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Introduction

In an earlier paper?’ the author has developed some theory of systematic
statistics and announced before-hand that he shall deal with problems
arising from dosage and time mortality curves as applications. The
present paper includes such articles. '

Estimation of parameters of dosage mortality curve has been deviced
by many mathematical statisticians ; among others by C.I. Bliss® and R. A.
Fisher?’, and many contributions have been made by them. On planning
experiments for estimating parameters of the dosage mortality curve,
Dr. Milton Friedman has written an excellent exposition in Chapter 11 of
« Selected Techniques of Statistical Analysis for Scientific and Industrial
Research and Production and Management Engineering ” by the Statistical
Research Group, Columbia University, 1947.

Estimation of parameters and testing statistical hypotheses concerning
unknown parameters and design of experiments in both cases of dosage-
and time mortality curve are attacked here tracing the formal analogies
with the theory of systematic statistics. And it will be seen that some

new aspects of the problems will be revealed.
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I wish to express here my deep thanks to Dr. Wataru Ohosawa'' for
his kindness of letting his experimental data (§ 7. Illustrative example)
at my disposal, and to Dr. Motosaburo Masuyama for his valuable criti-
cism on the author’s preliminary report’’ on this subject.

§1. Problems.

An important class of statistical problems of frequent occurrence-
especially in biological researches- arises from situations in which a
characteristic is conceived to be normally distributed among the individuals
of a population, but measurement of one individual can show only whether
the characteristic is above or below a certain level of some poison. More-
over, as Dr. Milton Friedman® showed, problems of the same type
frequently occurs also in engineering researches. Our method of approach,
which will be developed in the following, apply to ali problems of this
type, but for the sake of concreteness, we shall give discussions in terms
of dosage- and time mortality curves.

1.1. Dosage mortality curve. A typical problem occurs when studying
the effect of some drug or poison on a particular kind of animals. It is
assumed that there is a population of animals, and associated with each
individual animal with a certain lethal dose of the drug or poison, such
that the animal would always be killed by a stronger dose and would
survive a weaker one. There are independent biological evidences for
assuming that the natural logarithms of the lethal doses are normally
distributed throughout the population, so that if the proportion of animals
expected to survive a given dose is converted into an equivalent normal
deviate, then the above assumption is equivalent to stating that the normal
deviates- are linearly related to the logs of lethal doses.

If the meam log lethal dose, which is often called log LD 50— or log
50% lethal dose in short —, is m and the standard deviation is o, then the
linear relation between the normal deviate u converted from the expected
survival rate at a given level of loz dose x is

u=a«a+pBr, (1.1)
where
1 ©  (t-m)? 1 = 72
o 32 —_ = - 5dt ,
,/ 7o Sze ? at l/2ﬂ'gue 2
and
A== B=_ (1.2)

The experimental animals consist of % groups, drawn at random from
the population, of #,, ..., n, animals, which are given with logs #, , ..., x,,
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from which there are «,, ..., s, survivors, and therefore ,-s,, ..., 2;-s,
deaths respectively. Since the proportions of animals expected to survive
or to die at log dose levels z,, ..., », are respectively

p= L} ("o S as 1.3

iyl/?;zgu,;e 2 e ( )
i=1,..,k
1 [ui -5 dt

Q=g ) e zdt, (1.4)
where

u; = o+ B, , i=1,..,k (1.5)
the observed survival rate s,/n,,¢=1, ..., k, is a respective observation
of the population value P,, i=1, ..., k.

The random variables in this case are s;, ¢ =1, ..., &, and they are
mutually independent in the sense of probability. The problems which
should be answered here are the estimation of parameters m and « and
testing statistical hypotheses concerning m and o, and further the optimum
allocation of #,,7=1, ..., k at each given log dose levels and the optimum
spacing of log dose levels «,, i=1,..., k.

1.2. Time mortality curve. In studying the resistibility of insects of
a particular kind to a fixed dose of some poison, measured in time, as
Dr. Ohsawa showed, there is a reasonable biological evidence for assuming
that the natural logarithm of the lethal time associated with each individual
insect is distributed normally throughout the population of insects of that
kind. The lethal time of an insect is the life time of the insect given a
certain level of dose. :

In this case, the experimental material consists of N insects, drawn.
at random from the population, which are given a fixed dose of some
poison, and the survivors s, and death d, = N —s, are observed at % time-
points of observation, of which logs are «,, i=1,..., k. Since the
proportion of insects expected to survive at ¢, = expx, observation time
point, ¢ =1, ..., &k are respectively
__1(

T V27 ﬁgui
where i=1.., k
u, = a+p6,,

2
P e~ o2dt,

the observed survivalrates s;/N, ¢ =1, ..., k are the observations of the
population values P:, i=1,..., k, respectively.

The problems to be considered in this case are the same as in the
case of dosage mortality curve. The essential difference between the two
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cases is that the observed survivalrates s,/N, i =1, ..., k are stochas-
tically dependent in the case of time mortality curve.

§ 2. Limiting Distributions of the Observed Survival-rates.
2.1. Dosage mortality curve. Let the frequency function of the
distribution of the log lethal dose throughout the population be

9(2) = (270?) V2 exp { —(x—m)?/202} , 2.1)
then the expected survival-rate at log dose level x is

j rg(t)dt = rf(t)dt,

where
f(x) = 2r)2.exp (—22%/2),
and
u=a+pBx,

It is well known that the probability of having s survivors out of =

animals is
n S % -8

By the famous De Moivre’s theorem?®, it follows that the distribution of
the standardized variable

(s/n—P)/(PQ/n)* (2.2)

approaches the standard standard normal distribution N(0,1), as » tends
to infinity. So that, for sufficiently large values of %, we may consider
the variable s/ (the observed survival-rate) is distributed normally atout
the mean P, the population survivalrate, with the variance PQ/n .

If we convert the observed survival-rate s/» into an equivalent normal
deviate z, i.e.

s/n = ‘ f(tde, 2.3)

then the variable z is distributed asymptotically normal
fPQj> . 2.4
N(u, aft (i) (2.4)

Whence we see that the frequency function of the joint distribution of
the variables z,, ..., #,, coverted from the observed survivalrates s,/%,,
..» 8,/nx is asymptotically

i=1
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for sufficiently large values of #,, ..., %, .

2.2. Time motality curve. In this case, the observed survivalrates
8/N, ..., s,/N are converted into equivalent normal deviates z,, ..., z;
respectively, i.e.

s/N={_frd,  i=1.., %

The probability of obtaining s, ...,s, survivors at log lethal time
levels x,, ..., «, respectively is

N! Sg— sl Sk=1" Sk 1551
- . P.L’
(N— sl)'(sl—sz)....(?k_l—s,c).’sk!(‘l Pl) (P —Py) e (P —Fy) k
or putting d;=N—g
i=1,..., k.
Q=1-P,
we have
N!
d, N(dy—d)! ... (d, -—dl I)V(N—d )’ (Qz @)
—dy- N-d
(Qlc—Qk—l) f (l—Qk) k-

Hence, as N tends to infinity, the variables d,/N , ..., d,/N , the observed
death-rates at successive log lethal time levels, are asymptotically normally
distributed in the space of k¥ dememsions with means @,,..., @% and
variance-covariance matrix

[Q1-0)QA-Qy)..... 210
N N N
QU1-Q)Q(1-Qy)...... %1-Q))
N N N ) (2.6)
Ql(l_‘Qk) Qz(l—Qk) ...... Qh(l_Ql)
\ N N N )

Consequently, for sufficiently large values of N, it follows that the fre-
quency function of the joint distribution of z,, ..., 2 is asymptotically

(N/27)% 1, f2-~- LR — Q). (Qu— QX 1— Q)]

Q7+1 Q'~1 2
X eXp l 2 [Z (Ql+1 Q )(Q QL 1)f (zl—(\( Bx,)
—Zi“Qf f/Qil (zi—a-la’wi)(zi_lﬁa—ﬁ%_l)]?g ’ (2.7)

where f; = f(u,), i=1,..., k and @, =0, @,,, =1, fo,=Ff...=0.



46 Junjiro OGAWA

§ 3. Estimation of Parameters « = —m/o and 8= 1/0.

3.1 Dosage mortality curve. In this case, the basic distribution is
given by (2.6) i.e.

h(271, vee sy R 5 X, B) = C.exp(_%S),
where

S = 2%’%(%-“—3@2, (3.1)
and
C=(2n) 1 y/nifi :

which is not interesting to us for the moment. The frequency function
given above is formally analogous with that of systematic statistics, but
here the coefficients of the quadratic form S are dependent of unknown
parameters « and f.

If the number of dose levels % is sufficiently large, and numbers %,
of test animals at each dose level is sufficiently large, the plotted points
(@i, zi), ¢=1, ..., k on the (x, 2)-plane seem to be almost collinear in
all practical situations,” so we fit them a straight line by freehand and
thus we get a system of rough estimates «,, 3, of «, /3 from the intercept
and the slope of the fitted straight linel®.

Let it be

fEO) == f(ao+[3)oxi) ’ Pgm :jwf(t)dt ’ = 1’ see ) k ’
ap+Box;
and

k 77’_]"%0)2
S, = Eﬁm(zr—a—ﬁxi)z ) (3.2)
1 i

=1

and then, as the first approximation we assume that the frequency function
of z,,..., zx is asympotically

~k/2 1 0)2 1
(27) i!I VZQQ o exp(——é'S(,) ,

and making use of A. Markoff’s theorem on least squares, we obtain the

- . . /\ .
best linear unbiased estimates'’ «, BA of «, 8. They should be obtained
by solving the system of equations

a§o A ;‘)j_s_'o'
o |a == x= 0, 9B x=
B =3 B =

Il
S

7,03!<>
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Putting

g ¢ )2 : 0)2 o 02
K(())_z’”:nifim K — & ntfi.(A) @} 0= %fk) &;
i = ’ 2 DO 0 ? 3
EPOQY P 2T “ lP’O‘Q O

2
_ A, = K® K@ — K,
and

. 2 2
X, = i} n,f{> =i Y. = Ek 7, [ %z,
P%O)Q‘im ’ 0 = P‘"’Q 00

=1

A
= (EPX,—KPY) A= H(—KPX,+KOY,).  (3.3)
0
A
The variances and covariences of « and é are

ey =52, iy =Y, ot =5 (3.4)

Taking the estimates «, 3 thus obtamed as rough estimates of «, 8, and
let they be «,, /3,, respectively, then, as the second approximation, we
assume that the frequency function of the joint distribution of z,, ..., 2, is

en MR xp |~ 5 21 gl L xw? (3.5)

P(I)Q(l) &P Q‘D
where
—lran) and PE= Saﬁslxif(t)dt' i=1..,k.
Put
5y my 51)2 oo
SIZEPTQED.(%—“*—B%) ’

A A
then the best linear unbiased estimates «, 53 of «, B8 should be obtained
from the equations

98, ._o 0S| ._
3& \a:;\. =0, a—B-- 122 —— 0. (3.6)
B=B B=3

Thus we have
a=LEprx, - KpYy), 8= L(-KPX+EPY),
1 1
where

(1 S ni'f%rfz D V1 [0 ‘) 71/,:]‘\1)294
P R—— ) — \
K" = 1221' PoQiL? Ky = 2—! { P;OQD K 2-11 Pi’\Q D

2
A, = K{PKP— K,

and
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A A
The variances and covariance of « and 8 are

ey =K py = K2 o, B — B8
D (a) - Al » D (18) - Al ’ C(ar 18) - Al . (3. 7)
We continue the above process untill the area of the ellipse of concent-

ration corresponding to the joint distribution of cAz and ,é becomes
sufficiently small, usually two rounds of computations will be sufficient.

It should be remarked that, when the observed survival-rate is 1 or
0, then the converted normal deviate u is +co or —co, so the experi-
mental data representing 1002 or 0% survival-rate are altogether useless
for the above calculations. If we consider the quadratic form S, as
rewritten in the form

S = Zk 7, fi" S((Zi‘“C(o'_Boxi)'—(a—_aO)—-(B—lBO)xt'gz ’

P ODQ(O)
and replacing z;—a,—RB; by (P{®—s,/n,)/f;*, then we have
B g, f500° 2
So= 2 pilg (et D) 39

If we make use of S, given above, even 100% or 0% observed survival-
rates are available for calculating the best linear unbiased estimates of
« and B. This device is due to R. A. Fisher.!?

3. 2. Time mortality curve. In this case, the frequency function of
the joint distribution of z,, ..., 2, is given by (2.7), i.e.

h(zly ey Rp 5 Q /3) - C'eXp <_]‘\2]‘S> ’

where

S Qv,+l Qi B a2
o Z(Q“l Q)(Qi 1 1)fi (Zi a, ,da,l)

~2 3 Qf iJs GO GRS (3.9)

First, we estimate parameters « and B roughly, for example by
free-hand method or as in the following, provided the k is sufficiently

large :

i

“1<d _d, 1> X+,

Mo=2\N" N 2
=L 1( di—l> <xi-1+wi>2_mz
S\N N 2 0’
and then
Q= ~ T ’ B() = l .
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As before, we assume the frequency function of z,, ...,z, to be
bz oon s 205 @, B) = (N /=) fO L 0
) on . , -1/2 N
x| @@ —ap)...@r-ea-a) | e (- 4s,).

as the first approximation, where

I [ [())

So - ?;‘,' (Qg?l ég\;aXQco) QSO—) 20)'(zi—a—ﬁxi)2
V10 e Bu Yz —a— B, 3.10
I3 (zl (24 [ a’t)(zz—l 24 sz-—-l) . ( . )

QU —Qm,

A A
Hence the best linear unbiased estimates «, 8 of «, 8 should be obtained
by solving the system of equations

Thus we get
A1 0 5 1 0 ©
o — Z;(KE X, —KLY,), B= E,(_Ka X, + K®Y,), (3.1

where
k1 (£0)__ 2 ) z-+1(f(0)x i )
K\O) — (f V)ﬁ , K9 = i My i1
Z 0 2 ?;11 Q:ZOJ__Q 0 ’
k+1 0) (02 (0) (0D
~0) (f‘- — 2%, — fi%%,_1)
Kj ~§ U Q0 —Q, =,
. A, = K§°)K§°)—Kg°?2 ,
and
=IO R fm) A A %)
P QO — (0) ’ Q'o) QP
The variances and covariance of a and ,8 are
1 K»

D= L5 puy = LB o = LK )

AO
As in the case of dosage mortality curve, we can raise the precision of
approximation by iterative method.

§4. Estimation of Unknown Parameters 2 and o.

In the preceding section we have dealt with the estimation of «
and B, but the parameters which should ultimately be estimated are m
and o, i.e.

m= —-

(4.1)

|+

-y o ==

«
8
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If we adopt the estimates

A

m=—%, o=1, (4.2)
B 8

for m and o respectively, and if the sample size is large enough, then
we have approximately

E(m)=m and E(s)=o, (4.3)
and further
D¥(m) = o2 D) —2ma* - (e, B) + m?* - D¥(B) .
D¥s) = o*-D¥(B). (4. 4)
Hence it follows that
S’Afo(K;°>—2maKg°>+ mic2 K = Oz; ;{0’:‘@0) —me),

for dosage mortality curve,
D? = 2 0} 0}
(m) aa K —2mo K+ miotK{)

2 kx1 60 — . (0) X, . —m 2
:A‘;_Aoz_}{fi €2 520) \0()12 1 0')} (4.5)

for time mortality curve.

If, in some circumstances, we have obtained several estimated values
A

A .
(‘Q,B,L-, 7,:1,..,,17, (pg:;)
for equal n(=mn,=-.-=mn,) or N and for the same pair of provisional
values «, and B, then we can construct a confidence interval for m
as follows :®
Let

=13 @—ap, by=ly =L a—aXB—B), by = 2B —Hr,
27 i=1 p'L:l p =

where
. 1 » A
== ; B, .
and let further
L=1,l,—8,,
then the statistic
-2 1
F=P"% 1 .
2 p—1

=22 [’32(&—@2—2 Be(a—a)B—p)+ 1 (B—-y) (4.6)
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is distributed according to Snedecor’s F'-distribution of degrees of freedom
(2, p—2), where T? is the square of H. Hotelling’s generalized Student
ratio.¥

Hence, if we denote by F%._, (100 &) the 100 & percent point of the
right tail of the F'-distribution of degrees of freedom (2, p—2), then

P(F < F3_,(100 &) = 1—¢,

whence, we have the confidence region of confidence coefficient 100 (1—¢&)
percent for the true parameter point («, B). The confidence region is
the interior of the variable ellipse

Be(a—ay —ra—aXB—B)+ P(e—bp = SZ,Fi,0006)  (4.7)

on the («, 8)-plane.

If the level of significance & were chosen sufficiently large, so that
the ellipse (4.7) does not contain the origin and lies entirely in the first
or second quadrant, then we can draw two tangents through the origin

a=mB and a=m,B
for which, for example.
P(—m, <m < —my)=1—6. (4.8)

After some elementary calculations, the values '7n1 and 1712 can be seen
to be

2 A A S N ”’" - 7 : ) T
5= oF5-2(100)hs —u-b/ p%@Fi‘z(woe)-L(% 22208 +%§2—*'27F§A2(100€>)

p-2 p-2
2 e Ay
p—:éFp—g(looe)'ln— o
(4.9)
as the case may be. Whence we see that the above method is valid so
long as the inequality

baje_ohaggy B> 2 m (100
L L L p—1 *7?

holds, i.e. the null-hypothesis « =8=0 is rejected at the level of
significance &.

§ 5. Testing Statistical Hypotheses Concerning Unknown Parameters.

In the theory of dosage or time mortality curve, as Drs. Ohsawa
and Nagasawa'®’ have remarked, the constancy of the standard deviation
seems to be the natural consequence which ought to be expected from
the theoretical consideration. In fact, if, for two kinds of animals or two
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different circumstances, the standard deviations of their dosage or time
mortality curves differ substantially, then the straight lines representing
linear relations between log lethal dose or time and the converted normal
deviate from the expected survival-rate corresponding to that log lethal
dose or time level will intersect with each other at a finite point, then
the lethal effect of the drug or the resitibility of animals would be
reversed at that point, but it seems to be implausible in all situations.
Hence, first of all, the statistical hypothesis which requires to be tested
is the null-hypothesis that asserts the constancy of standard deviation.

For the sake of brevity, we shall describe the method of testing
statistical hypotheses for the case of time mortality curve.

We shall consider the case, for concreteness, when p different drugs
are tested to obtain their lethal effects on the same kind of insects. Let
the population density function of log lethal time of the population for
the v-th drug be

94(&) = (2702)"1/? exp {—(a:——mv)z/Zo-?,?; L ov=1..,p, (.1
and further let it be
a, = —my/o,, By=1/c,, v=1..,D.

The total number of insects tested in respective experiment is
constantly equal to N, and the logs of lethal time levels at which obser-
vations are made are z,, ... %, and the observed death-rates are

dlv/N’ dz‘,/N,...,dkv/N, IJ:].,... P .
In this case the frequency function of the converted normal deviates
Z1vs R2v s cee s gy UZl,...,p

is given, for sufficiently large N, approximately by the following ;

/2203 [] froforeo o] Q@0 @) Q= @ M1 Q)| e (=)

where

» g )3 Q —Q-_ ) '
S = . X+l -1y 2 (2,,— at,— By, 2
v=1 IFZI (le,y_in)(in_Qi—-l;v)fi (z“ * B v )
—Zi ki, ‘(z“~rv,,—/S’vx,)(z.,._l,,—av——,&,x,_l)} , (5.2)
=2 QIZ'/'__Q[-—I,‘,
and
o, 1By

Q= g fEdt, fo, = fa,+B®,), i=1, .., k; ve=1,...p.
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For the »-th experimental data, we obtain the provisional values «,,
and f3,, by free-hand method graphically, for example, and put
a0y +Boyx;
Qo = S FO)E, £0 =ty + Bo)s i=1, ..., k; v=1,...,p, (5.3)

-

and then we assume that the frequency function of z,,, ...,z , v=1,
..., D is approximately equal to

/9

Ny ] 019 . 9] Qe — Q) .. (@i — 21-ee) |

exp (—NSO> ,

where 2

" 09,-Q, - ,
{Z RNyt o AR IR

Y 9F% 1
E z :X> (zu dJ_vai)(Zi—-ln_av_vai—l)s' (5.4)

To test the homogeneity of the standard deviations
0= oy = e =),
it will be sufficient to test the null-hypothesis
H: B=8=-=8,. (5.5)

A A
Denote the maximum likelihood estimates of «, and B, by «, and 3,
respactively, then they should be obtained from the equations

A A
K(lg)“v"'K%g)Bv = Xo

A A IJ:l, ~.orp- (5-6)
. KPa,+KPB, =Y,
where
B EEL (00— f50) Y2 g (O)m 0. x'_ 2
Kl(.),\ E /0) th)lp~ ) KLZ(Z) — Z (f f?Q};‘) i ll ,
i-1,v
k+1 (f\") (0) )(f 10, — f( z )
K 0) — Ji=1yv) 3 i=1nWisl
21 Q 0>—Q10)1 v
4
U SR — F1% 2 &)
= i — @21 '
B (f50g, — £ )(f“”z —£59, 2i0,)
Y. = Syl '—1 i1 Ri=15,
ov ZZ; Zr(\)w ’
k+1 (0D — 2
Z(W___Z(fz,zi/ ft 1, %i— 1,) , v=1..p.

i=1 "“Qfo)] Y
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The absolute minimum value S,, of S, is
» A ” AN
(m 2 Zov E Xov'av—";l Yova . (5 8)

Similarly, let the maximum likelihood estimates of «,,3,,v=1,...,»

under the null-hypotheses H,, be c{ﬁ*, ,cAr,,* and //S\’K, then they should
be obtained from the equations

A A

K{Pay* +KQP B =Xy

3 A e d /A .
Ky + K59 B = X .
’ : 5 (5.9)

. A - A .

thl)lJ “p+ +K§0) B* - ()p

A
K:(‘ﬁ) a ES + K(O)a *+ e Kg(z))) ap*+ (K(0)+ - K(O)) /34\ Y01 e Y()p

therefore the relative minimum value S,, or S, is
» » A » AN
Sow= 2 Zo— 2} Xttt — (20 ) B, (5.10)
By the result of the general theory of linear hypotheses!®, it follows
that the statistic
* ™
(h 2)2lX04(a' “ )+Y0,,(/3 B )I (5.11)
p 1 SO({

is distributed according to Snedecor’s F-distribution of degrees of freedom
(p—1, p(k—2)), provided the null-hypothesis H, is true. If we denote
the 100& percent point of the right tail of the F-distribution of degrees
of freedom (#,, ,) by FZ;(lOOe), then we reject the null-hypothesis H,
when

F = F15.,,(100 £/2) or F < 1/F2%2(100 &/2).

The probability of committing the error of the first kind is just &.
Thus, if the constancy of the standard deviation is already justified,

then the problem arises, i.e. the comparison of two means.!” In this
case the basic frequency function is

N/} [T 919 19| (@ — Q)@ — @2, - e |

exp (— NSO> ’
2 0 0

g u o i+ln - 1, ) X 2 _ _
1,2.1 lizzl(QH” RINQY— Q%) 9 (2, —ct,— B, )?

13 f(o)f
—2 22 R in.o) (25,— 0, — B2, (711, av—Bxi—l)% ’ (5.12)
1= iv i—=1,v

where

S, =
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and
ogyy1-oas

Q;(\IJ = f(t)dt ’ f;g} == f(“ou+ IBOxz') ’ i == 1; ooy k; Y= 19 2

/30 = % (Bvl'{"levz) .

If we wish to test the statistical hypothesis that two population
means m,; and m, are equal, it will be sufficient to test the derived
null-hypothesis

Hy: ay=aqa,,
because the constancy of the standard deviation has been assumed to be
known @& priori.

Let the maximum likelihood estimates of «,, @, and B be &1, 3{2 and

A
B respectively, then the absolute minimum value S,, and S, is

Son = Zoy+ Zog—Xorty— Xog+ Qy—(Yoy + Yog) B . (5.13)
where 3'], 3:2 and BA are determined by the following equations.
K@, KPR =X
Kk°>a2+K<°>B X2 l (5.14)

K(O) ((l + K(O)az + (K\O) (0))3 Y01 + YOZ

Similarly, let the maximum likelihood estimates of «, = &, and 3 under

the null-hypothesis H, be ax and /§* respectively, then the relative minium
value S, or S, is

A A
Sor = Zo1+ Zos— (Xo1 + Xo2) ¥ — (Y o1+ Yp) B%, (5.15)
where ok and ,@* are determined by the following equations.
A
(K + K@ (K4 KB = Xt Ko
(K + K)o+ (RSP + K)B* = Yor+ Yop )

whence it follows that the satistic

, (5.16)

F= (215_3)534)%:%9

(5.17)
0a .
is distributed according to Snedcer’s F-distribution of degrees of freedom
(1, 2k—3), or t = F is distributed according to Student’s ¢-distribution
of degrees of freedom (2k—3). Therefore, if we reject the null-hypothesis
H, when '

|t] = €,:-5(1008),
then the probability of committing the error of the first kind is just &,
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where t,._,(100&) is the 100& percent point of the ¢-distribution of degree
of freedom (2k—3).

§6. Design of Experiments
6. 1. The optinum allocation of test animals to various dosage levels.
Dr. Milton Friedman'® has remarked on the problem of the optimum
allocation of experimental materials to various dosage levels. The problem
shall be answered in the following manner :
Let .
Mu, =N, (6.1)
i=1

where the total number N is given, and it is required to determine
My, Ms; ...y W; SUCh that the quantity

2

k & 13
A, = ( N niw,-,>< N n;wix,.2> — < N niwia:b-> (6.2)
i=1 i=1 i=1
shall be maximized, where
. Iwi___fgoﬂ/P%o)Q%O), Z:L e ,k.

The required values of 7, ..., %, will be obtained by solving the following
system of linear equations

Ny W Wy — X))+ Ny 0,(X5 — ;)24 -+

A
Wy W0, (B — 2 P N W (T, — 2 ) = o
1
My s W (2, —205)? Ty WLy — Ly B e
. A
A Ty Wi (B, — 8%+ 10,0 0,2, — 25)% = -
2
................. (6.3)
Ny W08 — B2 F Ny WXy — Do )24 My W (X5 — Ly )2+ +--
. s A
A+ o W (B — By )P = Wy
Ny 20,(2; — )% 4 T W (&g — B)% + Ny W(X5 — )2+ ---
A
Wy o Wiy (B — Xy )? - s

where )\ is the Lagrange’s multiplier and should be determined by the
condition (6.1). For example, if we take the simplest case when k=2,
(6.3) becomes
; 1.1
Ny @ Ny = w0 (6. 4)
hence the required optinum spacing of «; and #, is such that for which

N2 (1 1>“2
Ay= """ |7 +=] (x,—a,)7?
O w,w, w%+w§ (@ =2,)
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is maximum.

In the case of Table 11.1!%° of Dr. Milton Friedman’s data, viwed
from the stand point of the allocation, the determinant of the coefficients
corresponding to the system of equations (6. 3) contains a factor

o (5 5 Y 3
() o (3) (2 (o (2 (3
GO (2) o (3 GOV (2 (O
(7 () (3 o (3) 2 (5 .
() (2 (9 (2 o (2) (2
(5 3 (37 (3 (37 o (&)
O (3 6 (5 (Y (5 o

6.2. Remarks on the optimum spacings for the time mortality
curve. When both the mean m and the standard deviation o of the time
mortality curve are unknown, the most efficient design of experiment for
estimating m and o jointly must be such that, for any given k, log
lethal time levels, should be chosen so as to make A, = K"K —K*
maximum. But, as was seen in Part 12 of my papers, the numerical
calculation of such spacings was to0 cumbersome to be tabulated. Here
the following compromises may be helpful in some circumstances.
Inspections of Table 6.1 and 6.4*%** show that that optinum spacings for
estimating the mean only are always more efficient than those for
estimating the standard deviation only. So, as the approximate method,
we may consult Table 6. 12® for choosing log lethal time levels for given
k=23 ..,10.

§ 7. Illustrative Example?*

Drs. W. Ohsawa and S. Nagasawa obtained the following data, in
studying the lethal effect of Kerosene emulsion on Cremastogaster brunea
matsumurai Forel. In this experiment the lethal time of each individual
insect could be observed because of its peculiar character—the “abdomen
erecting reflex”. We shall estimate m and ¢ by using four lethal time
levels,
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%, = 1.5, @,=185, x,==205, x,=2.25,

and shall test the homogeneity of standard deviations of each dilution
level.

Table 7.1, Percent cumulative frequency tables of log lethal time x at
20°C with Kerosene emulsion of various dilutions

D 1.2 13 1-1 15 1.6 17 18 1.9 20 - 21 22 23 24 25

50 1 1 1 16| 30 48 68 | 8 97 100 \
T 1 9 18 36 56 | 77 & 92 97 98 100 1
100 1 1 16 42 60 | 73 93 = 97 99 100 j
150 4 8 19 47 | 71 8 . 94 99 100
I 200 "7 23 37 | 49 72 89 96 98 99 100
300 3 9 18 39 61 8 93 100 }'
400 1 5 18 38 |56 72 8 92 | 97 99 100
600 2, 8 20 43 | 67 80 92 100 | |
800 21 7 19 37 54 72 8 97 | 98 100

1200 1 7 22 39 67 8 94 98 100

1600 2 0 4 12 38 | 60 8 90 99 |100

x1==1.55 x9=21.85  x3==2.05 = x4==225

For testing the homogoneity of standard deviations, the statistic F' of
(5.11) is calculated as follow :

_P(k—2)8,,—Se__22 .090164 __ 1.51

p—1 Sm, ST 107 131390
By rough linear interpolation, we find
FY(2.5)=266, F}(5)=2.30,

therefore the homogeneity of standard deviations can not be rejected, as
was to be expected theoretically.

Examples of c0mpufing schemes are shown in Tables 7.2, 7.3, and
7.4. In calculations of K{*, K, K¢ and X,, Y,, Z, the following
indentities are utilized as checks. °

L;:(fm_fim )2 Z(f 0 be)IXfLO)a/ '—fi @, 1) (fw) — 1 g, 1)2
¢ Q(o) g(_)_)l Q 70y __ Q(Ov (o)
_ (Ot 2) (042
- QO=—Q®
. i =1
M, E(fio)a' "“ft xz-l)z z(fi())w — %, 1)(fi 2, — %% 1) (fi%z—fi%= 1)3
RO —Q® QO—QY QU Q)

(fio)(x +2,)—fi% (%71+z:~1))2

Q’o) _Q(o)
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k

2 L, = K" + 2K + K,

k2

-

SYM, = K0 +2X,+ 2, .

i
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For the sake of simplicity, we shall discuss the point in this case of two
samples. When two samples xa;, £=1...... , Ng:u=1, 2 drawn from the
normal populations N (m,. ¢,) «=1, 2 respectively are given, we test the
hypothesis of equal variances ¢ = 62 by means of the statistic

where

and

Ny
= - , u=1.2
o na. El xzm ’ ’

If the null-hypothesis of equal variances is accepted, we test the hypothe-
sis of equal means mi=ms2 by means of Fisher's generalized Student’s
ratio
- { = 1/”1712(711'*‘7!2—2) X1— X2 -
ny+ng l/n131+n252
We shall mention here the following two points :
(1) If in fact the two variances are equal, i. e.

g1= 02,

then under the null-hypothesis of equal means m;=mz2, the two statistics
t and F are mutually independent.
(2) 1If the two variances are unequal, i. e

o17Fo3,
then under the null-hypothesis of equal means m,=ms3, the two statistics
t and F are depenendent, and the joint probability element of them is
proportional to
n1+n2—1
2 — 2 I
1q+_ﬂ7’lzi ny 1F + 12+ et 2 dtdF
A ns\ n2—1 a2 72 ,
Kzala,( S+t ) K?dia; ( 2 )
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where
g2 mne(m tng—2)
n+ng

’

In this case, when the hypothesis of equal variances is accepted, the dis:
tribution of ¢ is the conditional distribution of ¢ under the condition that

1/F™~ X 100e /)< F <F™ ~}(100:/2) ,

n;—1 ng—1
where ¢ denotes the level of significance.
The detailed discussion of such problems as mentioned above will be treated
in a separate paper.

Milton Friedman, loc. cit.
Milton Friedman, loc. cit.
From this we can infer that in the case of dosage mortality curve the optimum

HHH'.—I

allocation of 7, -, are undeterminate in symmetric spacing. This result
seems to me a curious fact, and the statistical implications of this fact
are yet unknown to me.

. Ogawa. Joc. cit. pp. 176-213.
. Ogawa, loc. cit. p. 199.
. Ogawa, loc. cit. p. 196.

he calculations were carried out with the cooperations of Messrs M. Tanaka,
Y. Miyamoto, M. Okamoto and S. Yamamoto. The author expresses his
hearty thanks to them.
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