corresponding to t± and

t2 are fixed each and so ω(δ) = 0 for t = t19 t2. Thus we have 8\ω(d) = 0

along the curve c. As ω(d) is an arc-elements along the curves C on M
the curve C is an extremal.

As ^-curves can be taken in such a way that their projection on M
passes through any point x on M and its tangent at x takes any direction
when we take an initial condition for an #-curve suitably. Hence any
extremal on M is a projection of an £-curve.

As an application of Theorem 4 we can prove Jacobi's enveloping
theorem by the use of Stokes's theorem. We take a point x o n a curve
x=x(t) and a direction represented by (x, y). This direction is called
transversal to the curve at the point if pidxi/dt = 0 for p corresponding
to y by the mapping φ : {x, y) -> (x, p). We take a one-parametric family
of extremals having contact with a curve C and a curve T transversal
to the extremals. For two extremals of the family points of contact
with C are A, B and the points of intersection with T are A', Bf respec-
tively. Then Jacobi's enveloping theorem asserts

ArA-BrB = BA,

where AΆ, B'B mean the length on extremals and BA that of C. This
can be proved as follows under the assumption that the region D bounded
by the curves AfABBfA and generated by the extremals is homeomor-
phic to a simply connected domain on a plane.

We take tangent vectors {x, x) at each point x of the extremals of
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the family in question, and p=p(x) such that φ: (x> x) -> (#, p). Then
ω=ρidxi is a 1-form on our Finsler space. We lift the region D to
CT(M) and apply Theorem 2. Then we have

0 = f dω = [ ω+f ω+f ω+f
JD JA'A JAB JBB' J

ω =
B'A'

which was to be proved.

Hamiltonian function H in the classical theory can be derived as
follows. As F(x> y) is linear in y we can put F(x, y) =ynL(x, z\ where
z = (z\ --yZ"-1) and za=ya/yn (a = l, •••, n-ΐ). Then we have

dya dza dyn dza

On account of the relation (3) we have det(32L/dzadzb)φ0 without loss
of generality and we get za=ψa(x> p') and hence

pn = L(xy ψ(x, ϊ/))-φa(x, P')pa >

where p' = (ply •• ,^ M _ 1 ). This is the equation (7) in explicit form. The
second side of the above equation is — H(x, p) and we get

ω =pa dxa +pn dxn = pa dxa - Hdxn .

§ 3. Dilatation in Finsler spaces

1. We take a plane element dual to a tangent of an extremal in Finsler
space M and translate it along the extremal by constant length. We
call this translation a dilatation in Finsler space. On the other hand a
homogeneous contact transformation is defined in a space with a contact
structure as a transformation preserving the fundamental 1-form ω=pidxi.
Then we have the following theorem.

Theorem 5. A dilatation in Finsler space M induces a homogeneous

contact transformation on the corresponding p~manifold N.

Proof. A dilatation in M induces on N such a translation T of a

point (jXy p) to a point (x,p) along an #-curve that \ω= \pidxi = const.

We take a segment AB of a curve in N and translate it to AB by T.
Then we get a region generated by ^-curves and bounded by ABBAA,
and we get by Theorem 2

S ω+\ ω+\ ω+\ ω = 0 ,
AB JBB JBA JAA
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By the definition of dilatation we have I _ω=\ ω, and so
JAA JBB

[ ω = ( ω. (18)
J AB J AB

As AB is arbitrary we get

fidx* = Pidx*, (19)

which was to be proved.
Theorem 5 is not essentially new, but it puts a new light from a

geometric point of view upon a classical result, where ω=ρidxi is a
relative invariant and dω = dpiAdxi an absolute one. Here we have
proved that ω is itself invariant for dilatation.

Theorem 5 has a following application. We define a measure element
in Ny namely that of plane elements (x, p) in Finsler space M, by

dV = —i—(-ly^

d

Substituting <o=pidXi we get

dV = dxιA ••• Λ dxnΛ ( 2 (-ly^pidpiΛ ••• Λ dp£Λ -- A dpn)
i

By virtue of Theorem 5 we get

Theorem 6. A measure \dV for plane elements in a Finsler space

is invariant for a dilatation.

In a Riemannian space with a metric ds2=gijdxidxj we have as a
volume element of points

dv = gdx1 Λ--Λdxn (g= Vdet(gϊj))

By (9) p = (ply - ,pn) are covariant components of a unit vector and we
can define a measure of unit vectors by

do- = g'1 Σ (-ly-'piDp.A ... Λ DpiΛ ••• Λ Dpn .
i

where Dpi means a covariant differential of p. Then we have

dV = dυAdσ

by virtue of the relation Dp^dpi (mod dx\ •••, dxn). In this case we can
consider a dilatation as a translation of a tangent unit vector along a
geodesic by constant length, which we call a geodesic flow. The invari-

ance of \dV for a geodesic flow is fundamental in the ergodic theory
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and has been treated by several authors, (cf. for example [4] [5])

2. As to Riemannian manifold of constant curvature, not only a volume
element but also a Riemannian metric is invariant for a geodesic flow.
We take rectangular frames on the tangent spaces of M and represent
the Riemannian metric as

ds2 = Σ ω? (20)
ί

with 1-forms ωt . Connection forms of the Riemannian connection are
given by ωίy in such a way that

dω = ωyΛωyί (α>.y = -ωjΊ) , (21)

and curvature forms are given by

d<ύij-<oikΛ ωkj = %RijkhG>khωh. {Rijkh = -Rijhk) (22)

We take geodesies and denote by 8 a differential along the geodesies
and by 5 an arc-length along them. We put

ωf(8) = VfSs, ωjΊ(δ) = ξjΊδs .

When we take a differential d independent of 8 we have by (21)

rfω.(δ)-δω.(ί/) = ωy(rf)ωyi.(δ)-ωy(S)ωyί(d)

and putting

ω,.(rf) = ω , ωμ(d) = ωμ , Dvt = dVi + VjO^

we get

δα>, = ( - ω. ξjΊ + D ,̂.) δ 5 . (23)

As (Vi) is a unit tangent vector along a geodesic,

δι;,= - ι ; y f y < 8 s . (24)

By virtue of (22)

and so

Now

and as S(dVi)=d(δVi) we get

δ(Dvg)/δs = d( - Vj ξjΊ) - t; Λ ? A y ω y ί + ϋy(dfy ί - ωy j kf w + ξjkωki - Rjikhωkvh)

G>kvh. (25)
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Thus we have on account of (23)

\ γs(Έ ω?) = Σ ^ = Dυr*i (26)

and by (25)

Here we assume that M is of constant curvature K and then we get for
a unit vector (vt)

RJikhVjVh = -K(δ.kδih-δ.hδik)VjVh = Kipik-ViVk)

and so

i f ( Σ {DVi)) KDvM + KtoDOtXv^J KDVi;. (27)
2 os i

From (26) and (27) we get

S(#Σ«>?+Σ(£^)2) = 0.

This can be stated as follows.

Theorem 7. On a Riemannίan manifold M of constant curvature K
we denote a square of an arc-element by ds2 and Σ (DviT by do2, where

i

Dv{ means a covariant differential of a unit vector v on M. Then Kds2+d<r2

is an invariant of a geodesic flow.

This theorem has elementary applications in the non-euclidean geo-
metry, but the author is not aware how it effects on the ergodic theory.

§4. Certain contact transformations

1. A homogeneous contact transformation / on CT(M) is a mapping
(x, z)-*(x, z) such that zidxi = zidxi. If it maps ^-manifold iVinto itself
and (xy p) is mapped on (xy p), we have

pi dx{ = pi dxι, hence dpi Λ dx* = dpi A dxι.

If we take coordinates I1, •••, ξ2n~λ on N, this can be written as

aΛβ(ξ) dξ* Λ d& = aaβ(ξ) dξ'Λdψ. (a,β = l,-,2n-l)

If the induced mapping ξ->ξ is regular, namely det (3p/3| β )φ0, equa-
tions aΛβ(ξ)dξβ = 0 and aaβ(ξ)dξβ = 0 are equivalent. In fact

)% H = M« . hence a^)dl%
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This shows that ^-curves are mapped on ^-curves and we get

Theorem 8. // a homogeneous contact transformation on CΎ(M) maps
p-manifold N on itself and the induced mapping is regular, it maps
extremals on extremals on M.

Dilatation maps extremals on themselves, but it maps each extremals
on itself. We give here a more general example. A one-parametric
family of contact transformations can be given by solving an ordinary
differential equation

x t, pi 8t (28)

dpi dx*

where / is a parameter. If U satisfies an equation

GxiUPi-GPiUxi = 0 (29)
we have δG = 0. If G(x,p) = 0 is satisfied for an initial condition, it is
always satisfied and we get a one parametric family of homogeneous
transformations preserving extremals. In the euclidean case we have
F = V Σ ( / ) 2 a n d w e get by (9) G ( j f , ί ) = Σ ί 5 - l = 0 . Then (29) reduces

i i

to pidU/dxi = Oy whose general solution is given by

U= φ(ρ1x
2-ρ2x\ρ1x

3-ρ3x\ ~,PιXn-ρnx\Pι, •••,/>„)

with an arbitrary function φ.

2. When a homogeneous contact transformation (xy p) -> (xy p) in the
euclidean space is such that

P = ΛP),

it preverves hyperplanes. In fact for a plane element (x, p) on a
hyperplane p is constant and also pidxi = Q. Hence pidx^O, and as
p = const, we get piX*= const. Thus the plane element (xy p) is also on
a fixed hyperplane. Laguerre transformation affords an example of
transformations here considered.
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