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1. Introduction. In this note we consider a special class of arith-
metical functions which admit of seris expansion of the form (2.4). Two
general theorems are proved in §2, the first being of representation-
inversion type (Theorem 2.1), the second being an elementary asymptotic
estimate for summatory functions (Theorem 2. 2).

These two results are applied in § 3 to functions arising from the
generalized Euler function,

(1.1 bs(n) =d8§]=n w(d)* s, p(n) = d(n),
(n) denoting the Mobius symbol, and the generalized Dedekind function,
(1.2) ) = 3D, () = ).

In particular, assuming s_>1, we obtain in Theorem 3.2 estimates for
the average order of (p,(n)/n’)%, (n’/b. ()%, (r(n)/n’)%, (n°/r(m))*, wWhere
k is an arbitrary positive integer. These estimates are based on the
series representations obtained in Theorem 3.1. Other combinations of
o (n) and r,(n) are also considered.

For a discussion of similar functions, corresponding to the case s=1
(excluded here), we mention Chowla [1] and Ward [5]. Their methods
are quite different, however, from the one used in the present paper.

2. Two general theorems. The first theorem is based on the
following well-known inversion formula for infinite series (cf. [4, Theorem
27070).

Lemma 2.1. If F(n) is an arithmetical function such that

@.1) SV | F(rr,)|

71y Te=1

converges, then F(n) may be represented in the form

(2.2) F(n) = 3 g(nr),
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where
(2.3) &) = 3 wle)Fer),

the series in (2.2) being absolutely comvergent.

There is a converse to this result, but it will not be required in
what follows.

A function f(n) will be said to be of #ype A if

T

(2.4) f(n) =

él'.ME

g),

r

where the series is absolutely convergent. We now prove the following
theorem relating to functions of this class. First define &(#n) to be 1
or 0 according as =1 or n_>1.

Theorem 2.1. [If f(n) is of the form
2.5) fln)= 2.; w(d)F@d),

where (2.1) is convergent, then f(n) is of type A and has the representation
(2.4), with g(r) determined by (2.3). Moreover, if f(n) is of type A with
a representation (2.4), then f(n) can be represented in the form (2.5), with
F(n) determined by the absolutely convergent series in (2.2).

Proof. Let f(n) be defined by (2.5) such that (2.1) converges. Then
by the preceding lemma, F(z) has the absolutely convergent series re-
presentation (2.2), with g(») determined by (2.3). Thus by the funda-
mental property of u(n),

fn) = 3 Wd)F(d) = 3 uld) 35 glde) = 3 uld) 3180) = 28(r) 5 uld)
dir

= 318, 7)),

which is the same as (2.4). This completes the proof of the first half
of the theorem, because the absolute convergence of (2.4) is a con-
sequence of that of (2.2). The proof of the second half does not depend
upon series inversion, and results on reversing the steps in the above

computation.

ReEMARK 2.1. The actual form (2.3) of g(r) in the Lemma is not
required in the above proof. In fact, g(») in (2.4) is not necessarily

unique (see Remark 3. 2).
Before proving our next result we introduce the following notation.
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The Legendre totient, defined to be the number of positive integers <=x
relatively prime to #, will be denoted ¢(x, ). In particular, ¢(n, #)=d(n).
The number of decompositions of # as a product of k positive integers,
k a fixed integer =1, will be denoted by T.(n). In particular 7,(n)=1
and 7,(n)=7(n) is the number of divisors of #». The number of square-
free divisors of # will be denoted by 6(n). We shall need some known
elementary estimates.

Lemma 2.2 (cf. [2, 3.9)]). If x=1, then
2.6) B, 1) = 220 4

where h(n)=h(n, x) is bounded as a function of x; more precisely, there
exists a positive constant ¢ such that |h(n)| <cd(n) for all n and all real
x =1,
: Lemma 2. 3. If k is a given integer =1, then 7 (n)=0(n) for all
&>0. '

REMARK 2.2. This result follows from the special case in which
k=2 [4, theorem 314]; evidently we have also 6(z)=0(n°) for all £_>0.

Theorem 2.2. If f.(n) is defined by

@7 fm = 3y 89,

where gn)=0n°) for all E>0 (so that the series in (2.7) converges ab-
solutely for s_>1), then for x=1

2.9 5 50 = (S8 0w, s>,

n$+1
the series in (2.8) bez'ng absolutely convergent.

Proof. The absolute convergence of the seriés in (2.8) is a con-
sequence of the absolute convergence of (2.7) and the fact that ¢(n) <n.
Moreover by (2.7), for s >1,

n; fs(") =

n<x r=1 r =1 ¥ "=z

the rearrangement being justified by the absolute convergence of (2.7).
Hence
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(2.9) S fun) = i g(r)qﬁr(sx, r)

where the series is absolutely convergent for all x=1. Therefore, one
may write, by (2. 6),

(2.10) - zfs(n) — ng(:)s(’b;(r)'*" 28’(2)?(7’) ’ r=>1,

the (absolute) convergence of the second series in (2.10) being assured
by that of the first series and that of the series in (2.9). Moreover, by
Lemma 2.2,

8N | 3 [8OMN)| 5~ 180) | 6)
="M= 7

S

4

Y

| =

4 rs ‘

“and the latter series converges by Remark 2.2. The proof is complete.

3. Applications. In addition to the notation of the preceding sec-
tions, we shall require the following. Let M(n) denote Liouville’s function,
place ¢'(n)=\mn)0n) and q(n)=px*(n), define t(n) to be 1 or O according
as .z is or: is not a square, and let #'(n)=t#)u(~/n). Also, let the k-
tuple convolution of a function f(n) be defined by

Fim) = 3 f@d) -~ fdv,  Fm)=fo),

where the summation is over all d,, ---, d, such that d,, ---,d,=n, k a
positive integer. Clearly, 7,(#) is the k-tuple convolution of = ,(n)=1.
In addition, we shall use w,(n), M,(n), qi(n), 0.(n), 6i(n), t.(n), and ¢,(n),
to denote, respectively, the convolutions of u(z), A(n), ¢(n), 0(n), 6'(n), t(n),
and t'(n).

ReMARK 3.1. By Lemma 2.3, F,(n)=0(°) for every & >0 and each
of the eight special functions f(») in the list above: Because f(n)=0(#n°)
for each of these functions, a consequence of Remark 2.2 and the
boundedness of u(n), AM(n), t(r), and q(n).

We also recall the fundamental properties of A(n),

3.1) 22 Md) = t(n), dsZ}nMd)q(S) =¢&(n),

din

and two identities,
(3.2) AN = 0m), 3 u(da®) = ),

which are easily verified, using the multiplicative properties of the func-
tions in question.
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We now appeal Theorem 2.1 to expand a number of arithmetical
functions in series of the form (2.4), and in fact, in the form of the
series (2.7) appearing in Theorem 2.2. The Riemann zeta-function will
be denoted &(s).

Theorem 3.1. [n the above notation, for all s 1 and positive in-
tegers k,

s B - 5780
.0 () - 5;555’ Z al
S () - éééé%’ 5 %0,
s () - 5 5 %
6.9 (b 1 Etfr)
310 (siompon) =20 B 52
Proot, From (1.1) and (1.2) we have
(3.11) bl) _ sreld) v (1_pl>
3.12) ‘!,’,g(ﬂ) ;M(d) n(1+'1;1_5>’

where the products are over the prime divisors p of n. We apply
Theorem 2.1 to these two functions.

First take f(n)=¢(n)/n°, so that F{n)=n"° in Theorem 2.1. Since
(2.1) converges, f(r) must have a representation (2.4) with

£~ S uOFer) = 3D = 1
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therefore,

‘ ‘ bs(m) . 1 &H 1
(3.13) n s ,Z=1 >

r,m=1

Taking the k-th power of (3.13) yields (3. 3), by Dirichlet multiplication,
and (3.4) results on taking reciprocals.

Next we suppose f(n)=++(n)/n’ in Theorem 2.1. Then by (3.12),
F(n)=p(n)n™°, and since (2.1) converges with this choice for F(x), we
have the representation (2.4) of f(xn), with

gr) = 33 wOF(er) = = 33 wleulerie™

Hence by (3.12), with primes denoted by p,

0§ w0 <>E‘<1+¢%)
o=

/1_ %
- u ) )

With the latter value of g(r) in (2.4), one obtains

Yo(m) _ E(s) & p»)
(3.14) v T E@) A wm

(r,n)=1

We can transform this expansion for ¥,(#)/n° by again using (3.12). In
particular, we have

T (a) = B 8- W<Hp )

m(2< i) = 11 (32

which may be restated as

Ys(m) _ E(s)
(3.15) e §(2s)

7\.r)

r
=1

Mz

:ll
v--

Taking k-th powers, (3.5) results from (3. 15). On the basis of the second
formula in (3.1), (3.6) is an immediate consequence of (3.5)
The other formulas follow similarly: (3.7) from (3.3) and (3.6);
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(3.8) from (3.4) and (3.5) on the basis of (3.2a); (3.9) from (3.3) and
(3.5) by (3.1a); and (3.10) from (3.4) and (3.6) by (3.2b). * The proof
is now complete.

REMARK 3.2. We note the two distinct representations (3.14) and
(3.15) of type (2.4) for the function yr(n)/n° (s_>1).

The series identities of the preceding theorem will now be used to
obtain the following estimates.

Theorem 3.2. Suppose that s _>1 and that k is a positive integer.
Then for x=1,

(3. 16) = ("5;51’))" 5&3) (}3 i) j’i(”)) £+0(1),
(3.17) n§,(¢§;>)k = £X(s) (Z:J "’"—(Z)—‘b@> x+0(1),
(3.18) z ("';z(s”)y ggs))(fl 7"*(;’231(")) £+0(1),
(3.19) ,.§,( #,:‘(n))k ?,%S))(Z 2umien) £+0(1),
(3. 20) = <¢s((’;))> gk,ﬁﬁf))( ( k(,’?fi(”.)) x+0(1),
3.21) P <¢:((;;z)))k 32(;3) (& %080 50y,
(3.22) ; (%("N&("))k ;"’l(s) <E’°: tk(ZZi(n)) x+0(1),
6.2 () = o (5 50H) row).

All occurring series are absolutely convergent.

Proof. Theorem 2.2 is applicable to the functions in question by
reason of Remark 3.1 and the series representations of Theorem 3. 1.

The theorem results on applying (2. 8).
We specialize to the case k=2 in (3.16) and (3.17) to obtain the
following estimates in product form.

Corollary 3.2.1. If s>1, then for x=1,

(3. 24) = (2@) = &I (1— %ﬁ— p—}m) Loy,

(3.25) ) = 1 g siy) T
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the products ranging over the primes p.

The details of expanding the series in (3. 16) and (3. 17) with k=2 are

omitted. These product expansions, as infinite products for each of the
series occuring in Theorem 3.2, can be obtained by using a result of
Erdos concerning mean values of arithmetical functions [3, (2)]. Erdos’s
method, however, yields only remainder terms of order o(x) for the pro-
blems under discussion.
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