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Abstract
Our purpose in this paper is to prove existence of wave opedat. or inverse
wave operatonV, for nonlinear Schrodinger equations with quadratic nadiities

in three space dimensions. Our results show that the mapping. is well defined
and are improvement of results on the range of inverse wageaty obtained in [6].

1. Introduction

In this paper, we study asymptotic properties of small $ohst for nonlinear
Schrodinger equations with quadratic nonlinearities ire¢hspace dimensions:

. 1
(1.1) |8tu+§Au:Au2+uU2, (t,x) € R x R®,

wheret is the complex conjugate af and A, u € C.

The purposes of this paper are twofold. One of them is to shmw the inverse
wave operator for (1.1) can be defined in a suitable Banachespkn order to do it,
we consider the initial value problem:

1
iU+ =AU =AU%+pul%, (t,X) e R x RS,
(1.2) TS w6 x) R x

u(0, x) = ug(x), x e R®
and we find a unique global solution to (1.2) under the coontithat the initial func-
tion is small in a Banach spacé, and {{/(—t)u(t)}i>o is a Cauchy sequence in a

Banach spacX (Y and X will be defined in the theorem below precisely), namely

(L3) im U(=0u(®) - U-su()lix =0,
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where the free Schrédinger evolution grolft) is given by

Uty = f &Yy (y) dy.

(2rit)3/2

By (1.3) we see that there exists a unighee X such that
Jim 2(—tu(t) — ¢+ lIx =0

which means that the operatdV. : up - ¢. is well defined. We call¥, the inverse
wave operator and denote a rangeﬁ)‘i by R(VTA) and a domain of, by D(VTA).
Then we see tha¥ D D(VTA) and X C R(VTA). Another purpose is to consider the
final states problem for (1.1)

H 1 — 2 2 3
(1.4) |atu+§Au—Au +uUs, (t,x) e R x R?,
U(—o0)u(oo) = us

which is written as the integral equation
(1.5)  u(t) =Ut)us +i f Ut — 1)(u? + ut®(r) dr, (t, x) e R x RS,
t

for a givenu. € X; which is small and we prove existence of a unique global smiut
u(t) € C([1, o0); Y1) of (1.5) fort > 1 under the condition that

lim Jju(t) — U (t)uslly, =0,
t—o0

where Banach space§, and Y, will be defined in the theorem below precisely. Then
the operatonV,: u. — u(l) is well defined and we cal, the wave operator. It is
easy to see thaX; D D(W,) andY; C ROW,). If we can show the above two exis-
tence results under the conditiofy = X, we haveD(W:) C X1 = X C R(W:) which
implies that the 0perat0W+V~\/+ is well defined as the mapping from the neighbor-
hood of the origin ofY into Y;. This is the main result. However, existence of the
scattering operatoVN\/+W+ is still an open problem.

Many works have been devoted to study of global existence agthgtotic be-
havior of solutions to quadratic nonlinear Schrédingeragiqus (see e.g., [4], [5], [6],
[10], [11], [13] and [14]). In [6], global existence and agytotic behavior in time of
small solutions to the initial value problem (1.2) was s&adivhen the initial condition
Up € Y =H3°NH2 and small, where the weighted Sobolev spaiig* is defined by

HE = (¢ € St lIgllype = (L + X241 — A)™2¢ Lo < o0},
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with m,k e R, 1 < p < co. For simplicity, we denoteH™k = Hg“"‘ and || - ||gmk =
Il - ||H?,k. They obtained_*>° time decay estimate of solutions to (1.2):

(1.6) Ju®)llLe <Ct™32 for t>1

and the following existence theorem: for any smajle Y, there exists a unique final
stateg, € X = L2 N FL* satisfying the estimate

Ju(t) — U(t)gs]l2 < Ct7Y? for t> 1.
Order of time decay was improved by [10] as
(1.7) Ju(t) —Ut)p+]l- < Ct™¥* for t>1,

where Fr is the Fourier transform ofy defined by

_ 7= 1 —iXE
f¢=¢—@ﬁﬁ/e ¥ (x) dx
and
-1 — 1 iX&
F = s [ @ ueds

is the inverse Fourier transform @f. The function spaceFL* is defined by
FL® ={p eS": Fp e L™}.

Thus from the results in [6], we can define the inverse WaveahpeVN\A: Y — X.
In [5], sharp time asymptotics of solutions around the firtates of the equation (1.5)
was obtained. In particular, time asymptotics of solutidram below was studied.
Also a wave operatoW,: u. — u(1) € L? was constructed for the final functian. €
X1 =HO3NH3°NHZO However it is impossible to define the operatok V., since
X1 G X.

It is important to define the scattering opera];&’m/\/+ for scattering theory. There
is a large amount of literature on the scattering problemSichirédinger equations with
nonlinearities satisfying the gauge invariant conditiseq e.g., [1], [2], [3], [7] and
[12]). Asymptotic completeness is shown if we pro¥e= X = X; = Y;. However it
is still unsolved for nonlinear Schrodinger equations wijtradratic nonlinearities even
in the case of three space dimensions. The asymptotic ctenples with the gauge
invariant quadratic nonlinearity|ulu was shown in [1] and [12] for. > O and for
A < 0 if the data are small.
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Before stating our main result, we introduce some notatimmg function spaces
which are used in this paper. We have the following identity

(1.8) U(t) = ME)D()FM(L),

where,
M) = %@ (DH)g)x) = (it)*%(%)

and the method of factorization was used by N. Hayashi and Zhw@ [9] to study
scattering problem. We also define the following functiomacp

Zt ={¢ € C([T, 00); L?): lIpllz, < oo},
where

I$ 1z, = [STUD)(t3/4II¢(t)|IL4 +tY2)|p(t)I.2).

For simplicity, we write (x) = (1 +|x|?)Y2.
We state our main results

Theorem 1.1. Let iy e Y = H3°N HY2 and ¢ = |Juglly. Then there exists an
¢ > 0 such that(1.2) has a unique global solution @ C(R;Y) which satisfies

lu@®ll~ < Ce¥2(t)"¥2,  Jlu(t)llL> < Ce"2.
Moreover there exists a unique final state € X = H>? such that
lU(—t)u(t) — ¢+ [Ix < Cet™*

for t > 1. Namely the inverse wave operatc)ﬂ/+ is the mapping from the neighbor-
hood of the origin ofY into X.

Theorem 1.2. Let u, € X; = HY! and the normp = |ju.||x, be sufficiently small
Then for any positive time B 1 there exists a unique solution -u/(t)us € Zt
to (1.5). Namely the wave operatodV, is the mapping from the neighborhood of the
origin of Xy into Y; = L2

By the above theorems we have

Corollary 1.1. The operatorW+V~\}+ is well defined as the mapping from the
neighborhood of the origin off = H3°NH2 into Y, = L2,
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REMARK. Our strategy is to make use of an oscillation property oflinearities
u2 andU?. Howeverut does not have such property. Therefore, it is difficult toldea
with the nonlinearityut by our method.

This paper is organized as follows. In Section 2, we prepagtinpinary lemmas.
In Section 3, we prove Theorem 1.1. Section 4 is devoted tgtbef of Theorem 1.2.

2. Preliminaries
We use the notations
lullw = llullgzo + [T Ulzo + (1) Y2 T2Ullso + (1)Ul o, T = X +itV.

In this section, we summarize some lemmas and the resulsnebitin [6] to show
Theorem 1.1. We introduce the factorization technique ef fiee Schrodinger evolu-
tion group. It is useful to study the nongauge invariant mmdrities. We can find the
following lemma in the proof of Lemma 3.1 of [8].

Lemma 2.1. Letp #0 and E= €2 Then
— 1\— — 1\
2.1) FM J—"lD<¥> M = i3/2D(p)Ep2"’]-"Ml/p]-"1D<¥> M”.
For the proof, see Lemma 2.1 in [10]. In order to prove Theofeiy we prepare

the following lemma.

Lemma 2.2. Let u be a solution of(1.2), and puta; = —3/2, ap = —1/2, A, =
(ia + (t/4)A)~L. Then the equality

is valid, where
L=id+ %A, U= Ju— %tZV(AAaluz + 1Ay, U?),
Iy =AuJu+pudu, o= —it?v(rA,, (ULu) — nA,, (TLu)),
iA (1 i (1 _
|3 = E (OllAal +1 <§ +Ol1)>tV.Aa1U2 + %(OlZAotz +1 (E + 30[2>>tv"4012u2’
_ia 2 2 Iz Z0\2 5724
Iy = ZVAal((ju) —uJ%u) — ZVAGZ((ju) —T0J%).

In the proof of Proposition 3.2 of [6], the above lemma waswamoWe state the
estimates involving the operatof,, in the following lemma.
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Lemma 2.3 ([6], Lemma 2.3). Letl<g<p<oo, | =0,1,and Ay = (i +
(t/4)A)~
(i) Suppose that & L% and that(3/2)(1/q — 1/p) +1/2 < 1. Then

IV Agull e < Ct=E2WAa=P=172) ) 4

fort > 0.

(i) Suppose [ [2, 6) and g€ [2, o0). Then
IV Ayuvll 2 < CE2(Jugvllee + loZullLe + (€Y 2]uv]lLe + ()¥*uv]|La),
IV A, W3l 2 < CE2(luTulle + @)Y2 03l + ¥4 La)

and

IV' Au?0]| 2 < CU2(JuT v, + luoTullLe + ) Y2)luD]|Le + (1) ¥4 u?D]lLa)

s

for t > 0 provided that the right hand sides are finite

Global existence of small solutions for the Cauchy problém2)(is obtained in the
following proposition.

Proposition 2.1 ([6], Proposition 3.2). Assume thatgie H>°NH2and |ug||pzo+
luollHi2 = &. Then there exists an > 0 such that(1.2) has a unique global solution
u satisfying ue C([0, oo); H39NH?) and

sup|lu(t)lw < 2.

t>0
Furthermore we have the estimates
I1llp2o < Ce(t) ™%, |[2llnzo < Ce(t) %2,

allgzo < Ce(t)? %2, |ll4llpzo < Ce(t) /4,
for any te [0, co) and smalld > 0.

3. Proof of Theorem 1.1

By Proposition 2.1, it is sufficient to show that there exiatanique final state
¢+ € X = HY1 such that

(3.1) [U4(—t)u(t) — p+llx < Cet ¥4 for t > 1.

By the integral equation associated with (2.2), we obtain

4
(3.2) W(t) = U)WV (0) —i /Ot Ut —t)y_1jdr.

j=1
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It follows from Proposition 2.1 and (3.2) that

t 4
UC-DUO) - U-98Slo = C [ 3 Il o de
(3.3) S =1

t
< Cse / (175/4 +7792 4 19’3/2) dr < Ces™ 4
S

fort > s> 1 and smalld > 0. By virtue of Lemma 2.3, lettingp € [2, 6) be close
to 6 and ¥q=1/p—1/6, we also have

(3.4) VA2 L2 < CEY2(lugulle + tY2)u?|ILe + ¥4 U?||La) < Cet?~%2,

since by Holder's and Sobolev's inequalities

2/ 1-2/ 1/240-3/2
Iullca < U Ul =7 < Ce¥/277%2,

luZullLr < CllullallTullLs < CtHUllLallT?ullL2 < Cet?2,
Iu?lLs < CllullLallulls < Ct YjullLa || Jull2 < Cet?~5/2,

2 -3
[ullLe < llullLallufl~ < Cet™".

In the same way as in the proof of (3.4), by the identityt® = A_,u? we have
(3.5) IAAL 2| 2, | VALT? [0 < Cet?™>/2,
On the other hand, using (3.3), (3.4), (3.5) and the idegfity L/ (t)x{/(—t), we obtain
IX@U(=t)u(t) — U(=s)u(s)) o
= U Tut) — U(=S)Tu(S) ke
(3.6) < A=OW() = U(=8)W(S) o + C(| Vel U lzo + | VAL, T2 [ 410)

+ C( VAL U lzo + |V Ag, U2l 141.0)

< C(esfl/4 +etfY2 4 830’1/2) < Ces V4

for t > s> 1. Thusé(—t)u(t) is a Cauchy sequence X, so there exists a unique
final stateg. = lim_ o, U(—t)u(t) € X such that

3.7) [U(—t)u(t) — ¢+ llx < Cet™* for t > 1.

Therefore, we have shown (3.1). This completes the prooftafofem 1.1. U
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4. Proof of Theorem 1.2

We consider the linearlized version of equation (1.5)
4.1) u(t) =U)uy +i / Ut — t)(r? + pv?)(r)dr, (t,x) e R x R3,
t

in the closed ball inZy with a centerl{/(t)us and a radius 2, where p = |[us|x, =
lusllgzz, namelyv — U(t)us € Z7 and ||lv — U(t)us]lz, < 2p. For simplicity, we put
f = v —U(t)u,. We can rewrite equation (4.1) as

(4.2) u(t) — U(t)u. = Kq(t) + Ka(t) + Ks(t),

where

Ki(t)=ix /t ” Ut —7)UT)U)2(2) dr, Kat)=ip /t ” Ut — U@L (7) dr,

Ka(t)=ix /too Ut —7)(F2+2fU()us)(7) dT +ip /too Ut —)(F°+2fU)us )(7) dr.

We estimate equation (4.2) in®>. Then we have
(4.3) lu(t) —UE)u+llz < IKa(t)llee + [IK2(t)ll2 + Cp?t ™2,

since

uKaomzsc/’uun@+nﬂnwuuwmuﬂh

(4.4) -

sC/ v 32(02 + pl|us |Les) dr < Cp2t 2,
t

We also estimate equation (4.2) lirf. By Sobolev's inequality we see thet>% c L%,
Hence,

(4.5) Tu(t) = Ut)u+liLs < 1K1 () lHzo + [1K2(E) o + 1K 3(t) e,

By Holder's inequality and the estimat@/(t)u.| s« < Ct~¥*||u.|_«s we have

IWﬁWufc/ (r =) ¥4 Fllall FllLe + 1| Fll2llUd(z)usllLe) dT
(4.6) ¢

o0
<C / (t —t)"¥42=%4(p? + p|luylLaz) dT < Cp?t~ 2.
t
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We next considef|K1(t)||4zo and ||Ko(t)[lyze. First of all, we evaluateKq(t) in L2,
By Lemma 2.1, we obtain the identity
4.7)

FU(—7)U(T)us)?=—i fﬁf—lpG)M(u(r)m)z
=iV2p)E2FM*F1D <%)W2(Z/l(r)U+)2
= 1-32DQ)EZFM 2 FHFMu,)?
=(2it) Y2k 2/41112(%) +732D)EXF(M — 1)u)(F(M +1)u,)
+r2DR)EZF(M Y2 — 1) FHFMu,)?.

We estimate the first term of the right-hand side of (4.7) kednating the oscillating
function &7* by parts with respect ta. For the second and the third term of the
right-hand side of (4.7), we obtain better time decay by mgkise ofM — 1 and

MY? Z 1. Indeed, by (4.7) we have
(4.8) 1K)z = Hx [ FuouE@ui@ d| <Ri+R,
t L2
where
R =C /00 r3/zeifé|2/4lj:2<§> dr|
t 2 L2

R,=C ftoo T H2(J(FM = Du)(FM + D)l + | F(MZ = ) F Y FMu.)?| ) de.

By the relation|M —1], |V1/2—1| < CtY4x|¥2, Holder's and Sobolev’s inequalities,
we find

R,<C / 2| F(M = DU s 1F M+ Dus s+ | (M2 = 1) FH(FMu)?| ) de
t

[oe)
=C / (2= AP FM = Dus [l L2 [VF(M + L)uy | 2
t
+r X PFTHEMUL L) dr

o0
=¢C / (%2 IXI 72 (M = Dus L2 lIX(M + Dus [z + 7~ 74 V(F MU (L) de
t
o0
<C / @ udllZoa+ T HIVIFMUL) 12,) dT < CU¥4|us |2
t

Thus, we obtain

(4.9) IK1i(®)llLz < Ry + Ct=¥4|us)1Z0...
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We next consider the estimate &. Using the identity

grieza- 1 o (rdTEP1%)
1+it|€%/4 O ’
we get
32gTleA = 1 32 (v TR/
1+iz[E[2/4
1 e 3 g2 1
, o (1 vagrra) 4 S —a2griera_
(4.10) T(lﬂ |E|2/4r % T
12geler/allE 1

4 (L+it|g|2/4)2

It follows from Sobolev’s inequality and (4.10) that

(4.11)
R1<CHtl/2—1 @2(5)
- 1+t]€)2 L2
1 &
+C —3/2 Gz(é) 172 7/\2(_) )dr
/ ( T T e (2
2
<Ct-12 HE& 1 ,:
- T+HE2 || o || 1E]1/4
00 2 2
+C/ T2 61" 1 O+ ) L = U dr
t 1+7|&)2 |, 14 s (A+T|EP)? || | 114

o0
< Ct¥4u, %0i+C f /AU |20 AT < CUY4 U200
t

By (4.9) and (4.11) we have
(4.12) IK1@®)llLz < Ct¥4|us[Zo.-

Using Lemma 2.1, we also have the identity
(4.13)

FUC-D)UD)
=i 1/2D(—2)E6.7-'|\/| 1/2f_1D<%> M 2(2/{(T)U+)2

= _~32p(_2)ESFMY2F Y FMU,)

= —(-2i r)—3/2e3‘f¥2/4u7+2<—%) — t7¥2D(-2ES(F(M — D)us) (F(M + L)us)

— 1 32D(—2)ESF(MY2 — 1)F{FMu.)-.
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Therefore, in the same way as in the proof of (4.12), we obtain
(4.14) IK2() Iz < C¥4IUsllFo.o.

We next evaluatevKy(t) and VK(t) in L2. By Lemma 2.1, we have the identities

FU(=D)U@)U)UE)ws) = T 2DR)EZFM 2 FH{FMU)(FMw,)

=(a r)sfzéf'fz/“m(%) A(%)

(4.15) + 1 32D(2EA(FMuL)(F(M — Dw.)

+ 1 732DQ)E2(W)(F(M — L)us)

+ t—S/ZD(Z)EZf(Ml/Z _ 1)f_1(fM u+)(]:|\/| w+)
and
(4.16)

FUT)U@UD)UE)ws) = —1 ¥2D(—2)ES FMY2F{FMu) (FMw,)

32 aizean~( E\—~( &
— 3/23it|E|°/4 > >
=—(-2it)"“e u+<—2>w+<—2>

— t732D(—2)ES(FMU)(F(M — D)ws)
— t32D(—2)E®(wy)(F(M — 1)u.)
— 1 Y2D(—2)ESF(MY2 — 1)F {(FMU)(F Muw,).

By substitutingVu, for w, at (4.15) and (4.16), respectively, and estimatwig1(t)
and VK,(t) in the same way as in the proof of (4.12) and (4.14), we obtain

(4.17) IVK1®)llz < CU¥Hjuslifes,  IVK2()ll: < C¥4uff ..
Collecting estimates (4.3), (4.5), (4.12), (4.14) and 74..we have

lu(t) — U+l < Co*(t>*+t73), u(t) —U)us s < Cp*(E ¥ +t7H),
Therefore,

t2)u(t) —U@Ous e + 4 u() — UEuslle < CpA(t Y4+ 1)

(4.18)
<CoATY4+1) < 2p,

from which it follows thatu — U(t)u, € Z1, for all T > 1 and sufficiently smallp.
We put

(4.19) u(t) =U)u, +i / YU - r)(AU(J)Z N MWZ)(r) dr,
t
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where v —/(t)u, € Z7, j =1, 2. Then we have
(4.20) D e < JoD(t) — Ut)ullLe + [UE)ULlLe < Cot ¥4,

By virtue of (4.20), we obtain

lu®(t) — u@()) = < C / @) — v@E) @) lILe + 1vPR)llLe) dT
t

)
(4.21) <C sup t¥4u®(t) - v@(t)nu/ pr 2 dz
te[T,00) t
< Cpt—l/z sup t3/4||U(1)(t) _ U(z)(t)|||_4,
te[T,00)
and
(4.22)

[u®(t) — u@)lls < C f oo(r — )7 4uB(t) — v@O) 2@ (E) e + 1vP(E)lILe) dT
t

o0
=C sup t2ui(t) — v()12 / p(r =ty ¥4 dr
te[T,00) t

<Cpt™t sup tY2pDt) — v@(t)] 2.
te[T,00)

It follows from (4.21) and (4.22) that

t72u®(t) — u@()llz + t¥*uD(t) — uA(t)]|, 4

<Cpt™* sup t72p®(t) —v@(t) Iz +Cp sup t3*vD(t) — vO(R)]|Le.
te[T,00) te[T,00)

(4.23)

For v() — (t)us, € ZT we have estimate (4.23). By contraction mapping principle
with (4.18) and (4.23), there exists a unique solution /(t)us € Zt to (1.5) for any
positive timeT > 1. This completes the proof of Theorem 1.2. U
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