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Boolean Algebras and Fields of Sets

By Shizu ENOMOTO

An arbitrary Boolean algebra is isomorphic with a field of sets.υ

However, a σ-complete Boolean algebra can be no isomorph of a
σ -additive field of sets : for example, the complete quotient algebra
B/I where B is the family of all Borel sets of the set [0,1] and 7
is the family of all elements of B which are of Lebesgue measure
0. In general, such a problem of the representation of an π-complete
Boolean algebra as an n-additive field of sets, has been studied by
a number of authors.2)

In this paper, in relation to such a problems, we shall chiefly
investigate an arbitrary Boolean algebra which is not always com-
plete, in connection with the structure of a field of sets on which it
is represented or with the existence of special measures on it. In
order to investigate such a problem as clearly as possible, we introduce
in § 1 the conception of a ramification set and in § 2 we consider a
representation of a Boolean algebra on a field of sets by using rami-
fication sets in it. The results given in §3 contain the fact that the
problem already posed by A. Horn-A. Tarski in their paper [1], i.e.
the problem whether for an arbitrary Boolean algebra it is atomic if
and only if it is distributive in the wider sense, can be answered in
the positive.

Let us notice here that it is entirely due to Theorems 1.2 and 1. 4
that the theorems in § 3 and § 4 hold without any condition of com-
pleteness properties of a Boolean algebra.3)

§ 1. Ramification set.

Throughout the present paper, the symbol A designates a Boolean
algebra. In this section, we shall introduce the conception of a

1) See M. H. Stone [1], [2].
2) Among the authors, we may mention A. Tarski [l]-[5], A. Horn —A. Tarski [1],

L. H. Loomis [1], [2], R. Sikorski [1], [2], L. Rieger [1] etc.
3) For notions usually used in lattice theory and for theorems, we refer to G. Birkhoff
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ramification set and consider a number of properties which are necessary
in § 2 and § 3.

DEFINITION 1.1. If a subset R of a Boolean algebra A which
does not contain 0 satisfies the following conditions, then it is called
a ramification set.*)

1 ) For any elements x,y£R, either x f\ y = 0 or x :> y or x <: y.
2) For every element x G R, the set \y\y£R and y^x] is totally

ordered and any subset of it has a greatest element.

DEFINITION 1. 2. For ramification sets R1 and R2 , we define
R1<R2 if Rιζ^R2 and if, whenever xeRλ and y£R2—Rl9 we have
x f\y = Q or x^>y. The relation < thus defined establishes a partial
ordering in the family of all ramification sets in A. We say that R
is a maximal ramification set if it is maximal by the relation < .

Unless otherwise stated the symbols R,Ra,R
f etc. will be used to

denote maximal ramification sets.

Theorem 1. 1. For an arbitrary ramification set R in A, there is a
maximal ramification set which contains /2.5)

Theorem 1. 2. For any elements a9aλeR such that a^al9 there
exists a subset M0 C R such that a?! f\ x2 = 0 whenever xτ , x2 G M0 and
%ι =4= #2 » and such that aλ G M0 and a = \Jxζ, M x.

Proof. Let -Bΐ be a family of all subsets Mζ=R such that
#ιΛ#2~ 0 whenever xl9x2eM and ̂  /°\ a?2 •= 0, and such that M3C&!
and a? <; a for every #GM, and let us define Mλ ^ M2 for M!,M2G

sJJί
if Λf i is a refinement of M2 , then 9K is the partially ordered set, and
moreover inductive with respect to the relation. To see this, it is
enough to show that a totally ordered subset 3J11 of 9M has a least
upper bound. Let

Mr = { f fΊβ'^ΣMeaji i^ and fchere ίs no

ΣM€%^ such that »">»'}»

then this is the required set. For, if we put K=
and x>x0\ for α? 0 €Af (MGTOJ, then K has a greatest element x0

r,
since #! Λ ^*2 ̂  ̂ o whenever a?j , x2 G ^Γ, and so α?ι ̂  α;2 or α;2 ̂  x^ by the

4) See A. Horn—A. Tarski [1]. As we need for the applications, we here defined a
ramification set for a subset R which does not contain 0.

5) We can prove easily, by using Zorn's Lemma.
6) By " 2 ", " -f- ", we understand the union of sets, and by " ̂ 3 "> " "> the common

part of sets.
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property of R. Then evidently, #0' €Λf 0 and x0 <£ a?,,'."- Therefore, ΛΓ is
an upper bound of 2Λ. Moreover we see easily that M' is the least
upper bound. Hence, there is a maximal element' M0 of 2K by Zorn's
lemma. Let us show that the subset M0 of R thus defined is the set
required in this theorem. To see this, it is enough to show that
a — \Jχ € M x. Suppose on the contrary that M0 does not satisfy
a = \Jx(:Mox, then there exists an element &' 6 A such that α>α' and
a'^x for every #e Λf 0 . By the property of /έ there is an element x
of R such that a :> # and # A (<*—<*') Φ 0,7) since α—α' € A and a—af Φ 0.
Let B be the set of such elements x, and suppose for a moment that
for every xeβ, a? Aαι — 0 does not hold, i.e. #>c^. Then, first, if
we suppose that #>α—of . for every x^B, then for β' = R+ {(a—af}\9

Rf > R must hold. This contradicts the property of R. Second, if we
suppose that there is an x£B δuch that x = a—a', then xf\al = 0
since a£M0 and ar'^>al. This contradicts #>(&! for every x£B.
Therefore, there must be an xeB such that (α—α')—α?Φθ. Let B0 be
the set of such elements x. For any elements a? l f x2£B9 xl^>a1 and
α !̂ > a.2 hold since !̂ and x2 are the elements of B, and so #! /"\ x2 Φ 0.
Consequently, since B2 is a tatally ordered set, there exists the greatest
element x0 of B0. Now, if we put c&0 = (α—α')— # and β' = β+jα 0}
for such #0, it is easy to see Rf > -B. This contradicts the property
of R. Therefore there exists x0eB such that x0Γ\al = 0, i.e. there
exists x0eR such that a :> #0, α;0 f\(a—α')Φ 0 and α;0Λ

α —0. For
such a?o f let us put-Λί 0 '= {a?0}+ {a? |a?eΛf 0 and #Λ#o~=°} Since
αx 6 M0 and dj A ^o = 0, fli 6 M', and also, since #0 ̂  α and M0

r is the
subset of R such that a?x f\ x2 = 0 whenever xl9 x2 e M0' and xl Φ α;2,
we have M0

r € 9Jί. For an x 6 M0 such that α; A α;0 = 0, x e M0

f is evident.
For an x e M0 such that a? Λ #o Φ 0, either a; ̂  α;0 or a? < α;0. If we
suppose here x:>xQ9 xΓ\(a—af}=Q since a/^x, and so x0f\(a—af} = 0.
This contradicts x0 f\ (α—α')Φθ. Therefore M0

f^M0, and moreover
since x0f\(a—ar) Φ 0, x0 e Λί0 and M0' Φ M0. This contradiction for
the definition of M0 proves the present theorem.

Evidently

Theorem 1. 3. For every maximal ramification set RC1A, an atom
α 0 G A is an element of R.

DEFINITION 1.3. A subset / of a Boolean algebra A which does
not contain 0, is called a point component if it satisfies the following
conditions.

7) We denote by α-b, the meet 006', where bf is the complement of b.
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1) I is a totally ordered set, and any subset of / has a greatest
element.

2) {?/ |2/6Aand y<^x for every # € / } = {Oj.
In particular, when /is a subset of β, it is called point component in R.

Unless otherwise stated I,Ia,Γ etc. will be used to denote point
components. Clearly a point is a ramification set.

Now we obtain easily the following theorem.

Theorem 1.4. For a point component Iζ=A, there exists Γ\xtrX,
and we have either

1) /V/α = 0
or

2 ) Λa€/ # = #o» #o ^ J αm^ #o fe an atom.

Theorem 1.5. For any totally ordered subset J of R, there exists a
point component in R which contains J.50

§2. Representations of Boolean algebras.

It is well known that a Boolean algebra is iεomorphic with a field
of sets.1' But when, for example, we consider the problem under which
conditions a Boolean algebra has a special kind of measure, it may be
hard to see the structure of a Boolean algebra by representations given
until now, because a measure gives the connection between elements
xl and x2 such that xl f\ x2 == 0. Therefore, by using a ramification
set which is already used by Horn-Tarski in order to investigate the
problem of the existence of a strictly positive measure in a Boolean
algebra,8' and by using a point component in order to investigate the
connections among ramification sets in it, we shall represent here a
Boolean algebra on a field of sets.

DEFINITION 2.1. Let Iτ and I2 be point components in a Boolean
algebra A. Then if, for every element x£ll9 there is xr£l2 such that
x :> xf, we define Il<I2. If I± :> I2 and I1<±I2, we define Iλ ~72.

Clearly the relation " ~ " satisfies the equivalence relation.

DEFINITION 2.2. Let βλ(λ € Λ) be the family of all maximal rami-
fication sets in A. Let Λ' c; Λ and take an arbitrary point component
7λ in Rλ and let (/λ; λGΛ') be the class of such point components. By
SA,9 we shall denote the family of all such classes (7λ; λ eΛ') satisfying
the following three conditions.

8) See A. Horn—A. Tarski [1], [2].
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1) (7 λ;λeA') satisfies the finite intersection property, i.e.

A"-ι χi = 0 f°r an arbitrary finite elements xt ^ΣλGΛ' A. (i = 1, 2, ••• , %).
2 ) For any point component jfy in 72^' corresponding to a suffix

λ0 which is an element of Λ— A', the class (7λ;λ€A' + {λ0}) consisting
of such 70 and the point components 7λ belonging to the class
(7 λ;λ€Λ') does not satisfy the finite intersection property.

3) p 1 ==(7 λ;λ€A') and p2 = (/λ'; λGΛ') satisfying 1) and 2), we
regard as same one if 7λ ~ 7λ' for every λ € A'.
An element of SΛ/ so defined is called a pomί. Of course, it may happen
that SA, is void for some A' Cj A. Any of the point components 7λ

which constitute a point p of SA/ , will be called a component of .p.

Theorem 2. 1. For cm arbitrary point component 7λ iw 72λ , έλerβ is
α pomt p of SA, for a suitable subset A' of A. 7λ is a point component
of p.5)

Theorem 2. 2. For an arbitrary point p = (7λ; λ € A') o/ SΛ/(A' Cl A),

£/zβ s£ί β ̂  = { a \ a G A, 3 # ". # € 2 \e Δ' ^λ α^ ct ̂  a; } is α maximal dual ideal.

Proof. 1°) For any finite number of elements at e Bp (i = 1, 2, ••• ,w),
A?-ι αi =1= 0. For each α^ , there exists a?t such that o>i ̂  a?€ and
^ί^Σx^A^λ (7λ;λeA') having the property Aϊ- i^ΦO and so

A?-ι <*>ι Φ 0.
2°) For an arbitrary element α which is not an element of Bp,

there is a finite number of elements ateBp (ί = 1,2, ••• 9ri) such that
tt = 0. Suppose this is not the case. Then since ΣλeΔ'A

ι^«)Φθ for anY finite number of elements ^eΣλ^A^λ
(i = 1, 2, ••• , m). Therefore, Γλo = \af\x\x el0] is a point component
for any suffix λ0 G A'. We see easily, that the class of point com-
ponents consisting of 7 ô and of all the components 7λ(λ € A') of p has
the finite intersection property. Therefore, since X0 must belong to A'
by the definition of a point p of SA,, 7J ~7^ and so a£Bp. This
is obviously a contradiction.

Theorem 2. 3. For any points 2>ι>P 2

e ΣΛ / SΔ < S> Δ /, Bp ^=Bp if

Pi 4= P2 .

Proof. 1°) When pj e SΛ/ , p2 € SΔ// and A' 4= A". We can suppose
Λ'-Λ"Φφ since Δ'ΦΛ". Let Pl = (7λ ';λ6A /) and p, = (7λ";λeA/ /).
Since a class consisting of all components of p2 and a component 7^
of P! corresponding to λ 0 GA'— A" has not the finite intersection pro-
perty, there are an element x0

f of Γλ and a finite number of elements

x" (i = l,2, -,m) of Σλ€Δ"A" such that (A?.ι« fOA»o'^=0. If we
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suppose that this α?0' is an element of Bp , there is an element xn of

•Σλ6λ" 4" such that xtf ;> α", And so ( Arli #") A *0' Λ'α" = (Λ?-ι *<")
P\xn Φ 0, and (A?=ι #/0 A#o' ̂  0. This is an obvious contradition,
and therefore #0' €•#*• On fcbe other hand, xQ

f eBpι . Hence B^ Φ Bp^..
2°) When px , p2 e SA/ and PI Φ p2 : Let px == (// λ e Λ') and

p2 = (/λ"; x €Λ"), then since PI Φ p2 , there is a suffix and we can not
have the relation Γλ ~ ΓJ[Q for the λ0 . Hence, it is easy to see
BP^BP>

DEFINITION 2.2. For an arbitrary element a of A, we define
^α; and

9V(α) and 9>Δ(α) thus defined give the mappings from A on the
respective families of subsets of SΛ, and of S = ΣΛ^ΛSΛ^

Theorem 2. 4. A Boolean algebra A is ίsomorphίc with the field of
sets given by the mapping φ. φ(e) — S and φ(Q}=φ where e designate
the unit element of A.

Proof. It is evident that φ(e) = S and ^(0) = φ. Let Si = [Bp \ p G S\ ,
then by the last theorem, the mapping ψ(p) = Bp gives the one-to-one
correspondence between S and SI. Let Φ(α) be the family of all maximal
dual ideals containing a e A, and let Ω, be the family of all maximal
dual ideals, then it is well known that the mapping Φ(α) gives the
isomorphic mapping between A and the family of subsets of ί2.9) 1°)
ψ(φ(ά)) = Φ(α) Sl: If p is a point of φ(a\ a€φ(p) = Bp. And. since
ψ(p) is a maximal dual ideal, ψ(p)eΦ(α) and so ^(^(α))CΦ(α) 3L
On the other hand, if Bp is an element of Φ(c&) Sί, then a£Bp. There-
fore, if we put p = (7 λ;λGΛ r), there is an element x of Σλ€Λ'Λ such
that a:>x. And so, p£φκr(a)ξ-φ(a\ Hence ψ(93(α))2Φ(α) SI» since
p = ψ-1(Bp). 2°) If α,6eA, then φ(a,\J'V) = φ(a) + φ(V) and φ(a Γ\b}

φ(a\Jb} = γ~\Φ(a\J b) ^ = ψ-1((Φ(α) Sl) + (Φ(6) Sl))
)-4-Λ/r-i(Φ(6).S[) = φ(a) + φ(V). Analogously, 9<α A &) = ̂ (α)

f~\φ(b}. 3°) For an element α of A which is not 0, 9?(α)φφ; There
is a maximal ramification set /2; containing the element α, and thereΛO
is a point component 70 in Λ^ containing α. And, by Theorem 2.1,
there is a point p of SA/(Λ' C Λ) such that /^ is the component of
the point p. Hence, φ(ά) Φ </>.

§3. Atomic Boolean algebras.

If a Boolean algebra has the property that for every aeA, there

9) See, for example^ G. Birkhoff [1].
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Theorem 3.1. For a Boolean algebra A, the following 4 conditions
l)-4) are equivalent with each other.

1) A is isomorphic with a field of sets which is completely additive
in the wider sense.

2) For every aeA which is not 0, there is a two-valued measure f
which is strongly completely additive in the wider sense and for which

/(α) = l.
3 ) A is atomic.
4) A is completely distributive in the wider sense.

Proof. 1)—»4): By the assumption, there is an isomorphic mapping
φr on a field of sets such that φf(\J^j αμ) = Σ^ 9>'(<V) f°r arbitrary
elements α μeA(>eΔ) for which \J^^a^ exists. We see easily from
such properties, that φ'(f\^^ αμ) = ff^j ?>'(αμ) if there is A,u^ αμ for
arbitrary elements αμ e A(μ£ Δ). By these two properties, it is easy to
see that A is completely distributive in the wider sense.

4)->3): Let a be an arbitrary element of A and let R be a maximal
ramification set containing a. Let Rr = { α ? v | y € Δ } be the subset of A
consisting of all x such that xeR and x <; a. By Theorem 1.2, for
each a?v € Rf there is a subset Mv of Λ such that α?v e M v, α = V/^ #μn)

and x f\xf — Q whenever x, xf G Mv and a? φ #'. If we can prove that
there is Av #/<» for each /O) and it is 0 or an atom, then we can
show easily that A is atomic, because a = f\vζj (Γ\M x^
= W/cv) (Λv #/cv;>) by 4). Let us show that Λv a#(v> — 0 or an atom for
each /(z^). Let / — \x}^\v 6 Δ j . If there are #!,&%>£/ such that
^i A #2 == 0, Av ίc/(v) — 0. Therefore, it is enough to show that
Av a#oo = 0 or an atom in the case in which xλ f\x2^=Q for any
Xι,x2£j. Since / Cβ, 0e/, / is totally ordered and its arbitrary
subset has a greatest element. Let I be a point component in Λ con-
taining /. By Theorem 1.5, such point component / exists in R.
Now, suppose there is x0 € / such that x0 ;> xr does not hold for every
xr GJ. Since x0,x

f£l, x0f\x
f=^Q and so x0<^xf. Since xQ<^x' <La

and α;06β, £t*06^ and therefore there is M v 0 0 eΔ) such that
x0 = α;vo e MV Q. Also, since ^vo) e MV o, O;VQ A *}°Vo) - 0 or α;vo - <$vo).
On the other hand, α;vo < O?^VQ) from the assumption. This is an abvious
contradiction.

3)->2): Let a be an element of A which is not 0, and let a0 be an
atom of A such that a0 <1 a. Then, the two-valued function / such
that /(a;) = 1 if x ̂  aQ and /(a?) = 0 if x f\ aQ = 0 for x e A, is the two-

11) We denote U *v € MV Λ;μ, by
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is an atom α 0 € A such that α;> e& 0, then it is called atomic. For a
complete Boolean algebra A, the following 3 conditions l)-3) are as
is well known equivalent with each other.10)

1) A is atomic.
2) A is isomorphic with the family of all subsets of a set.
3 ) A is completely distributive.

But, in the case in which a Boolean algebra is not always completely
additive, no results seem to be known. A. Horn—A. Tarski, in their
paper [1], have posed the problem whether a Boolean algebra is atomic
if and only if it is completely distributive in the wider sense Here,
we shall show that the above results for a complete Boolean algebra
can be extended to an arbitrary Boolean algebra, and as one of the
results the problem of A. Horn—A. Tarski will be answered in the
positive.

DEFINITION 3.1. A field of sets F is called completely additive in
the wider sense if it satisfies the following condition: whenever for an
arbitrary family of sets S/μGΔ) which are elements of F there is a
smallest set S in F including all of them, then the set S coincides
with the sum of the sets S/μGΔ).

We see easily, that a Boolean algebra A is isomorphic with a
field of sets F which is completely additive in the wider sense, if and
only if there exists an isomorphic mapping φr on a field of sets such
that φ'( \J^j αμ) = Σ^ φr(o>μ) for any elements αμ G A(μ G Δ) for which
Vyμ€^ <&μ exists.

DEFINITION 3.2. A two-valued measure / defined on a Boolean
algebra A, i.e. a finitely additive function which is not identically 0
and assumes only the values 0 and 1, is called strongly completely
additive in the wider sense if f(\J^ αμ) — 0 for any αμ(μeΔ) such that
/(αμ) = 0 for every μ £ Δ and for which \J^A^ exists.

DEFINITION 3.3. A Boolean algebra A is called completely dis-
tributive in the wider sense, if, whenever Θv is a non-void set correspond-
ing to a suffix v which is an element of a non-void set Δ, c&£ is an
element of A corresponding to μ 6 Θv and whenever there are

Wμ £ Θv ̂  > Av6Λ(\7μ 6 ΘV

 α^ and Ave^ α/oo > then there exists

V/(v,€[Θv]ΛΛve^α}o») and Λv{V/ μ , ΘV ^\ = W/(v) e [Θv]/Λv αW holds.
Here [Θv]^ is the family of all one valued functions / which are defined
on Δ and take one μ6Θ v for every ^ G Δ such that f(v) = μ.

10) See, A. Tarski [1], [2].
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valued measure, required in 2).
2)-*l): For a£A which is not 0,
φ'(a}~ \f\f is a two-valued measure which additive in the wider

sense and for which f(a) = 1\
is a required is strongly completely isomorphic mapping.

In particular, when A is complete, this theorem contains the results
stated at the beginning of the chapter.

In order to consider the structure of a Boolean algebra in connec-
tion with powers of ramification sets in it, let us give the following
definitions.

DEFINITION 3.4. In the definitions 3.1 and 3.2, let us give the

additional condition Δ <1 π, where tt is a power, and in the' definition

3.3, let us give the additional condition Θv <1 n besides Δ <: π, then,
we say respectively, that F is ^-additive in the wider sense, two-valued
measure / is strongly n-additive in the weder sense and A is n-addίtive

in the wider sense. In particular, in the case in which F < n and

A < π, they coincide with the respective definitions 3.1, 3.2 and 3. 3.12)

By the proofs which are almost identical with the ones given in
Theorem 3.1, we can show the following theorem.

Theorem 3. 2. For a Boolean algebra A, the following conditions 1)
and 2) are equivalent.

1 ) A is isomorphic with a field of sets which is n-addίtive in the
wider sense.

2) For every element aeA which is not 0, there is a two-valued
measure f which is strongly n-additive in the wider sense and for which

/(«) = !.
// A satisfies the condition 1) or 2), then

3 ) A is n-distributive in the wider sense.
In particular, if powers of ramification sets in A are at most π, then
the conditions l)-3) and the following condition 4) are equivalent with
each other.

4 ) A is atomic.

Therefore, if powers of ramification sets in A are at most n, the
conditions l)-4) are also equivalent with the conditions 1), 2) and 4)

in Theorem 3.1. Considering the case in which A = n, we see that
Theorem 3.1 is a particular case of the above theorem.

By the following example, we can see that even if a Boolean

12) When n = K o * we denote %-" instead of "
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algebra A satisfies the condition 3), it can not satisfy the condition
1) or 2).

EXAMPLE 1. Let U be the family of all sets of real numbers, let
B be the Boolean algebra of all subsets of C7 and let / be the ideal of

all subsets of U of power c. Then, since B is weakly accessible from
K0 and since / is σ -additive, but is not completely additive, the
σ -complete Boolean algebra B/I is not isomorphic with any σ-additive
field of sets. We see easily that there is a ramification set which is
not countable, since it is cr-distributive.1?:>

§ 4. Boolean algebras represented by φ^a).

As a little more complicated case than the case in which a
Boolean algebra is atomic, we can consider the case in which it is
represented by <PΛ(C&), i.e. by the representation φ(a} . = 2A'£A9V(a)»
without φhr(ά) such that A' Φ A. In concrete, it is the case in which for
every a e A, there is a point component (7λ; λ € A) such that 7λ e Rλ(\ € A)
and such that there is an element x with ^€j] λ 6 Λ7 λ and a^x. In par-
ticular, if we can always take an atom α0 as such an element x, then
A is atomic. Then, we can take as 7λ for every λ € A the point
component \aQ] consisting of the single atom α0, because an atom
belongs to every βλ(λeA) by Theorem 1.3. For such a case, let us
give interesting results which are analogous to Theorems 3. 1 and 3. 2.

DEFINITION 4.1. In the definitions 3-1 and 3.2, let us give
respectively the additional conditions Sμ f\S^ = 0 (μΦ X) and
dμ, Λ <V = 0 (μ Φ X), then we say that F is weakly completely additive
in the wider sense and the two-valued measure / is completely additive
in the wider sense respectively.

Theorem 4. 1. For a Boolean algebra A, the following 3 conditions
l)-3) are equivalent with each other.

1 ) A is isomorphic with a field of sets which is weakly completely
additive in the wider sense.

2 ) For every element a£A which is not 0, there is a two-valued
measure f which is completely additive in the wider sense.

3 ) φ^W 9^ves the isomorphic mapping from A on the field of sets.

Proof. 1)— >2): Let φf be an isomorphic mapping from A on a field

13) See A. Tarski [4], A. Horn—A. Tarski [1].
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of sets. For an element αe A which is not 0, there is a point p of
φ'(a) since φf(a) Φ φ. Let us fix such one point p. Then, the two-
valued function / such that for x e A f(x) — 1 if φ'(x} 3 p and /(#) = 0
if ?>'(#) 3 p is the required two-valued measure which is completely
additive in the wider sense and /(α) = l. 2)— >3): By the assumption,
for an element aeA which is not 0, there is a two-valued measure /
which is completely additive in the wider sense and for which /(α) — 1.
Using such /, let us show the condition 3). First, let us show the
existence of a point component 70 in a suitable Rλ , for which /(#) — 1
and α ;> # for every #E7 0 . By Theorem 1.1, there is a maximal
ramification set R^ containing the element a. Let us denote by
R\^= {a? v | ye Δ} f the subset of A consisting of all elements x of A
such that #£β;ι0 and x < a. From Theorem 1.3, for every xv£R\^
there is a subset Mv of Rλr) such that # V G M V , a = \JM x^ and
x f\ χf = 0 whenever x, xf e Mv and a? /°\ a?' = 0. And for every xv € R^Q ,
there is one element α?v' which is an element of such Mv and for which
/(#/) = 1, because / is the two-valued measure which is completely
additive in the wider sense and for which /(c&) == 1. Let us put
/ — { α ? v ' | y E Δ } , and let us show that it is a required point component.
To see this, it is enough to show that 70 is a point component in Rλ

since /O') = 1 and. a ̂  x for every x e /0 . 0 e / is evident. Since f(x^)
=r./(a;2) — 1 for arbitrary elements O/Ί, a;2 e 7, #! A ^2 Φ 0 an(i so we have
XΊ ̂  α;2 or α;2 :> xτ . Therefore 70 is a totally ordered set. Hence, it
is enough to show that for a point component 7 in R^ containing 70 ,
if #e7, then there is an element #0 of 7 such that x ̂  α?0. Suppose
now that it is not the case, i.e. there is an element a? of 7 such that
x <^ Λ;Q f°

r every element %Q 6 70 . Since c& ̂  #0 >. α; and xeRj , # = α;v

for some v 0 eΔ. Therefore, ^o^^vo ^n the ot:lιer band, we have
^voA^v 0 = 0 or a?Vo = a?;Q. since α^f α ̂ eΛf^ . This is an obvious con-
tradiction. Analogously, using f(e) = 1, for every 72λ(λ e Λ, λ φ λ0),
there is a point component 7λ in 72λ such that /(#) = 1 for every
element # € 7 λ . Let (7 λ ;λGΛ) be the class consisting of such
7λ(λGΛ, λφλ') and of such 7^o , then it is easy to see that the class
(7 λ ;λGΛ) has the finite intersection property since /(α?) = l for every
element x of SXCA^X Evidently, this point (7 λ;λeΛ) of SA is a point
of 9?Λ(α), and therefore φA(a~) φ φ. This shows that ^Λ(c&) gives the
expression of A on a field of sets. 3)->l): In order to prove that <pA(ά)
is the mapping required in 1), it is enough to prove that <pA( \J αμ)
SΣ^Λ(^) if f°r an arbitrary αμ(^eΔ) such that 0,^/^0,^=0 when-
ever c&μΦcv, there is 'Γ\^jUμ. . Let p — (7 λ ;λ€Λ) be a point of

\y αμ). Then there is an element x' such that xfe^^AI and
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xr <1 \J αμ. Since {α μ | μ€Δ} is the ramification set, from Theorem 1.1
there is a maximal ramification set Rλ such that {αμ |/*e Δ} Cβ^ and
such that if x is an element of R^, then x > αμ does not hold for
every αμ. Let 70 be a component of the point p corresponding to the
suffix λ 0 GΛ, and let x0 be a greatest element of /0. From the con-
struction we have x0 <1 αμ or x0 f\a^ = Q for every αμ, but we have
not here x0 A <V — 0 for every αμ . Because, in that case α?0 Λ #' = 0
since XQ f\ (\Jμ,^ αμ) = VΛ -eX^o A ttιO = 0, and this contradicts α?0 f\ xf — 0
since a?0,α?' eΣ λ 6 Λ / λ .

DEFINITION 4.2. In the definitions 3.1 and 3.2, let us give the

additional condition Δ <: π and besides, the respective additional
conditions Sμ f\ Sμ/ — 0 O Φ X) and αμ A ̂  = 0 (μ Φ X), then we say
respectively that ,F is weakly n-additive in the wider sense and the two-
valued measure / is n-additίve in the wider sense. In particular, in

the case in which F <1 π and A <1 n, they coincide with the respective
definitions given in Theorem 4.1.12)

By the proofs which are almost identical with the ones given in
Theorem 4.1, we can show the following theorem.

Theorem 4. 2. For a, Boolean algebra A, the following conditions 1)
and 2) are equivalent.

1) A is isomorphic with a field of sets which is weakly n-additίve
in the wider sense.

2) For every element a£A which is not 0, there is a two-valued
measure f which is n-additive in the wider sense and for which /(α) = 1.
In particular, if poivers of ramification sets in A are at most n, then
the conditions 1), 2) and the following condition 3) are equivalent with
each other.

3) φ^(a) gives the isomorphic mapping from A on the field of sets.
Therefore, if powers of ramification sets in A are at most π, the

conditions 1)—3) are also equivalent with the conditions 1) and 2) in

Theorem 4.1. Considering the case in which A = π, we see that
Theorem 4.1 is a particular case of this theorem.

§ 5. Complete Boolean algebras.

DEFINITION 5.1. A Boolean algebra A is called n-complete, if

there is \Jx^κx for every subset X of A such that X <, π, and complete
if A is n-complete for every power π. Since an element of a field of
sets F is a subset of a set, we can consider the sum (union) of all
elements of a subset X of F. If for every subset X(ζ^F} of power
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<I tt, such a sum belongs to F, then F is called n-additive. If a field
of sets is n-additive for an arbitrary power π, then it is called com-
pletely additive.

From the definitions if a π-complete field of sets is π-additive in
the wider sense, then it is n-additive, and if a complete field of sets
is completely additive in the wider sense, then it is completely additive.

As we stated at the beginning of § 3, a complete Boolean algebra
is not always isomorphic with any field of sets which is completely
additive. Therefore, the question arises whether a n-complete Boolean
algebra is isomorphic with a n-additive field of sets. Such a problem,
have been studied by a number of authors. The results which are
given in this section contain some of the results given in Sikorski [1].
As we can easily prove, for a n-complete Boolean algebra, it is
isomorphic with a field of sets which is n-additive in the wider sense,
if and only if it is isomorphic with a field of sets which is weakly
n-additive in the wider sense. Therefore, by theorems 3.2 and 4.2 the
following theorem holds.

Theorem 5.1. For a n-complete Boolean algebra A, the following
conditions 1) and 2) are equivalent.

1 ) A is isomorphic ^υίth a field of sets which is n-additive in the
wider sense.

2) For an arbitrary element a^A which is not 0, there is an
n-additive two-valued measure f for which /(α) = 1.

Therefore, for an n-complete Boolean algebra A, in the case in
which powers of ramification sets in it are at most n, if A is not
atomic, then it can not be represented by φκ(a).

In particular in the case in which n = K 0 , since a Boolean algebra
A is closed with respect to the finite lattice operations, we can easily
prove that A is isomorphic with a field of sets which is σ -additive in
the wider sense, if and only if A is isomorphic with a field of sets
which is weakly σ -additive in the wider sense. Therefore, similarly
as the above theorem, the following theorem will be proved. We see
that the results contain those given in A. Horn—A. Tarski [1].

Theorem 5. 2. For a Boolean algebra A, the following conditions 1)
αmZ 2) are equivalent.

1) A is isomorphic with a field of sets which is σ-additive in the
wider sense.

2) For an arbitrary element a£A which is not 0, there is a two-
valued measure f which is σ-addίtive in the wider sense and for which
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/(<0 = 1.
// a Boolean algebra A satisfies the condition 1) or 2), then

3 ) A is σ -distributive in the wider sense.
In the case in which powers of ramification sets in a Boolean algebra A
are at most K0 , if A is not atomic9 then it can not be represented by

From Example 1, even if a Boolean algebra satisfies the condition
3), it does not satisfy condition 1) or 2). But as we shall see in § 6,
conditions 1), 2) and 3) are for a separable Boolean algebra equivalent
with each other.

As we can see from the theorems stated until now, the whole
structure of a Boolean algebra can be made clear in a certain case,
by powers of its ramification sets.

§ 6. Boolean algebras in which powers of ramification sets are
countable.

In connection with the problem of existences of special measures
(in particular a strictly positive measure, i. e. a measure such that
f(x) = 0 only for x — 0) in a Boolean algebra, let us show a number
of results.1 4)

DEFINITION 6. 1. A measure / is called σ -additive in the wider
sense, if /( \Jn=ι αj = Σ?=α f(an} whenever for an arbitrary elements
an <G A (n — 1, 2, — ) such that an f\am = Q (n Φ m), \J~=l an exists.8'

DEFINITION 6.2. A Boolean algebra A is called separable if there
is a countable non-void subset D such that for an arbitrary element
a e A which is not 0 there is an element x of D such that a :> x.

DEFINITION 6. 3. In definition 3. 3, let us give the additional con-

ditions Δ <: KO , Θv <: KO and ctj <: αj+1 for every » € Δ, μ e Θv , then A
is called weakly σ -distributive in the wider sense. In particular, if A is
σ -complete, it is simply called weakly σ -distributive.

In connection with powers of ramification sets, the following two
theorems are already known.

Theorem 6.1 . // a Boolean algebra A has a strictly positive measure,
then an arbitrary ramification set in A is countable.^

Theorem 6. 2. A separable Boolean algebra always has a strictly

14) See D. Maharam [1], A. Horn—A. Tarski [1], R. Sikorski [1].
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'positive measured
Therefore, for a Boolean algebra having a strictly positive measure

(in particular a separable Boolean algebra), we obtain the following
theorems from our results.

Theorem 6. 3. When a Boollean algebra A is isomorphic with a field
of sets which is σ-additive in the wider sense, the following conditions are
equivalent.

1) A has a strictly positive measure.
2) A is atomic, and the number of atoms in it are at most countable.
Therefore, for a Boolean algebra which is isomorphic with a field

of sets which is σ-additive in the wider sense, if it is not atomic or
if, even if it is atomic, it has uncountable atoms, then any strictly
positive measure can not be defined on it.

In particular, for a separable Boolean algebra, we obtain the
following theorems besides Theorem 6.2.

Theorem 6. 4. For a separable Boolean algebra, it is atomic if and
only if it has a σ-additive measure or a σ-additive two-valued measured

Theorem 6. 5. For a separable Boolean algebra A, it is atomic if and
only if it satisfies one of the following conditions.

1) For an arbitrary element a G A which is not 0, there is a two-
valued σ-additive measure such that f(a) = 1.

2) A has a σ-additive strictly positive measure.
3) A is σ-distributive in the wider sense.
4) A is weakly σ-distributive in the wider sensed
Using the results which are obtained until now, let us investigate

the properties of a number of examples.

EXAMPLE 2. Let B be the family of all subsets of the interval
[0,1] which is measurable in the sense of Lebesgue, and let / be the
family of all elements of B which are of measure 0. Consider the
quotient algebra B/I. a) It is not σ-distributive; Let C = [1/2"
x(ra-l), 1/2" xw), w = l,2, -,2", n = l,2, - , then 2^ !̂= [0,1)
and 1 .̂1(2^01) = [0,1). On the other hand, /7^Cw)

15)Ts void or it
consists of a single point. Therefore B/I is not σ -distributive. There-
fore, b) it is σ-complete, but it is not isomorphic with a σ-additive
field of sets, and c) there is no σ-additive two-valued measure on it.
Since d) it has a σ-additive strictly positive measure, e) it is not atomic
(indeed, it has no atom), and f) it can not be expressed by φA(a). By

15) /(») corresponds to /(v) in theorem 3.3,
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the same reasons, g) it is weakly σ -distributive.0 It is known that
e) it is complete.10

EXAMPLE 3. Let B be the family of all Borel sets of the interval
[0,1], and let / be the family consisting of all elements of B of the
first category. Consider the quotient algebra B/L As we know well,
it is a) separable, b) it has not an atom and c) it is complete.85

Therefore, d) it has a strictly positive measure. Since e) it is not
σ-distributive, f) it is not weakly σ -distributive. g) There is no
(7-additive measure, and of course h) it is not isomorpnic with any
σ-additive field, i) it can not be expressed by φA(o>Yύ

EXAMPLE 4. Let W be the set of all real-valued functions defined
on the set of all real numbers, and for any given real number a let
F(a) be the set of all those functions in W which do not assume a as
a value. Let A be the smallest a) σ-additive field of sets, which
contain all the sets F(a) among it. Evidently, since b) it has not an
atom, c) it has no strictly positive measure. But it is easy to see that
d) it has a σ -additive two-valued measure and e) it is σ -distributive.
We can not determine whether is can be expressed by φA(a*) or not,
because f) it is σ-additive, but it is not complete.0

(Received March 20, 1953)
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